miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Física del siglo XIX

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

               La Física, como todo, evoluciona

Simplemente con echar una mirada al siglo XIX, nos podemos percatar de que, ese período fue apasionante la Ciencia y la Tecnología que comenzaron a cambiar de manera acelerada produciendo importantes cambios en nuestra Sociedad, sus usos y sus costumbres.

No es extraño encontrar textos de la época en los que, aquella sucesión imparable de inventos y de muchos descubrimientos, marcarían el desarrollo de una nueva Humanidad.

                                                                                                                                 Faraday y J. C. Maxwell.

Las lecturas de la época dejan a veces traslucir sentimientos de asombro, admiración, desconcierto y, a veces, un poco de temor de todos aquellos avances que parecían sacados de una novela de ciencia ficción.

Sí, queremos mostrar episodios referidos a grandes descubrimientos que, por estas razones, llaman la atención. Claro que, si nos trasladamos mentalmente a aquellos momentos y aquella época, podremos comprender mejor, todas aquellas reacciones entonces desencadenadas que , vistas en perspectiva, son lo que sería de esperar y de una total normalidad.

Genios en una reunion

¿Que sería de nuestro mundo sin las personas que aparecen en esta foto?. Sería difícil nombrar a un físico relevante del siglo XX que no aparezca en ella. Corresponde a la quinta conferencia, año 1927, promovida por el filántropo belga Ernerst Solvay. De los 29 asistentes, 17 ya habían, o lo harían poco después, ganado el premio Nobel (al menos una vez). Schrödinger, Einstein (repite en esta lista), M. Curie, Bohr, Planck, Lorentz, Heissenberg, Pauli… científicos inigualables que cambiaron el concepto del mundo, desde el vasto Universo hasta el pequeño átomo.

Aquellos episodios fueron recogidos en lecturas y manuales de Física del siglo XIX, y, lo mismo que fueron saliendo a la luz (sin orden ni concierto), serán aquí comentados. Lo cierto es que, todo aquello nos trajo consecuencias históricas, sociales y educativas.

En general, el siglo XIX es el de la consolidación de la Física como disciplina autónoma. Se manifiesta en ella un afán por establecer un campo de estudio propio, separándose por un lado de la Química, y por el otro de las matemáticas, a la que ha pertenecido hasta entonces como una rama de la misma: las matemáticas mixtas(óptica, estática, astronomía.

En ese momento la Física comienza a adquirir importancia las distintas ramas del saber. Dos factores contribuyen a ello. El primero, la incorporación de nuevos conocimientos que amplían espectacularmente el horizonte de la disciplina. El segundo, el fundamental: el cambio de orientación con relación al espíritu especulativo que estuvo presente hasta bien avanzado el siglo anterior.

                       Pronto llegarían nuevos conceptos, nuevas teorías

De este modo, la Física asume un enfoque más experimental, al tiempo que dará paso a una utilización creciente de las matemáticas.

Drespretz, en el prólogo de su Física Experimental (1839): “La Física, en el estado á que ha llegado en la actualidad, no tiene de común más que el con la Física llamada escolástica, que los preceptos de Bacón y los ejemplos de Galileo han contribuido felizmente á desterrar de la enseñanza pública.”

La Física de orientación escolástica todavía perdura, especialmente en nuestro país, a principios del siglo XIX. marcar las diferencias, se insiste en que la nueva Física es Física Experimental que se contempla como “ciencia útil” y capaz de incidir con sus aplicaciones en la vida de las personas y en las Sociedades en general.

Aquellos tiempos eran de carruajes que comenzaron a correr sin caballos, máquinas de vapor que “aprovecha la potencia motriz del fuego” que surgieron en Inglaterra del siglo XVIII para sustituir a los animales en el bombeo del agua, cuando ésta inundaba las minas de carbón. La máquina “atmosférica” de Newcomen fue la primera, seguida por la de Watt que mejoró el diseño con un condensador para el vapor, haciéndola mucho más eficiente.

