jueves, 09 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Conocer mejor el planeta Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en La Tierra y su energía    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://1.bp.blogspot.com/-tDP9Ys9IIaw/ULPHEhtfJlI/AAAAAAAAAEo/2DkkmYkbdwk/s1600/planeta-tierra.jpg

Esta es nuestra casa y, debemos procurar mantenerla limpia (no por si viene una visita, que espero que no sea pronto),  sino que, es vital para nosotros y para vida en general. No siempre somos conscientes del daño que muchas de nuestras actividades pueden hacer al planeta que nos cobija. Pero veámos algunos detalles que definen a este planeta único en nuestro entorno espacial.

Las fuerzas que actúan sobre la Tierra, como planeta en el espacio, tiene profundas implicaciones energéticas. La gravitación ordena y orienta, y obstaculiza y facilita los flujos de energía cinética. La rotación genera la fuerza centrífuga y la de Coriolis: la primera achata el planeta por los polos ensanchándolo por el ecuador, y la segunda desvía los vientos y las corrientes de los océanos (a la derecha del hemisferio norte y a la izquierda en el hemisferio sur). La rotación es también la causa de los ritmos diarios de las plantas y animales, y de la desaceleración de la Tierra, que alarga el día un promedio de 1’5 ms cada siglo, lo que representa una pérdida de tres teravatios por fricción de mareas.

Pero ni la gravitación ni la rotación (fricción) hacen de la Tierra un planeta único entre los cuerpos celestes de nuestro entorno. Su exclusividad procede de sus propiedades térmicas internas, que causan los ciclos geotectónicos que modifican la superficie, y de su atmósfera, océanos y plantas que transforman la radiación solar que reciben. Los orígenes de estos procesos no están claros.

Podemos fijar la edad de la Tierra en algo más de los 4.000 millones de años por la desintegración de los isótopos radiactivos, pero poco podemos asegurar sobre la formación del planeta o sobre la energética de la Tierra primitiva. Sobre el tema circulan varias teorías, y es muy plausible que el origen del Sistema Solar planetario fuera una nube interestelar densa en la que el Sol se formó por una inestabilidad gravitatoria y que la posterior aglomeración del resto de esta materia dispersa, que giraba a distintas distancias, a su alrededor, diera lugar a los planetas. No está claro si al principio la Tierra estaba extremadamente caliente o relativamente fría. Me inclino por lo primero y estimo que el enfriamiento fue gradual con los cambios de atmósferas y la creación de los océanos.

                               Esta de arriba podría ser una imagen cotidiana en la Tierra primitiva

Las incertidumbres geológicas básicas se extienden hasta el presente. Diferentes respuestas a cuestiones como la cantidad de 40K en el núcleo terrestre o sobre la convección del magma en el manto (hay una o dos celdas) dan lugar a diferentes explicaciones para el flujo de calor y la geotectónica de la Tierra. Lo que sí está claro es que el flujo interno de calor, menos de 100 mW/m2, tiene un efecto pequeño comparado con la reflexión, absorción y emisión de la radiación solar.

El balance de la radiación terrestre (Rp) en la capa alta de la atmósfera es la suma de la radiancia extraterrestre (la constante sola Q0) reducida por el albedo planetario y el flujo saliente de larga longitud de onda (Qi): Rp = Q0(1-ap) + Qi = 0. El flujo emitido es igual a la suma de la radiación atmosférica y la terrestre: Qi = Qea + Qes. Los balances de la radiación en la atmósfera (Ra) y en la superficie de la Tierra (Rs) son iguales, respectivamente, a la diferencia entre la correspondiente absorción y emisión: Ra = Qaa + Qea y Rs = Qas + Qes, de manera que Rp = Ra + Rs = 0. Hay que continuar explicando la radiación saliente con los flujos irradiados y emitidos por la superficie terrestre, el flujo de radiación medio absorbida, etc., etc., etc., con una ingente reseña de símbolos y tedioso esquemas que, a mi parecer, no son legibles para el lector normal y no versado en estos conocimientos. Así que, aunque sea mutilar el trabajo, desisto de continuar por ese camino y prosigo por senderos más amenos y sugestivos para el lector.

