Mar
9
NASA Ames Reproduces the Building of Life in Laboratory
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (2)
NASA scientists studying the origin of life have reproduced uracil, cytosine, and thymine, three key components of our hereditary material, in the laboratory. They discovered that an ice sample containing pyrimidine exposed to ultraviolet radiation under space-like conditions produces these essential ingredients of life.
Pyrimidine is a ring-shaped molecule made up of carbon and nitrogen and is the central structure for uracil, cytosine, and thymine, which are all three part of a genetic code found in ribonucleic (RNA) and deoxyribonucleic acids (DNA). RNA and DNA are central to protein synthesis, but also have many other roles.
“We have demonstrated for the first time that we can make uracil, cytosine, and thymine, all three components of RNA and DNA, non-biologically in a laboratory under conditions found in space,” said Michel Nuevo, research scientist at NASA’s Ames Research Center, Moffett Field, California. “We are showing that these laboratory processes, which simulate conditions in outer space, can make several fundamental building blocks used by living organisms on Earth.”
An ice sample is deposited on a cold (approximately –440 degrees Fahrenheit) substrate in a chamber, where it is irradiated with high-energy ultraviolet (UV) photons from a hydrogen lamp. The bombarding photons break chemical bonds in the ices and break down the ice’s molecules into fragments that then recombine to form new compounds, such as uracil, cytosine, and thymine.
NASA Ames scientists have been simulating the environments found in interstellar space and the outer Solar System for years. During this time, they have studied a class of carbon-rich compounds, called polycyclic aromatic hydrocarbons (PAHs), that have been identified in meteorites, and which are the most common carbon-rich compound observed in the universe. PAHs typically are structures based on several six-carbon rings that resemble fused hexagons, or a piece of chicken wire.
The molecule pyrimidine is found in meteorites, although scientists still do not know its origin. It may be similar to the carbon-rich PAHs, in that it may be produced in the final outbursts of dying, giant red stars, or formed in dense clouds of interstellar gas and dust.
“Molecules like pyrimidine have nitrogen atoms in their ring structures, which makes them somewhat wimpy. As a less stable molecule, it is more susceptible to destruction by radiation, compared to its counterparts that don’t have nitrogen,” said Scott Sandford, a space science researcher at Ames. “We wanted to test whether pyrimidine can survive in space, and whether it can undergo reactions that turn it into more complicated organic species, such as the nucleobases uracil, cytosine, and thymine.”
In theory, the researchers thought that if molecules of pyrimidine could survive long enough to migrate into interstellar dust clouds, they might be able to shield themselves from destructive radiation. Once in the clouds, most molecules freeze onto dust grains (much like moisture in your breath condenses on a cold window during winter).
These clouds are dense enough to screen out much of the surrounding outside radiation of space, thereby providing some protection to the molecules inside the clouds.
Scientists tested their hypotheses in the Ames Astrochemistry Laboratory. During their experiment, they exposed the ice sample containing pyrimidine to ultraviolet radiation under space-like conditions, including a very high vacuum, extremely low temperatures (approximately –440 degrees Fahrenheit), and harsh radiation.
They found that when pyrimidine is frozen in ice mostly consisting of water, but also ammonia, methanol, or methane, it is much less vulnerable to destruction by radiation than it would be if it were in the gas phase in open space. Instead of being destroyed, many of the molecules took on new forms, such as the RNA/DNA components uracil, cytosine, and thymine, which are found in the genetic make-up of all living organisms on Earth.
“We are trying to address the mechanisms in space that are forming these molecules. Considering what we produced in the laboratory, the chemistry of ice exposed to ultraviolet radiation may be an important linking step between what goes on in space and what fell to Earth early in its development,” said Christopher Materese, another researcher at NASA Ames who has been working on these experiments.
“Nobody really understands how life got started on Earth. Our experiments suggest that once the Earth formed, many of the building blocks of life were likely present from the beginning. Since we are simulating universal astrophysical conditions, the same is likely wherever planets are formed,” says Sandford.
Additional team members who helped perform some of the research are Jason Dworkin, Jamie Elsila, and Stefanie Milam, three NASA scientists at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The research was funded by the NASA Astrobiology Institute (NAI) and the NASA Origins of Solar Systems Program. The NAI is a virtual, distributed organization of competitively-selected teams that integrates and funds astrobiology research and training programs in concert with the national and international science communities.