En 1827, el ingeniero francés Marc Seguir inventó la caldera tubular, que obtenía mayor provecho de la fuerza generada por el vapor. Stephenson aplicó sistema a la locomotora The Rocket, que era capaz de transportar 12.942 kilos a 24 km por hora con una pendiente del 2%.

                           Otro invento del que ahora, el mundo no podría prescindir
El teléfono moderno es la culminación del trabajo realizado por muchas personas e inventores. La historia de la invención del teléfono es una confusa colección de demandas y contrademandas para decidir quién tenía los derechos sobre la patente y también quién era el primer inventor del teléfono. La realidad sobre quién inventó el teléfono Durante mucho tiempo Graham Bell ha sido reconocido como el inventor del teléfono; sin embargo en Italia se reconoce a Antonio Meucci como el legítimo inventor del teléfono. La realidad es que Graham Bell robó ideas de otros inventores para finalmente patentar su modelo de teléfono. Está demostrado que Bell tomó como suyas ideas de las patentes de Antonio Meucci, Innocenzo Manzetti y Elisha Gray para posteriormente patentarlas.

Ninguno de aquellos avances se llevó a cabo con respaldo teórico hasta que aparecen los estudios de Carnot en 1824. En ese nace la termodinámica y a partir de ahí el progreso se dispara.

La Máquina de vapor tiene lugar preferente en los manuales de Física de la época y se describen de manera minuciosa todos y uno de los elementos que intervienen en su funcionamiento. Faltaba sin embargo, la fundamentación teórica, la cual tardaría varias décadas en ser incorporada.

A lo más, los dos únicos principios explicativos que aparecen son la “fuerza elástica del vapor” y “la caída de presión cuando el vapor se condensa”. Claro que, la máquina de vapor adoptó nuevos y más modernos diseños y, de estar fijas en sus lugares de , pasaron a poder desplazarse con la gran ventaja que ello suponía, y, hasta tal punto fue así que, aquella idea del desplazamiento, dio lugar a la llegada del Ferrocarril por una parte y de la Navegación fluvial a vapor por otra, con lo cual, aquello nos llevó en volandas hacia el futuro. Un futuro hasta hacía poco impensable.

“[…] máquinas admirables que lo mismo producen su efecto en puntos fijos, como marchando con una prodigiosa velocidad, ya sobre las barras de hierro, borrando las distancias, ó ya surcando los mares sobre unas tablas, y haciendo vecinos los dos mundos que estos mares separan. (Rodríguez, 1858, p. 320, en su manual de Física general y aplicada a la agricultura y a la industria. Madrid, Aguado (1858).”

Resulta muy curioso en la que eran presentados estos nuevos inventos y las referencias que utilizaban para ello al tratar de transmitir al lector novedades de tal magnitud:

“Igualmente se las ha aplicado á los carruajes que se hacen marchar sin caballerías para transportar cargamentos muy considerables, ó mejor para arrastrar tras de sí un número mayor o menor de carruajes ordinarios cargados de todas las mercancías, ó de otra clase de objetos. (Beudant, 1841, p. 283. Tratado Elemental de Física (3ª Edic.) Madrid, Imprenta de Arias (1841).”

Como vemos, lo era descrito en base a lo ancestral. Se percibe que comienza a producirse cambios de incalculables consecuencias, que hará que el mundo, deje de ser lo que era.

Tras haber pasado desapercibida siglos, la electricidad comienza un desarrollo fulgurante en el siglo XVIII. En ese período se establecen las leyes básicas y surgen las primeras teorías explicativas de los fenómenos conocidos. Coulomb cierra el siglo estableciendo la primera ley cuantitativa e introduciendo la electricidad en el marco de la ciencia newtoniana.

                   La bateria eléctrica de Volta y las primeras ciudades alumbradas

Volta apiló discos de igual tamaño de cobre y de cinc, sólo o con estaño, alternados, que llevan intercalados cada uno de ellos un paño humedecido. Esta “pila de discos” empieza y termina con discos de diferente tipo. Conectando con un alambre los discos situados en los extremos logró que fluyera un flujo eléctrico. Impregnando el paño en determinadas sales la corriente obtenida era mucho mayor.