El impacto de la radiación solar en la atmósfera terrestre, en una gran tormenta solar de 2003. (Crédito: NASA / Goddard

La fuente más importante del calentamiento atmosférico proviene de la radiación terrestre de longitud de onda larga, porque el flujo de calor latente es una contribución secundaria y el flujo de calor sensible sólo es importante en las regiones áridas donde no hay suficiente agua para la evaporación. Los océanos y los continentes también reciben indirectamente, irradiadas por la atmósfera, la mayor parte de su calor en forma de emisiones de longitudes de onda larga (4 – 50 μm). En este flujo de radiación reenviado hacia la superficie terrestre por los gases invernadero, domina a la radiación del vapor de agua, que con una concentración variable, emite entre 150 y 300 W/m2, y al que también contribuye el CO2 con unos 75 W/m2.

El intercambio de radiación de longitud de onda larga entre la superficie y la atmósfera sólo retrasa temporalmente las emisiones de calor terrestre, pero controla la temperatura de la biosfera. Su máximo es casi 400 W/m2 en los trópicos nubosos, pero es importante en todas las estaciones y presenta significativas variaciones diarias. El simple paso de una nube puede aumentar el flujo en 25 W/m2. Las mayores emisiones antropogénicas de gases invernadero han aumentado este flujo en cerca de un 2’5 W/m2 desde finales del siglo XIX.

Como era de esperar, las observaciones de los satélites confirman que el balance de energía de la Tierra está en fase con la radiación solar incidente (Q0), pero la radiación media saliente (Qi) está desfasada con la irradiancia, alcanzando el máximo durante el verano en el hemisferio norte. La distribución asimétrica de los continentes y el mar explica este fenómeno. En el hemisferio norte, debido a la mayor proporción de masa terrestre, se experimentan mayores cambios estacionales que dominan el flujo global de la radiación saliente.

Quizás el resultado más sorprendente que se deriva de las observaciones por satélite sea que, estacionalmente, se observan cierto déficit y superávit de radiación y el balance de la radiación en el planeta no es igual a cero, pero sin embargo, en cada hemisferio la radiación anual está en equilibrio con el espacio exterior. Además, la contribución atmosférica por transporte de energía hacia los polos es asimétrica respecto al ecuador con valores extremos de unos 3 PW cerca de los 45º N, y -3 PW cerca de 40º S.

Podría continuar hablando sobre los vientos, los terremotos, las lluvias y otros fenómenos atmosféricos, sin embargo, no creo que, por ser estos fenómenos naturales muy conocidos de todos, pudieran tener gran interés. Pasemos pues a comentar sobre los océanos.

                                           El agua de la vida

Agua, mejor que Tierra, habría sido el nombre adecuado para el tercer planeta, puesto que los océanos cubren más del 70 por ciento de la superficie terrestre, con una profundidad media de 3’8 Km. Debido a las especiales propiedades térmicas del agua, éstas constituyen un extraordinario regulador del balance energético del planeta.

Este líquido tiene cinco ventajas termodinámicas importantes: un punto de ebullición inusualmente alto, debido a su capacidad para formar enlaces de hidrógeno intermoleculares; un calor específico de 2’5 a 3’3 veces más elevado que el del suelo; una capacidad calorífica (calor específico por unidad de volumen) aproximadamente seis veces mayor que la tierra seca; un altísimo calor de vaporización que le permite transportar una gran cantidad de calor latente; y su relativamente baja viscosidad, que le convierte en un eficiente transportador de calor en los océanos mediante miríadas de remolinos y caudalosas corrientes.

       Los océanos de la Tierra vistos desde el espacio

No es sorprendente, pues, que los océanos, que tienen cerca del 94 por ciento de toda el agua, sean determinantes en el balance energético del planeta. Cuatro quintas partes de la radiación solar que llega a la Tierra entra en la atmósfera que cubre los océanos, los cuales con un albedo superior al 6% absorben la energía con una tasa cercana a 65 PW, casi el doble de la absorción atmosférica total y cuatro veces mayor que la continental. Inevitablemente, los océanos también absorben la mayor parte, casi dos tercios, del calor rerradioirradiado hacia abajo por la atmósfera elevando su ritmo de calentamiento a los 175 PW.