Ruth Marlaire
Ames Research Center, Moffett Field, Calif.
650-604-4789
ruth.marlaire@nasa.gov
To receive local-only NASA Ames news, email local-reporters-request@lists.arc.nasa.gov with “subscribe” in the subject line. To unsubscribe, email the same address with “unsubscribe” in the subject line.
Mar
9
Nanofotónica: luz + nanopartículas = Futuro tecnológico
por Emilio Silvera ~ Clasificado en Nanotecnología ~ Comments (0)
Entradas anteriores
En el Big Bang: Hidrógeno, Helio, Litio.
En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.
En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.
Han pasado ya cincuenta años que Richard Feynman dictara su famosa charla: There is plenty of room at the bottom: An invitation to enter a new field of physics (Hay suficiente espacio en el fondo: Una invitación a entrar en un campo en la Física). En ella estableció que las leyes de la Física no impiden manipular las cosas átomo a átomo; –“es algo que no se ha hecho debido a que somos demasiado grandes para hacerlo”-. Eso ha quedado atrás y, en la actualidad, sí que se manipulan los átomos.
Desde entonces se ha buscando la manera de poder diseñar los materiales átomo a átomo. De hecho, los materiales nanoestructurados ya han sido utilizados en aplicaciones prácticas, siendo importantes en nuestra vida diaria. El color rojo de los vitrales en las catedrales góticas de Europa se obtenía utilizando nanopartículas de oro; la película fotográfica utiliza nanopartículas de plata; los bloqueadores solares utilizan nanopartículas de dióxido de titanio y de zinc como parte activa.
El resultado más vistoso de estas nanoestructuras es la capacidad para poder sintonizar la longitud de onda o color de la emisión.
El primer caso es una aplicación del efecto nano del oro y es quizás la primera aplicación de la nanotecnología. Quizás el mayor desarrollo de las nanoestructuras se dio con el descubrimiento de la microscopia de fuerza atómica ya que con esta se podía manipular a los átomos o partículas muy pequeñas. Hoy día, la investigación en el campo de los materiales nanoestructurados se ha multiplicado y sus aplicaciones abarcan todas las disciplinas convirtiendo a la nanotecnología en un campo interdisciplinario. Muchos países han implementado programas especiales para la investigación en este campo invirtiendo grandes cantidades de dinero. La apuesta puede ser de alto riesgo, pero el premio promete ser enorme.
Richard Feynman
Hoy día se estima el mercado de la nanotecnología en cientos de miles de millones de dólares. Nuestro país también ha apoyado la iniciativa aunque en menor proporción. De hecho la nanotecnología no es una prioridad dentro de nuestro sistema de investigación, no hay programas especiales de apoyo económico en este tópico y se compite por igual con todas las áreas. Con pocos recursos económicos se poca infraestructura y en general grupos pequeños lo que dificulta la capacidad para competir. Aún con estas limitaciones, se han obtenido excelentes resultados y hay grupos en nuestro país que cuentan con reconocimiento internacional.
Materiales nanoestructurados y nanotecnología
Los materiales nanoestructurados (NEMs, por siglas en inglés) han despertado rápidamente un gran interés debido a la diversidad de sus aplicaciones. De acuerdo a la definición más aceptada, los materiales nanoestructurados son aquellos en los que por lo una de sus dimensiones se encuentra en el rango de 1-100 nm. Es decir, los NEMs son tres órdenes de magnitud más pequeños que los MEMS (sistemas microelectromecánicos, por sus siglas en inglés), e incluyen nanopartículas, nanocristales, nanoalambres, nanobarras, nanotubos, nanofibras, nanoespumas, etc. Los NEMs pueden ser semiconductores, dieléctricos, metales, orgánicos, inorgánicos, aleaciones, biomateriales, biomoléculas, oligómeros, polímeros, etc.