Así, en el siglo XIX se abre con una aportación de gran trascendencia: la pila de Volta, cuyos efectos “son tan extraordinarios que sin exageración se puede decir que es el instrumento más maravilloso que ha creado la inteligencia humana” (González Chávarri, 1848). La pila amplia el campo de la electricidad incorporando todos los fenómenos relacionados con la entonces llamada “electricidad galvánica”. Poco más tarde, gracias a los trabajos de Oersted y Faraday, aparece otro dominio de inmensas posibilidades: el electromagnetismo. El descubrimiento de la conexión entre corriente eléctrica e imanes va a ser seguida de la puesta a punto de aparatos y máquinas que serán el soporte de la electricidad industrial y marcarán el tránsito hacia la Sociedad contemporánea.

La Electricidad acuña fama de ser un agente físico poderoso y, al mismo tiempo, sorprendente, vistos los fenómenos y efectos que suele protagonizar. Se presenta como capaz de hacer posible todo lo imaginable e inimaginable. Tanto es así que por ejemplo, es capaz de producir luz ¡sin utilizar fuego! Así, los manuales describen la experiencia realizada por Davy en 1801, que mediante una pila de gran de elementos hace saltar un arco de luz cegadora (arco voltaico) entre dos barras próximas de carbón.

foto

Liebherr, en el emplazamiento británico de Sunderland, se decidió por el moderno procedimiento por arco voltaico pulsado, por lo que utiliza sistemas digitales del TransPuls Synergic 5000 de Fronius.

La luz a diferencia de las chispas se mantenían durante un cierto tiempo, pero las barras se iban consumiendo y llegaba un momento en que cesaba el fenómeno. Con base a experiencia se construyeron aparatos destinados a la iluminación, provistos de un complicado sistema que mantenía las distancias de las barras. El arco estaba protegido de las corrientes de aire por un tubo de vidrio.

Otro inconveniente era la duración muy limitada de pilas y baterías, pero a partir de los años 1860 comenzaron a estar operativas las dinamos y problema quedó solucionado.

      No sería justo hablar de la luz sin nombrar a N. Tesla

Poco más tarde, 1880 y gracias a que el espabilado Edison se apropió de las ideas de Tesla, surgió y se impulsó la bombilla de incandescencia, dispositivo durable y de bajo coste de producir luz mediante la corriente. Ha sido el sistema que hemos conocido hasta nuestros días.

Podríamos seguir hasta llegar a lo que hoy es la Fisica, sin embargo, ni el sitio es tan extenso ni el tiempo lo permite.

emilio silvera

Dos verdades incompatibles

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Trabajo presentado en la XIX Edición del Carnaval de la Física

El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:

La realtividad general nos dice que en presencia de masa, se curva el espacio y se distorsiona el Tiempo

Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.

Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.

Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.

Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que  será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.

“… de Estados Unidos (NASA,  registraron las ráfagas de viento más rápidas nunca antes detectadas alrededor de un agujero negro.”

No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.

Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.

Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.

¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.

Einstein que con sus trqabajos (algunos maravillosos), como el Efecto Fotoeléctrico que le valió el Nóbel, fue uno de los padres de la Mecánica cuántica y, sin embargo, pasó gran parte de su vida combatiéndola, a él no le entraba en la cabeza que aquella teoría de lo muy pequeño, fuese incompatible con la suya de la Relatividad General. Aquellos dons “mundos” de lo muy grande y lo muy pequeño aparecían incompatibles y, cuando los físicos trataban de unirlos, aunque el planteamiento fuese racional y muy bien conformado, el resultado era como una gran explosión de indinitos sin sentido… ¿Por qué sería?

No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.