Salvo en los océanos menos profundos, la interacción aire-mar no afecta directamente a las aguas profundas. Las oscuras y frías aguas de las profundidades marinas están aisladas de la atmósfera por la capa mixta, una capa de poca profundidad que va de pocos metros a pocos cientos de metros y que está afectada por los vientos y el oleaje.

A pesar de que el alto calor específico del agua limita el rango de variación, las temperaturas de esta capa sufren importantes fluctuaciones diarias y estacionales. Sin embargo, variaciones relativamente pequeñas de la temperatura de la superficie de los océanos tienen importantes consecuencias climáticas: quizás el mejor ejemplo de esta teleconexión climática sea el fenómeno del Niño, que consiste en una extensión en forma de lengua de las aguas superficiales calientes hacia el este, cuyos efectos se extienden desde Canadá hasta África del sur.

En esta “coreografía” acuática, también tiene un papel significativo el Estrecho de Dinamarca, que se alimentan de las aguas más profundas de la AMOC y las devuelve al sur a través de brechas en la cordillera de Groenlandia y Escocia. En este sentido, los científicos explican que, durante años, se ha pensado que el estrecho danés, que ha aumentado considerablemente su capacidad como consecuencia del deshielo, se abastecía de una corriente adyacente a Groenlandia.

Debido a que la conductividad térmica del agua es muy baja, la transferencia de energía de la capa mixta hacia las profundidades se realiza fundamentalmente mediante corrientes convectivas. Estas corrientes compensan la extremadamente baja fuerza ascensional de las aguas profundas, más calientes, que son desplazadas por el movimiento hacia el ecuador de las corrientes frías provenientes de los polos. En contraste con el gradual ascenso general de las aguas oceánicas, la convección hacia abajo se produce en corrientes bien delimitadas que forman gigantescas cataratas oceánicas. Seguramente la mayor es la que fluye hacia el sur bajo el estrecho de Dinamarca, entre Islandia y Groenlandia, y se sumerge unos 3’5 Km transportando 5 millones de m3/s, un caudal veinte veces mayor que el del Amazonas.

Miríadas de corrientes oceánicas, que a menudo viajan cientos de kilómetros a diferentes profundidades, transportan considerables cantidades de energía y sal. Quizás el ejemplo más importante de estas combinaciones de transportes sea la corriente de agua caliente y salada que sale del Mediterráneo a través del estrecho de Gibraltar. Este flujo caliente pero denso desciende sobre la pendiente de la plataforma continental hasta alcanzar el equilibrio entre el peso y el empuje ascensional a unos mil metros de profundidad. Aquí se separa en dos celdas lenticulares que se mueven durante siete años hacia el este y hacia el sur, respectivamente, hasta que decaen o chocan contra alguna elevación marina.

File:Strait of gibraltar.jpg

           Si el Estrecho de Gibraltar pudiera contar su historia…

Un mapa global de los flujos de calor desde la superficie oceánica hasta las capas profundas muestra claramente máximos longitudinales a lo largo del ecuador y a lo largo de aproximadamente 45º S en los océanos Atlántico e Índico. Esta transferencia es también importante en algunas áreas costeras donde se producen intensos flujos convectivos ascendentes que intercambian calor entre las aguas superficiales y las profundas, como ocurre en la costa de California y al oeste de África. Un flujo en dirección contraria, que calienta la atmósfera, se produce en las dos mayores corrientes oceánicas calientes, la corriente del Golfo en el Atlántico y la de Kuroshio en el Pacífico oriental.

Todas la regiones donde se produce este ascenso de aguas calientes (a lo largo de las costas del continente americano, África, India y la zona ecuatorial del Pacífico occidental) se distinguen fácilmente por los elevados niveles de producción de fitoplancton, causados por un importante enriquecimiento de nutrientes, comparados con los que, de otra manera, corresponderían normalmente a las aguas superficiales oligotrópicas.