Nos sorprendería saber en qué lugares están presentes los cristales fotónicos con las nuevas técnicas alcanzadas en la nanotecnología
Aunque existen sistemas nanoestructurados de dimensiones mayores son los cristales fotónicos. En el rango de nanómetros, los materiales presentan propiedades ópticas, eléctricas, magnéticas y mecánicas únicas y totalmente diferentes de los materiales en el rango de los micrómetros o milímetros llamados materiales en bulto.
tener una idea de que tan pequeño es un nanómetro podemos mencionar que un milímetro tiene un millón de nanómetros; el diámetro del cabello humano mide 10,000 y 50,000 nanómetros; los glóbulos rojos y blancos miden 2 y 5 nanómetros mientras que el ADN mide 2.5 nanómetros.
Los superátomos de silicio pueden formar, por ejemplo, nanotubos. Además, se les agregar un metal de transición con el objetivo de cambiar sus propiedades eléctricas, lo que se denomina dopaje. el superátomo es de anión ( carga eléctrica negativa, le sobran electrones), “se le dopa con un metal alcalino, el potasio”, que tiene un electrón en su nivel energético más externo. Del mismo modo, cuando son cationes (con carga negativa, al perder electrones) se les dopa con un metal halógeno, que necesita un electrón más completar su último nivel energético.
Las propiedades de los NEMs son dominadas por los efectos de superficie mientras que las de los materiales en bulto son debidas a un efecto de volumen. La tecnología su producción y uso se ha convirtiendo en una industria muy poderosa: la nanotecnología. La nanotecnología es la ciencia e ingeniería de producir materiales o estructuras funcionales de cuantos nanómetros. Es la tecnología del futuro con la cual se desarrollarán los nuevos materiales y dispositivos. Las aplicaciones son sorprendentes así como variadas, por ejemplo, la industria optoelectrónica y fotónica, biomedicina, sensores, celdas solares y de combustible, catálisis, memorias ópticas, procesadores de computadoras, fotodetectores, herramientas de corte, industria aeronáutica, moduladores e interruptores, cosméticos, etc. Aunque todas las aplicaciones son de gran interés, sin duda alguna las aplicaciones en sistemas biológicos son las más sobresalientes. Especialmente las aplicaciones de las propiedades ópticas de los sistemas nanoestructurados.
La Tecnología fundamental del siglo XXI: Nano Tecnología
Uno de sus apartados es la Nanofotónica
Esas nuevas formas, la nanotecnología, entrará en el “universo” de la mecánica cuántica, en el mundo infinitesimal, y, se lograrán cosas que , serían impensables. Posiblemente, la primera visita que hagamos a un mundo habitado por otros seres, estará tripulada por seres nanotecnológicos que, al igual que la misma nave, tengan medidas tan pequeñas que serán imposibles de observar y, sin embargo, estarán dotadas de adelantos tales que, podrán medir, evaluar, estudiar, captar imágenes, enviar por medios desconocidos, y, en fin, serán las avanzadillas de lo que irá después, la visita de humanos a otros mundos.
La nanofotónica es la fusión de la nanotecnología y la fotónica. Es un campo multidisciplinario que estudia las propiedades ópticas de los sistemas nanoestructurados y la interacción luzmateria a nivel nanoscópico. Ya mencionamos que las propiedades ópticas de las nanopartículas son dominadas por los efectos de superficie. Así, controlando el tamaño de las nanopartículas o nanoestructuras podemos controlar o amplificar ciertas propiedades de los sistemas bajo estudio. En general, las nanoestructuras pueden ser de tres tipos, semiconductoras, dieléctricas y metálicas.
La Nanotecnología marcará nuestro futuro. De ella partirán las nuevas ideas e instrumentos, los nuevos modos de construir lo que queda por venir, nuevas maneras de sondear el espacio “infinito”, de curar enfermedades, de sustituir órganos vitales, de construir robots.
Curiosamente, existe una creencia bastante arraigada en amplios sectores de la comunidad científica de que la fotónica (conjunto de tecnologías relacionadas con la luz) es un campo que cae fuera del universo de la nanotecnología. La creencia se apoya en el clásico criterio de Rayleigh de que la resolución espacial de un sistema óptico está limitada por la longitud de onda de la luz (≈ 500 nm), y por ello es próxima al micrómetro, muy lejos de los requisitos de la nanotecnología.
Yo, por mi , estimo que división es sin duda errónea, y hoy en día la fotónica está íntimamente implicada con la nanotecnología, e incluso se hablar propiamente de nanofotónica, de igual manera que se hablar de nanoelectrónica o de nanomagnetismo.
