Mar
18
Sólo en nuestra Galaxia, miles de planetas habitables.
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (1)
CIENCIA
Nuevos cálculos implican la existencia potencial de mucha agua y, lo más importante, de mucha vida.
Hasta ahora, los astrónomos han descubierto ya miles de exoplanetas en nuestra galaxia, la Vía Láctea. Mundos lejanos que giran alrededor de otras estrellas y muchos de los cuales, además, forman parte de sistemas planetarios que recuerdan a nuestro Sistema Solar. La sonda Kepler, especialmente diseñada para esta búsqueda, es el instrumento que más planetas extrasolares ha descubierto hasta ahora. Y ha sido precisamente utilizando sus datos como un grupo de investigadores de la Universidad Nacional de Australia y el Instituto Niels Bohr, en Copenhague, ha calculado cuál es la probabilidad de que las estrellas de nuestra galaxia tengan planetas en la zona habitable, esto es, a la distancia precisa de ellas para permitir que exista agua líquida en sus superficies.
Los resultados han sido sorprendentes. De hecho, los cálculos muestran que miles de millones de estrellas de nuestra galaxia pueden tener entre uno y tres planetas en sus zonas habitables, lo que implica la existencia potencial de mucha agua y, lo más importante, de mucha vida. El esperanzador estudio se publica hoy en Monthly Notices of the Royal Astronomical Society.
Gracias a los instrumentos del Kepler los astrónomos han descubierto ya cerca de mil planetas alrededor de estrellas de nuestra galaxia y trabajan ahora para confirmar otros tres mil potenciales. Muchas estrellas cuentan con sistemas que contienen entre dos y seis planetas, aunque podría ser que hubiera más fuera del alcance de los instrumentos de la sonda Kepler, que está mejor equipada para buscar mundos grandes y que estén relativamente cerca de sus soles.
Pero los mundos que orbitan muy cerca de sus estrellas suelen ser demasiado calientes para la vida. Por eso, los investigadores han tratado de averiguar si también podría haber mundos algo más lejos de esos soles, en sus zonas habitables, donde el agua y la vida son teóricamente posibles. Para conseguirlo, los autores del estudio han llevado a cabo una serie de cálculos basados en una nueva versión de un método que tiene ya 250 años de antigüedad y que se conoce como la Ley de Titus-Bode.
Una ley planetaria
Formulada alrededor del año 1770, esta ley permitió calcular la posición exacta de Urano mucho antes de que fuera descubierto. La Ley de Titus-Bode afirma que existe una relación entre los periodos orbitales de los distintos planetas de nuestro sistema solar. Así, la relación entre el periodo orbital del primer y segundo planeta es la misma que existe entre el segundo y el tercero, que entre el tercero y el cuarto y así sucesivamente. Por eso, si sabemos cuánto tardan algunos de los planetas en completar una órbita alrededor de su estrella, es posible calcular cuánto tardarían otros planetas que aún no conocemos en hacer lo mismo, lo que nos permitiría calcular su posición.
“Decidimos usar este método para calcular las posiciones potenciales de planetas en 151 sistemas en los que Kepler ya había encontrado entre tres y seis mundos -explica Steffen Kjaer Jacobsen, del Instituto Niels Bohr-. En 124 de los sistemas planetarios, la Ley de Titus-Bode logró fijar la posición de los planetas. Usando el mismo método, intentamos predecir dónde podría haber más planetas algo más externos en esos sistemas solares. Pero sólo hicimos los cálculos para planetas cuya existencia pudiera después ser confirmada con los instrumentos del propio Kepler”.
En 27 de los 151 sistemas planetarios analizados, los planetas observados no se ajustaban, a primera vista, a la Ley de Titus-Bode. Por lo que los investigadores intentaron encajar los planetas en el “patrón” en el que los planetas deberían ubicarse. Luego añadieron los planetas aparentemente “perdidos” entre los que ya eran conocidos y añadieron, por último, un planeta adicional en cada sistema, más allá del mundo más lejano conocido. De este modo, lograron predecir un total de 228 planetas en los 151 sistemas planetarios.