La radiación transporta la mayor parte (casi 4/5) de la energía que fluye desde la capa mixta hasta la atmósfera, y el resto del flujo calorífico se produce por calor latente en forma de vapor de agua y lluvias.

http://www.atrativoweb.com/wp-content/uploads/2012/04/mapa-do-oceano-atlantico.jpg

                                                              Océano Atrlántico

Aún no se ha realizado una valoración cuantitativa del transporte total para cada latitud, pero en el océano Atlántico hay transferencia de calor hacia el norte a lo largo de toda su extensión, alcanzando en el trópico un valor aproximado de 1 PW, flujo equivalente al que se produce en el Pacífico norte. En el Pacífico sur, el flujo de calor hacia el polo a través del trópico es de 0’2 PW. La parte occidental del Pacífico sur puede constituir la mayor reserva de calor del Atlántico sur, de igual modo que es probable que el océano Índico sur constituya una reserva del Pacífico.

Ahora tocaría comentar algo sobre los ríos del planeta, sin embargo, lo obvio y me dirijo directamente a comentar sobre el calor de la Tierra.

Aunque la Tierra se formara inicialmente a partir de materia fría (material cósmico) que se contrajo por acción de la gravedad, durante la formación posterior del núcleo líquido y en los periodos de intensa actividad volcánica se ha liberado una enorme cantidad de calor. Los frecuentes impactos de objetos pesados también han contribuido al calentamiento de la superficie. Hay mucha incertidumbre sobre la historia térmica de la Tierra de los últimos 3.000 millones de años, durante los cuales el planeta se ha ido enfriando y una gran parte de este flujo de calor ha alimentado los movimientos geotectónicos globales, creando nueva corteza en las dorsales oceánicas; un proceso que ha ido acompañado de terremotos recurrentes y erupciones volcánicas de lava, cenizas y agua caliente.

Solamente hay dos posibles fuentes de calor terrestre, pero la importancia relativa de las respectivas contribuciones no está aún muy clara. El calor basal, liberado por un lento enfriamiento del núcleo terrestre debe representar una gran parte del flujo total, si bien cálculos basados en la desintegración radiactiva del U235, U238, Th232 y K40 sugieren que éste representa al menos la mitad y quizás hasta nueve décimos del flujo total de calor del planeta. Esta disparidad obedece a la incertidumbre en la concentración de K40 en la corteza terrestre. Pero sea cual sea la proporción, el flujo total, basado en miles de medidas realizadas desde los años cincuenta, está próximo a los 40 TW.

Aunque inicialmente se pensó que los flujos continentales y oceánicos eran aproximadamente iguales, en realidad difieren de forma sustancial. Las regiones del fondo oceánico más recientes contribuyen con más de 250 mW/m2, cantidad que supera hasta tres veces las zonas continentales más recientes. El flujo medio para todo el fondo marino es aproximadamente igual a 95 mW/m2, lo que representa un 70% más que el correspondiente a la corteza continental. El flujo  medio global es de 80 mW/m2, unos tres órdenes de magnitud inferior al valor medio del flujo de calor de la radiación solar global.

Publica: emilio silvera

La fuente del presente trabajo, aunque variada en texto e imágenes, en su mayor parte está en una guía ilustrada de la biosfera y la civilización de Vaclav Smil.