Cuando sepamos conectar de manera conveniente todas las disciplinas del sabe Humano… ¡Las cosas cambiaran!
Decía que: “En general, las nanoestructuras pueden ser de tres tipos, semiconductoras, dieléctricas y metálicas”. una de ellas produce fenómenos de especial interés interactúan con una señal óptica, pudiendo así ser aplicadas en diferentes campos. Un campo de especial interés es la biología.
El estudio de las propiedades luminiscentes de sistemas nanoestructurados en sistemas biológicos es el campo de estudio de la bionanofotónica. Especialmente trata sobre el estudio de sistemas nanoestructurados en aplicaciones biomédicas. Diferentes nanopartículas han sido propuestas ser utilizadas en la detección de bajas concentraciones de diferentes elementos como células cancerigenas, virus, ADN, ARN, proteínas, etc. También han sido utilizadas para la entrega de medicamentos en dirigida y controlada así como para la destrucción de tumores cancerigenos. En la última década, los avances han sido sorprendentes pero aún hay mucho por . En el CIO, durante los últimos 6 años hemos trabajando en la síntesis de nanopartículas y estudiado sus propiedades ópticas a fin de poder ser utilizadas en distintas aplicaciones.
Las propiedades luminescentes de nuestras nanopartículas son muy interesantes y prometen grandes oportunidades de aplicación en diferentes áreas.
Nanopartículas semiconductoras o puntos cuánticos
Los nanocristales semiconductores llamados puntos cuánticos son nanoestructuras a base de materiales semiconductores inorgánicos y representan el grupo donde el efecto del tamaño es más evidente. El tamaño nano da lugar a lo que se conoce confinamiento cuántico, que no es más que la localización de los electrones en un espacio definido, es poner un electrón en una caja. Mientras que tamaños mayores los electrones están no localizados. El confinamiento produce un ensanchamiento de la banda de energía prohibida del semiconductor así la aparición de sub-bandas discretas en la banda de valencia y de conducción. Las dimensiones típicas oscilan uno y diez nanómetros.
Con frecuencia se les describe átomos artificiales debido a que los electrones están dimensionalmente confinados como en un átomo y sólo se tiene niveles de energía discretos. las nanoestructuras más estudiadas se encuentran las de CdSe/ZnS, CdSe/CdS, InP/ZnSe, CdTe/CdSe, entre otras. El resultado más vistoso de estas nanoestructuras es la capacidad poder sintonizar la longitud de onda o color de la emisión.
Así, con un solo material y variando el tamaño de la nanopartícula es posible obtener múltiples colores o longitudes de onda de la señal emitida. Las aplicaciones son impresionantes y apuntan en todas las direcciones. Por ejemplo, podrían ser utilizados como colorantes inorgánicos sin problemas de degradación a diferencia de los colorantes orgánicos. También podrían ser utilizados en el diseño de los nuevos amplificadores ópticos de amplio ancho de banda tan importantes en los sistemas de comunicación óptica; en caso nanopartícula con un diámetro determinado funcionaría como un amplificador, así el ancho de banda se determina con la selección adecuada de los diámetros de las partículas. O bien la producción de fuentes de luz blanca mediante excitación con un LED u OLED o por electroluminiscencia.
Quizás una de las aplicaciones que mayor atención ha recibido es en su uso como etiquetas fluorescentes con emisión en la región visible del espectro, la detección de una gran variedad de compuestos entre ellas células cancerigenas. Las técnicas actuales no detectan bajas concentraciones de células cancerigenas o compuestos de interés, por lo que la técnica de detección de fluorescencia de nanopartículas es una gran promesa para la detección temprana de este mal, para así incrementar el éxito en el tratamiento. Dado el tamaño tan pequeño de los puntos cuánticos actualmente se intenta desarrollar nanoestructuras más complejas formadas por puntos cuánticos o nanocristales acomplejados con diferentes componentes que desempeñan distintas funciones, detección, entrega de medicamento dirigido, efecto de la terapia, etc. Es decir, se busca una nanoestructura inteligente con múltiples funciones. El problema que presentan los puntos cuánticos es que son poco estables ya que tienden a aglomerarse, además de que se excitan con una fuente de luz UV donde la mayoría de los compuestos que se pueden encontrar en interior del cuerpo humano emiten luz lo que significa pérdida de contraste en la imagen de la célula deseada.