“Hicimos entonces una lista prioritaria con 77 planetas de 40 sistemas planetarios -explica Jacobsen-. Los que tenían más posibilidades de ser vistos por Kepler. Y animamos a otros investigadores a buscar esos mundos. Si los encuentran, sería un indicativo de que el método se sostiene”.
Los planetas más cercanos a sus estrellas están demasiado calientes como para tener agua y vida. Y los más alejados tampoco sirven por todo lo contrario: son demasiado fríos. Pero entre estos extremos está la zona habitable, donde el agua y la vida son teóricamente posibles. Por supuesto, la zona habitable varía de estrella a estrella, y depende de lo grande y brillante que ésta sea.
Por eso, los investigadores calcularon el posible número de planetas en las zonas habitables basándose en esos mundos “extra”, que habían añadido a los 151 sistemas planetarios estudiados siguiendo la Ley de Titus-Bode. Y el resultado fue de entre uno y tres planetas en la zona habitable para cada uno de los sistemas.
Sólidos y con agua líquida
Más allá de los 151 sistemas planetarios analizados, los científicos se fijaron también en otros 31 sistemas en los que ya se ha descubierto algún planeta en las zonas habitables o en los que bastaba con añadir un solo mundo extra para llevar a cabo los cálculos.
“En estos 31 sistemas planetarios -asegura Jacobsen- nuestros cálculos mostraron que tienen una media de dos mundos dentro de la zona habitable. Según las estadísticas y las indicaciones que tenemos, un buen porcentaje de esos planetas serían sólidos, con agua líquida y con posibilidades de albergar vida”.
Si extrapolamos estos resultados al resto de nuestra galaxia, significaría que sólo aquí, en la Vía Láctea, podría haber miles de millones de estrellas con planetas en la zona privilegiada para la vida. Jacobsen asegura que lo que pretende ahora es animar a otros investigadores para que rebusquen en los datos de Kepler y comprueben si los planetas predichos por él y su equipo existen realmente y se encuentran en las posiciones calculadas.
Mar
18
¿La Mente? ¡Un Universo en sí misma!
por Emilio Silvera ~
Clasificado en La Mente - Filosofía ~
Comments (1)
Evolución por la energía II
Cada día tratamos de dar un repaso a temas de interés y siempre procurando que sean interesanates para que capten la atención del visitante. Como todos sabéis ya, nos centramos en la Física, astrofísica, Astronomía en general y también, de hechos del pasado que nos dejaron aquellas cicilizaciones antiguas para que hoy, podamos nosotros ser lo que somos y haber llegado hasta dónde nos encontramos gracias a la contribución de muchos que antes que nosotros, pasaron por aquí, por este mundo privilegiado. La Mente siempre ha sido uno de los temas preferidos que, por su complejidad y misterio, ha despertado nuestra curiosidad y de ellas hablamos con bastante frecuencia.
Sí, con frecuencia hemos hablado aquí de la Mente y de la Materia, del Universo y de las galaxias que lo pueblan, de los Mundos y de la Vida, de las múltiples teorías que observando y experimentando hemos creado poder explicar la Naturaleza, de las Constantes Universales y de las cuatro Fuerzas Fundamentales. En fin, hemos hablado de los onjetos exóticos que pueblan el universo y de las maravillas que ocurren en el corazón de las estrellas que, a temperaturas de millones de grados, transmutan los elementos simples en otros más complejos. De todo eso y de muchas más cosas hemos hablado aquí y, posiblemente, algún lector, haya podido aprender alguna cosa. Siempre hemos procurado exponer los temas de la manera más sencilla posible y, si lo hemos logrado o no, serán ustedes los que lo tengan que juzgar.
Una galaxia es un universo en miniatura, allí pueden estar representados todos y cada uno de los objetos que pueblan el Cosmos. En el ámbito de una galaxia todas las fuerzas del universo actúan allí a nivel local, La Gravedad mantiene allí unidas a las estrellas y los mundos, las Nebulosas y las ingentes cantidades de gas y polvo que contienen crear estrellas nuevas. Allí, en las galaxias, residen agujeros negros, estrellas de neutrones y una gran variedad de estrellas y de sistemas solares, así cometas errantes y enormes meteoritos que vagan por el espacio interestelar. En una galaxia, amigos míos, podemos encontrar todo aquello que en el universo existe. Las hay muy pequeñas, enanas con menos de un millón de estrellas y también, las hay gigantes y supergigantes que llegan a tener muchos cientos de miles de millones de estrellas. Algunas tienen diámetros que sobrepasan los 600.000 años-luz.