¿Por qué tienen “lunas” los planetas y, cómo y por qué…?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lunas misteriosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Desde el nucleo atómico hasta las galaxiasResultado de imagen de Imágenes de galaxias
Los Físicos no pueden conseguir el “casamiento” de la mecánica cuántica con la Gravedad
Ningún físico se siente cómodo con este divorcio recalcitrante, aunque no todos tienen la misma confianza en esta concepción de las supercuerdas, en que las partículas elementales (electrones, quarks, etc) son modos de vibración de cuerdas de tamaño inimaginablemente pequeño (10-33 cm) que existen en universos con 11 dimensiones en lugar de las cuatro cotidianas, tres de espacio y una de tiempo de la teoría de A. Einstein. Las supercuerdas están en ebullición desde que hace unos veinte años Witten dio un fuerte tirón a toda la cuestión al sintetizar brillantemente ideas que estabas en el ambiente y que nadie había sido capaz de formular a plena satisfacción de todos, ya que, esta especialidad de supercuerdas y de las 11 dimensiones exige un nivel y una profundidad matemática que sólo está al alcance de unos pocos. Este trabajo de Witten desembocó en lo que hasta ahora todos denominan teoría M (Witten, como ya he comentado antes, se refería en su exposición de la nueva teoría – o mejor, nuevo planteamiento – a magia, misterio y matriz).
Pero hablemos de las “lunas”, esos pequeños mundos.

A veces nos hemos prguntado por la presencia de esos pequeños mundos alrededor de los planetas y, nos ha llamado la  diversidad de características que cada uno tiene y los define pero, sobre todo, nos hemos preguntado por qué están allí. Y, en a los planetas mayores como Júpiter -al menos en relación a sus cuatro lunas mayores- la respuesta que se nos viene a la mente sería:

Júpiter debe poseer estas lunas por idénticas razones por las que el Sol posee sus planetas. En un esquema menor, la situación debió ser la misma. Las grandes lunas de Júpiter son casi tan grandes como planetas, o, al menos, parecen planetas pequeños y, se formarían alrededor del planeta gigante del solar como Mercurio, Venus, la Tierra y Marte lo hicieron alrededor de la estrella que nos alumbra, creciendo a partir de fragmentos de materia planetaria que orbitaban el planeta. De hecho, el propio Júpiter parece un sistema solar en miniatura. La única diferencia está en que Júpiter, al no tener la masa suficiente, no pudio llegar a ser estrella y se quedó en planeta grande.

 

          ¿Qué “luna” será esta? ¿Tendrá que ver algo con el planeta Marte? se llma Phobos

Es posible que las pequeñas lunas del solar tengan un origen diferente. Incluímos aquí las dos lunas de Marte, Phobos y Deimos -simples trozos de roca en forma de patata, de unos quince kilómetros de diámetro-, lo mismo que docenas de pequeñas lunas que giran alrededor de Júpiter y de los demás planetas gigantes.

Quizá, todas esas pequeñas lunas no son otra cosa que que asteroides capturados y atraídos por las grandes masas de esos planetas que generan una fuerte atracción gravitatoria que los hizo apartarse de sus trayectorias normales quedando “prisioneros” del gigante. Sin embargo, pueden pasar relativamente de planetas como Marte y seguir, tranquilamente su viaje hacia los confines del Universo. El que Marte los pueda “enganchar”, posiblemente sea debido a que Phobos y Deimos pasaron a la distancia precisa: Ni tan cerca como para chocar con el planeta ni tan lejos como para poder evadir la fuerza de Gravedad.

Así que, ya sólo nos queda saber el origen de la luna de la Tierra. No creo que ninguna de esas explicaciones nos sirva ni sean satisfactorias al caso. Nuestra Luna no puede ser un planeta en el “ solar” terrestre, porque la Tierra es demasiado pequeña para poder tener su propia familia de planetas. Y además nuestra Luna está formada por materiales muy diferentes a los de los asteroides, lo que nos dice que no se trata de una captura realizada a partir del Cinturón de Asteroides. De hecho, no se ha dado todavía ninguna explicación suficientemente fiable del origen de la Luna.

A escala cósmica, el misterio de nuestra Luna es de importancia, y además es un misterio provocado. Harold Urey, el padre de la ciencia lunar, estudió el problema y se rindió diciendo:

“Es más simular que la Luna no está en el cielo que explicar cómo ha conseguido estar ahí”

 

 

Teorías son muchas y muy variadas pero… Ni la captura de la Luna solitaria y viajera por la la fuerza de gravedad de la Tierra, ni una binaria -la Tierra y la Luna se formaron juntas-, o, la ficción -la Luna es en su origen parte de la Tierra- que, al ser golpeada por un cuerpo de grandes dimensiones, desgajo una parte de su superficie y, junto con otra parte del propio cuerpo invasor (que continuó su camino tan riocamente), quedaron orbitando la Tierra hasta juntarse y formar la Luna.