Los plasmones producen en la interfase un campo eléctrico intensificado que a su vez intensifica varios procesos ópticos lineales y no lineales. El campo eléctrico producido es utilizado como una interfase sensible a las interacciones ópticas y se convierte en una poderosa herramienta para el monitoreo óptico y para la formación de imágenes ópticas
localizadas. Una de las aplicaciones bien establecidas es la espectroscopia Raman de superficie mejorada (SERS por sus siglas en inglés). En este caso el espectro Raman de un componente cercano a la superficie metálica se ve fuertemente amplificado. Se ha demostrado que es posible amplificar el campo hasta 11 000 veces más cuando las partículas presentan cierta aglomeración. Otros fenómenos que presentan amplificación son la espectroscopia infrarroja de superficie mejorada, espectroscopia de fluorescencia
y la espectroscopia de resonancia de plasmones de superficie. Todas estas técnicas son complementarias y son utilizadas en la detección de componentes químicos y bioquímicos a nivel de trazas.
No tarderemos mucho en asombrarnos de los logros alcanzados por la Nanofotónica en diversos apartados de la tecnología del futuro. Estamos en la linea de salida hacia horizontes futuristas en todos los campos del saber. La tecnología del mañana nos asombraría hoy, y, simplemente tenemos que fijarnos en el presente y compararlo con aquel tiempo pasado de hace sólo unos cien años, cuando los ordenadores, los teléfonos móviles y las comunicaciones tal como hoy laos conocemos, eran un sueño irrealizable.
Nanopartículas dieléctricas o nanocristales
Los nanocristales dieléctricos son óxidos que presentan una banda de energía prohibida muy ancha y consecuencia requieren altas energías de bombeo o luz en el UV obtener emisión que en general es débil, aunque se combina en adecuadacon diversos componentes son excelentes emisores de luz debido a su eficiencia y alta estabilidad. Son excelentes matrices soportar iones de tierras raras que son muy buenos emisores de luz. En caso no se observan efectos de confinamiento debido a que los electrones se encuentran localizados en orbitales atómicos del ion activo. Sin embargo, la dinámica de los iones emisores de luz se ve afectada por la interacción a nivel nanoscópico lo que producir una mejora en la eficiencia de emisión.
los nanocristales mas estudiados se encuentran algunos silicatos Y2SiO5, la combinación nY2O3 + mAl2O3 que comprende puramente el óxido de itria, puramente el óxido de aluminio, se combinan con n=3 y m=5 da lugar a la estructura cristalina mas utilizada en óptica producir láseres conocida como YAG, o YAP la combinación n=m=1 que corresponde a uno de los cristales mas sensibles a laradiación ionizante y que es utilizado la detección de rayos X o rayos gama. El óxido de titanio (TiO2) y el óxido de zinc (ZnO) que se utilizan en los bloqueadores solares además de ser excelentes para los procesos de fotocatálisis, útiles en la reducción de contaminantes, para celdas solares y como bactericida.
Recientemente, hemos demostrado que el óxido de zirconio (ZrO2) combinado con otros elementos bloquea el rango completo de la luz ultravioleta, especialmente aquella región que produce el . mismo nanocristal presenta excelente respuesta en la detección de radiación ionizante, UV, rayos X, gama, beta y alfa, tanto en tiempo real como en acumulada lo que sugiere buenas oportunidades para su uso en el diseño de dosímetros para la cuantificación de dosis recibidas.
Además, es excelente soporte para iones de tierras raras, con las cuales hemos obtenido luz visible (azul, verde y rojo) excitando con una fuente en el cercano infrarrojo. Ya que con fuente se excitan los nanocristales no hay emisión de fondo lo que mejora el contraste de las imágenes obtenidas. Estas características convierten a estos nanocristales en excelentes candidatos en aplicaciones biomédicas para la detección de diversos elementos a concentraciones bajas. La fabricación de estos nanocristales implica un tratamiento térmico para el proceso de oxidación lo que induce un tamaño de partícula grande. Se han reportado tamaños de partícula 10 a 90 nm.