El objeto más luminoso del Universo local

Allí, en esa lejana región donde dicen que están las cuerdas vibrantes de la Teoría M, según nos dicen, subyace esa teoría cuántica de la Gravedad, toda vez que, ambas teorías, la de Einstein y la de Planck, la de lo muy grande y lo muy pequeño, conviven sin problemas y, no sólo no se rechazan sino que, se complementan en un todo armonioso.

Si es así, la teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante los últimos 20 años demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.

En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.

cuerdascuantica.jpg

Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas.  Sin embargo, hay una curiosa coincidencia en todo esto, me explico:

Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdas, Einstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.

Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.

El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

La velocidad de la luz es una constante universal y, cuado es emitida por un cuerpo celeste de forma isotrópica, corre en todas las direcciones a la misma velocidad de 299.792.458 metros por segundo. No importa si la fuente emisora está en movimiento o en reposo, la velocidad es invariante.

El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.

El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.

Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrolar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.

emilio silvera

¡Esa “máquina” sorprendente!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mono pensante

El tamaño (del cerebro) sí importa

 

 

Cerebro de embrión de ratón en el que se inyectó el gen humano que determina la expansion del cerebro. NATURE

Noticia de Prensa en el diario El Mundo: Pablo Jauregui

“¿Qué nos hace humanos? ¿Qué es lo que me permite a mí expresar mis ideas a través del código simbólico que estoy tecleando ahora mismo, y lo que le permite a usted descifrar estas combinaciones de letras? Hoy sabemos que compartimos más del 95% del ADN con nuestros parientes más cercanos del reino animal, pero los grandes simios no pueden resolver ecuaciones matemáticas, ni escribir poesía, ni fabricar ordenadores, ni elaborar tratados de metafísica.

… “descendemos de los monos” y “tenemos un antepasado común con los monos” no son contradictorios, ni siquiera uno es más correcto que el otro, …

Como dice Stephen Hawking, “sólo somos una especies avanzada de monos en un planeta menor de una estrella muy normal, pero podemos comprender el Universo y eso nos convierte en algo muy especial”. Pero, ¿cómo ha sido posible este salto evolutivo? ¿Dónde está la diferencia fundamental que nos ha permitido convertirnos en monos parlantes y pensantes, imaginativos e innovadores?

Cuando en una ocasión le hice esta pregunta al gran primatólogo Frans de Waal, su respuesta fue rotunda: “Nuestro cerebro es básicamente idéntico al de los simios, pero expandido. No hay nada nuevo salvo su tamaño, así que ahí debe residir la clave de lo que nos diferencia”. Según este científico, somos muy parecidos a los primates en nuestras emociones básicas y nuestras interacciones sociales, pero lo que nos distingue es sobre todo el lenguaje y todo lo que tiene que ver con nuestra capacidad para el pensamiento abstracto.

Hoy sabemos que la estructura cerebral de los primates humanos y no humanos es muy similar, pero también que el cerebro del ‘sapiens’ es tres veces mayor que el de los chimpancés y los bonobos. En este terreno, por lo tanto, está claro que el tamaño sí importa, y mucho.

Por eso mismo es tan importante un nuevo descubrimiento que se acaba de publicar en la última edición de la revista Science. Un equipo de investigadores alemanes del Instituto Max Planck de Biología Molecular ha logrado identificar un gen que poseemos los humanos, a diferencia de nuestros ‘primos’ simios, y que determina la expansión de nuestra corteza cerebral, la sede de nuestras capacidades lingüísticas e intelectuales. Al inyectar este gen en embriones de ratón, se comprobó que el tamaño de sus cerebros aumentaba de manera muy significativa e incluso adquiría los típicos pliegues de nuestra materia gris.

Probablemente éste no sea no sea el único ingrediente del ADN que explique algo tan complejo como la inteligencia del ‘sapiens’. Pero sin duda hoy estamos más cerca de descubrir el secreto de lo que nos hace humanos y comprender por qué -como ha escrito Oliver Sacks en su conmovedora despedida– podemos disfrutar del privilegio de ser “animales pensantes”.