Hemos podido llegar a descubrir muchas curiosidades que rodean a nuestra Luna y, los modernos telescopios y aparatos de medición nos han dicho que: La Luna se aleja de nosotros describiendo un círculo espiral a razón de 2,5 centímetros cada año y, también hemos llegado a que el día, se alarga un segundo cada cincuenta mil años pero, de dónde vino la Luna… ¡Nadie lo sabe!

Uno de los diez hijos de Darwin llegó a suponer que el ritmo de separación de la Tierra y la Luna, podía dar lugar a imaginar que hace 50 millones de años, la Luna estaba a tan sólo unos 9.000 km de la Tierra en comparación con el promedio de 380.000 km y que el día, tenía una duración de apenas 5 horas.

Como podréis ver, siempre nos gustó especular.

Lo cierto es que hemos llegado a conocer muy bien la Luna y sabemos también, de qué materiales está formada y, en comparación con la Tierra, la Luna presenta una gran pobreza de elementos siderófilos (literalmente, adictos al hierro), que se adhieren con prontitud al hierro. Porque en comparación con la Tierra la Luna tiene una gran escacez de estos componentes; de hecho sólo posee una cuarta parte del hierro que se esperaría en cualquier material rocoso del Sistema solar.

File:Lunar rocks distribution lmb.jpg

El conocimiento que tenemos de la composición de la Luna se basa, por una parte, en los análisis in situ que realizaron los astronautas del programa Apolo y en los exhaustivos que se han hecho de los casi 400 kilos de rocas lunares que trajeron. Hay que tener en cuenta que los astronautas tocaron únicamente seis puntos de la Luna. Por otra parte, los miles de fotografías de la Luna que se han hecho permiten extrapolar la información obtenida en esos seis muestreos para lograr una aproximación de lo que sería un estudio global, con todos los errores que esta generalización conlleva. Con todo, los geólogos han agrupado los componentes de la Luna en cuatro grandes categorías en función de su origen.

Con la excepción de los elementos implantados por el viento solar (hidrógeno, carbono, nitrógeno y gases nobles), las principales concentraciones de interés, a partir de fuentes extralunares, son las de los elementos denominados siderófilos, como el hierro, el cobre, el níquel, etcétera. La mayor parte de ellos procede de cuerpos meteoríticos que han impactado sobre la superficie lunar, y no es raro que, aunque en algunos casos existan desviaciones de la norma, sus pautas de concentración en el regolito sean similares a las de los meteoritos condríticos. Las concentraciones que podrían tener mayor interés de tecnológica se encontrarían en los restos de meteoritos de grandes dimensiones.

Las concentraciones de elementos mayoritarios son, salvo para el titanio (abundante) y el sodio (muy escaso), similares a las terrestres a excepci´çon del hierro que es sólo una cuarta parte del que encontramos en nuestro planeta. En cuanto a los elementos traza incompatibles, destacan los altos valores en tierras raras de los basaltos de tipo KREEP. Las concentraciones de elementos menores más para su utilización in situ son las del fósforo, cromo y manganeso. El cromo muestra una mayor abundancia en las rocas lunares que en sus homólogas terrestres. El manganeso en las rocas lunares llega al 0,25%.

Lo único cierto es que, lo mismo que le pasó a Harold Urey que estudió muy a fondo el problema, nadie ha sabido hasta el momento dar una explicación creíble del origen de la Luna que, está muy de nosotros pero, sin embargo, no conocemos de dónde vino o cómo pudo llegar aquí. De todo lo demás sobre ella, hemos aprendido con el tiempo y, de la misma manera, esperémos que, algún día, alguien nos diga ¡y nos demuestre! su origen.

Claro que satélites naturales en nuestro propio sistema solar son muchos y, algunos, son fascinantes por lo que en ellos podríamos encontrar.