Lo curioso es que en todo, siempre está la Luz presente
Muchas veces se obtienen cristales muy pequeños con poca eficiencia de emisión, el reto es obtener mayor eficiencia de emisión sin incrementar demasiado el diámetro de las nanopartículas. Tamaños promedios con los que se han obtenido excelente eficiencia de emisión son 40 y 60 nm.
Nano partículas metálicas, plasmones.
Las nanopartículas metálicas tienen la habilidad de esparcir y absorber la luz incidente. En caso, los efectos en las propiedades ópticas respecto a su contraparte en bulto se derivan de los efectos electrodinámicos y de la modificación del ambiente dieléctrico. A escala nanométrica la frontera metaldieléctrico produce cambios considerables en las propiedades ópticas.
resultado de la interacción la nanopartícula metálica y la señal óptica se obtiene la oscilación colectiva de electrones de superficie lo que genera bandas de resonancia conocidas plasmones localizados o plasmones de superficie localizados. La longitud de onda o color a la que se obtiene dicha resonancia se le conoce como banda de absorción del plasmón que depende tanto del tamaño como de la de la nanopartícula y es lo que da lugar a la diferente coloración observada. Las nanoestructuras metálicas más conocidas son partículas esféricas, barras y películas con núcleo dieléctrico. Aunque más recientemente se han reportado otras estructuras como cubos, triángulos, estrellas y ovoides. En todos los casos, la banda de resonancia se recorre hacia el cercano infrarrojo en comparación con las nanopartículas esféricas cuya banda centrada en la región verde del espectro.
Los plasmones producen en la interfase un campo eléctrico intensificado que a su vez intensifica varios procesos ópticos lineales y no lineales. El campo eléctrico producido es utilizado una interfase sensible a las interacciones ópticas y se convierte en una poderosa herramienta el monitoreo óptico y la formación de imágenes ópticas
localizadas. Una de las aplicaciones establecidas es de superficie mejorada (SERS por sus siglas en inglés). En caso el espectro Raman de un componente cercano a la superficie metálica se ve fuertemente amplificado. Se ha demostrado que es posible amplificar el campo 11 000 veces más las partículas presentan cierta aglomeración. Otros fenómenos que presentan amplificación son la espectroscopia infrarroja de superficie mejorada, espectroscopia de fluorescencia
y la espectroscopia de resonancia de plasmones de superficie. Todas estas técnicas son complementarias y son utilizadas en la detección de componentes químicos y bioquímicos a nivel de trazas.
Quizás un proyecto más ambicioso es el de poder detectar células cancerigenas a temprana edad de lo cual ya se han reportado importantes avances. En el CIO trabajamos con nanopartículas de oro y plata a fin de desarrollar sensores ópticos la detección de diferentes compuestos a nivel de trazas y estamos aplicado exitosamente nanopartículas deoro en la detección de células cancerigenas.
En resumen, las nanoestructuras presentan propiedades ópticas únicas que no presentan su contraparte en bulto o de escala mayor. Éstas están siendo utilizadas el desarrollo de la nueva generación de dispositivos optoelectrónicos y/o fotónicos. Las aplicaciones son muy variadas y abarcan muchos campos haciendo de la nanociencia y nanotecnología una área
multidisciplinaria. Especial atención recibe el uso de dichas propiedades en aplicaciones biomédicas para la detección a nivel de trazas de diversos agentes patógenos. El estudio de las propiedades ópticas de las nanoestructuras ha definido una nueva área conocida como nanofotónica.
¡Eso que llamamos futuro… ya está aquí!
Y, siendo testigo de todos estos adelantos y de como la Humanidad corre hacia el futuro, no puedo dejar de preguntarme: ¿Qué será de los seres humanos dentro de 10.000 años? ¿Estaremos aquí todavía? ¿Habremos logrado viajar a las estrellas? Son tantas las respuestas que me gustaría tener que, a veces, me siento algo frustrado por las inmensas limitaciones a las que estamos sometidos los humanos?
emilio silvera
Mar
9
El ‘Hubble’ capta la ‘cruz de Einstein’
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
El telescopio espacial fotografía por primera vez una imagen múltiple de una supernova
La galaxia está a una distancia de unos 5.000 millones de años luz de la Tierra.