File:Titan in natural color Cassini.jpg

                       Titán en color natural (sonda Cassini-Huygens 2005)

Titán es el mayor de los satélites de Saturno, siendo el único del Sistema Solar que posee una atmósfera importante. Según los disponibles su atmósfera podría estar compuesta principalmente de nitrógeno, pero hasta un 6% puede ser metano y compuestos complejos de hidrocarburos. En el año 2005, la sonda espacial Cassini-Huygens descendió en paracaídas por la atmósfera de Titán y aterrizó en su helada superficie para algunos de sus secretos.

¡Sigamos soñando con la realidad! En este presente que ya es futuro.

Las sondas espaciales Cassini-Huygens nos han posibilitado para contemplar imágenes del espacio exterior que nunca habríamos imaginado poder contemplar.. Fijaos en el lejano Sol que alumbra el océano de metano de la Luna Titan de Saturno, mientras que el planeta, contempla asombrado tanto belleza.

Hoy mismo, también se expone aquí una publicación de la que se han hecho eco todos los medios y, referida a Ganímedes que, como Europa y Encelado, tambiñén tiene su gran Océano subterráneo. ¿Qué más sorpresas nos esperan?

emilio silvera

Ganímedes, también tiene océanos subterráneos

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

To present the best information in a single view of Jupiter's moon Ganymede, a global image mosaic was assembled, incorporating the best available imagery from NASA's Voyager 1 and 2 spacecraft and NASA's Galileo spacecraft.

 

 

Ganímedes, la mayor luna de Jípiter, alberga más agua líquida que la Tierra.

 

  • El telescopio espacial ‘Hubble’ detecta la presencia de un gran océano subterráneo bajo la corteza de la mayor luna del Sistema Solar

  • El hallazgo se hizo de forma indirecta, observando la actividad de sus auroras y a través de ellas, de su campo magnético

 

 

Recreación artística de la luna Ganímedes, con las auroras...

 

Recreación artística de la luna Ganímedes, con las auroras detectadas, orbitando Júpiter, al fondo. NASA

 

 

Ganímedes es la mayor luna de Júpiter y también del Sistema Solar. Y según sugieren las observaciones realizadas con el telescopio espacial Hubble, alberga un gran océano subterráneo que contiene más agua líquida que la que hay en la Tierra. La conclusión fue presentada ayer durante una rueda de prensa de la NASA en la que participaron los principales científicos que han llevado a cabo esta investigación, publicada en Journal of Geophysical Research: Space Physics.

Según sus cálculos, esta gran masa de agua salada tendría unos 100 kilómetros de profundidad (aproximadamente diez veces más que los océanos más profundos de la Tierra) y se encontraría bajo una corteza de 150 kilómetros de espesor, compuesta en su mayor parte por hielo.

Descubierta por Galileo en el año 1610, la luna gigante Ganímedes tiene un tamaño comparable al planeta Mercurio y cuenta con un campo magnético propio (es el único satélite del Sistema Solar que lo tiene) y una frágil atmósfera, muy distinta a la de la Tierra, en la cual el telescopio Hubble ya había encontrado indicios de oxígeno.

Basándose en los modelos teóricos que usan para sus investigaciones, desde los años 70 del siglo pasado los científicos ya pensaban que este satélite podía tener un gran océano. La misión de la NASA Galileo midió en el año 2002 su campo magnético, reforzando con sus resultados esas sospechas. Ahora, han encontrado una nueva prueba.

El telescopio Hubble fue utilizado para observar en Ganímedes las auroras, un fenómeno vinculado al campo magnético del satélite. Debido a que los telescopios no pueden ver lo que hay en el interior de los planetas, los satélites o cualquier objeto celeste, rastrear el campo magnético a través de las auroras les permite de forma indirecta averiguar lo que hay dentro. Además de tener un campo magnético propio, al orbitar muy cerca de Júpiter, Ganímedes también se ve influida por el campo magnético de ese planeta gigante.

Los científicos observaron el comportamiento de las dos auroras para determinar que debajo de la corteza de Ganímedes hay una gran masa de agua salada que influye en su campo magnético. «Siempre le di vueltas a la idea de cómo podíamos usar un telescopio de manera distinta. ¿Es posible emplearlo para mirar lo que hay en el interior de un cuerpo planetario? Entonces pensé en las auroras, porque están controladas por el campo magnético. Si observas una aurora de la forma adecuada, puedes obtener información sobre el campo magnético. Y si sabes cómo es el campo magnético, obtienes información sobre el interior de esa luna», explicó durante la rueda de prensa telefónica Joachim Saur, investigador de la Universidad de Colonia (Alemania) y autor principal de este trabajo.

«Los nuevos datos encajan muy bien con lo que se sabía. Se trata de un resultado importante porque afianza la idea de que ese océano de agua líquida existe, pues contamos con evidencias indirectas», señala a EL MUNDO Olga Prieto, geóloga planetaria del Centro de Astrobiología (CAB-CSIC-INTA).

JUICE spacecraft concept.jpg

      An artistic montage for the JUICE mission

Prieto es una de las investigadoras que ha planificado la ambiciosa misión JUICE (Jupiter Icy moons Explorer) que la Agencia Espacial Europea (ESA) tiene previsto lanzar al sistema de Júpiter en el año 2022, adonde llegaría en 2030.

Uno de los principales objetivos de esta sonda será precisamente estudiar Ganímedes e indagar sobre la presencia de este gran océano de agua líquida. Io, Europa y Calisto son otros de los satélites que hacen que el estudio del sistema de Júpiter tenga gran interés.

«Este descubrimiento supone un hito y pone de manifiesto lo que el Hubble puede conseguir», afirmó John Grunsfeld, uno de los responsables del departamento científico de la NASA, que el próximo 24 abril celebrará un cuarto de siglo de observaciones y descubrimientos de su telescopio espacial, que también es operado por la ESA. En su opinión, «un océano profundo bajo la corteza helada de la luna Ganímedes abre la fascinante posibilidad de que haya vida más allá de la Tierra».

TRES REQUISITOS PARA QUE PUEDA HABER VIDA

 

 

Detectar la presencia de agua líquida como la que parece haber en Ganímedes, el mayor satélite de Júpiter, afirma la NASA, «es crucial» en la búsqueda de mundos habitables y de la presencia de vida como la conocemos en nuestro planeta. No obstante, matiza Olga Prieto, investigadora del Centro de Astrobiología, «haber detectado agua líquida implica simplemente que se da uno de los requisitos para poder decir que el ambiente es habitable, pero no nos dice nada sobre la existencia de vida como la que conocemos en la Tierra. Una cosa es la habitabilidad y otra la existencia de vida», señala. Tres son los requisitos que los científicos dedicados a la astrobiología consideran necesarios para determinar que un ambiente es habitable, como recuerda Prieto.«El primero es que haya agua líquida. El segundo, que haya energía para poder mantener el metabolismo de los organismos que pudieran vivir en ese ambiente. En la Tierra, por ejemplo, sabemos que hay organismos que usan la luz solar y otros que utilizan energía química. Por último, debe haber elementos químicos esenciales para la vida, como el carbono, el nitrógeno, el oxígeno, el hidrógeno, el fósforo y el azufre», resume la investigadora en conversación telefónica. Lo que parece evidente es que en la superficie de este mundo helado, argumenta Prieto, no es posible que exista vida como la que se da en la Tierra: «La temperatura en la superficie de este satélite es de unos -173ºC, así que no puede haber agua líquida. Y si hay hielo, no hay vida. Pero en el interior de Ganímedes hay decenas de kilómetros de agua líquida. Es sorprendente la cantidad de agua que puede tener un satélite de hielo», añade la científica española. Por otro lado, la sonda ‘Cassini’ de la ESA ha detectado esta semana diminutos granos de roca en Encélado, una de las lunas heladas de Saturno, que sugieren que se dan procesos hidrotermales en su lecho marino.

 

Fuente: El Mundo