El telescopio espacial Hubble ha fotografiado un sorprendente fenómeno: una lejana explosión de supernova multiplicada por cuatro debido a que su luz se curva por el efecto gravitatorio de una galaxia masiva, que está un grupo galáctico también masivo interpuesto en la línea de visión desde la Tierra. Es la primera vez que se capta este efecto, denominado la Cruz de Einstein, con una supernova, aunque se conocía ya en decenas de casos de cuásares y de galaxias, anuncia la Agencia Europea del Espacio (ESA).
En este caso el efecto lente gravitatoria produce una cruz simétrica porque la galaxia que actúa como lente se halla casi exactamente en nuestra linea de visión del quásar. Esta forma de cruz lleva el nombre de Albert Einstein, cuya teoría de la relatividad predecía este fenómeno. La imagen fue obtenida por el telescopio espacial Hubble.) -Esta explicación no forma parte del artículo ni la imagen tampoco-.
La galaxia que actúa como lente gravitacional para la supernova (bautizada por los científicos Refsdal) está a una distancia de unos 5.000 millones de años luz de la Tierra y la explosión estelar, a unos 9.500 millones de años luz. La gran masa galáctica curva el espacio-tiempo y, por tanto, la luz de la supernova lejana al pasar junto a ella, formándose así, para el observador terrestre, las cuatro imágenes separadas de la explosión estelar con su luz magnificada.
“Fue una completa sorpresa”, explica Patrick Kelly, investigador de la Universidad de California en Berkeley (EE UU) y miembro del equipo GLASS que da a conocer el hallazgo esta semana en la revista Science, en una sección especial dedicada al centenario de la Teoría de la Relatividad General de Einstein. Kelly, en concreto, fue quien halló la supernova multiplicada por cuatro analizando datos tomados por el Hubble (de la NASA y la ESA) en noviembre de 2014. “Es un descubrimiento maravilloso: llevamos 50 años buscando una supernova con un fuerte efecto de lente gravitacional y ahora hemos encontrado una”, añade Alex Filippenko, de la Universidad de California en Berkeley. “Además de ser realmente genial, puede proporcionar mucha información astrofísica importante”, recalca.
La supernova se ve unas 20 veces más brillante que su brillo natural”
“La supernova se ve unas 20 veces más brillante que su brillo natural”, añade Jens Hjorth, del Dark Cosmology Centre (Dinamarca), otro de los autores de la investigación. “Eso se debe al efecto combinado de dos lentes superpuestas: el masivo grupo galáctico enfoca la luz de la supernova en tres rutas diferentes y una de ellas está precisamente alineada con una galaxia elíptica del grupo, y se produce un segundo efecto de lente gravitatoria”. Se crean así las cuatro imágenes.
En el proceso de curvatura del espacio-tiempo que desvía la luz está implicada la materia ordinaria de esas galaxias, pero también la enigmática materia oscura que supone el 27% del universo y que nadie sabe qué es, señalan los investigadores. Por ello, la imagen multiplicada de la supernova no solo es un hallazgo atractivo sino que puede ayudar a estimar la cantidad y la distribución de dicha materia oscura en el grupo galáctico.
Cruz de Einstein
La Teoría de la Relatividad de Einstein predice que las densas concentraciones de masa en el universo curvan la luz como una lente, magnificando los objetos que están detrás de dicha al ser observados desde la Tierra, explican los expertos de la Universidad de California en Berkeley. La primera lente gravitacional se descubrió en 1979.
Así, cuando la luz de objeto lejano pasa por una masa interpuesta, como una galaxia individual o un grupo galáctico, la luz se curva. En el caso de que el objeto del fondo, la masa interpuesta y el observador no estén perfectamente alineados, la luz del primero pasa lejos de la segunda y se produce una lente débil que distorsiona la imagen del objeto lejano. También sucede esto si la masa no es muy grande. Pero cuando el objeto del fondo es extenso, como una galaxia, y está justo detrás de la masa interpuesta, o casi, el efecto de lente gravitacional fuerte puede generar un aro luminoso, denominado Anillo de Einstein. La lente gravitacional fuerte y las fuentes luminosas puntuales a menudo producen múltiples imágenes, como la de la supernova que se ve cuatro veces formando una Cruz de Einstein ahora captada por el Hubble, concluyen los científicos de Berkeley.”