Pueden estar aisladas y también en pequeños grupos (como nuestro Grupo Local de Galaxias donde reinan Andrómeda y la Vía Láctea. Pero, también existen enormes estrucutras, cúmulos y supercúmulos de galaxias como el de Virgo. Muchos son los tipos de galaxias conocidos y, referidas al material que las conforma, a su físicas específicas, o, también, a otras circunstancias especiales, raras o exóticas, la familia de las galaxias es grande y muy variada.
Y, en todo ese aparente maremágnum, apareció la vida. “La Vida, como una cúpula de vidrio multicolor, mancha el blanco resplandor de la eternidad.” De la misma manera que no llegamos a comprender el Universo, tampoco conocemos lo que la vida es, y, hasta las definiciones que hemos encontrado explicarla, ni se acercan a la realidad, a la grandiosidad, a la maravillosa verdad que el universo nos muestra a través de la vida, en la que, a veces, subyacen los pensamientos y los mejores sentimientos.
Aquí, como decía al principio, hemos comentado sobre los muchos procesos científicos que, de alguna manera, han podido involucrar a más de uno que, habiendo sentido curiosidad y teniendo ganas de saber, han seguido con cierta fidelidad lo que aquí pasaba. Hemos podido explicar que, la Astronomía, al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el Universo. También hemos podido contaros que la Física cuántica destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado. Juntos, hemos podido que estamos todos, inevitablemente enredados en aquello que no conocemos pero que, deseamos conocer.
La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, nos reveló una unidad cósmica que se extiende la fusión nuclear en el núcleo de las estrellas, hasta la química de la Vida. La Evolución darwiniana, al destacar que todas las especies (al menos de la vida terrestre que conocemos), están relacionadas y que todas surgieron a partir de la “materia inerte”, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida yb que, en definitiva, estamos hechos del mismo material que están hechos los mundos.
La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces por hombres sabios en otras esferas del pensamiento. Acordémonos de lo que dijo Heráclito: “Todas las cosas son una sola cosa”; Lao-tse en China, describió al hombre y la Naturaleza como gobernados por un solo principio (lo llamó el Tao); y la creencia en la unidad de la Humanidad con el Cosmos estaba difundida los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que “todas las cosas están conectadas, como la sangre que une a una familia”.
Pero hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enogullecen de su lúcida búsqueda de hechos objetivos, empíricos. Desde los mapas de cromosomas y los registros fósiles que representan la interconexión de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos del universo en su conjunto.
El Tiempo pasa inexorable, las cosas cambian, evolucionan y se adaptan al medio, se forman sustancias y elementos que conforman células vivas que, con el tiempo, con las directrices del ADN, surgen lo que nos define como seres vivos. Nuestra intuición nos sugiere que las alas han aparecido para volar, los ojos para ver y las moléculas para desempeñar una función en la célula.
Hace tiempo ya que, me resulta difícil no creer en la presencia de Vida en otros Mundos. “Un triste espectáculo. Si están habitados, ¡qué campo el sufrimiento y la locura! Si no están habitados, ¡qué despilfarro de espacio!” La verificación científica de nuestra participación en las acciones del Cosmos tiene, luego, muchas implicaciones. Una de ellas, de la que hemos hablado aquí con frecuencia, es que, si la vida inteligente ha podido evolucionar aquí en la Tierra también puede haberlo hecho en otras partes del universo.
En cualquier planeta como la Tierra (de los que se ha calculado que existen miles de millones sólo en nuestra Galaxia) que orbite una estrella como el Sol (de las que existen diez mil de millones sólo en nuestra Galaxia), si están situados a la distancia adecuada que esté presente el agua líquida, lo más probable es, que la vida prolifere y, con el tiempo suficiente, evolucionar hasta la inteligencia. tranquilamente podemos especular que no somos la única especie que ha estudiado el universo y que se ha preguntado sobre su papel dentro de él.
Nuestra comprensión de la relación entre la mente y el universo puede depender de que podamos tomar con otra especie inteligente con la cual compararnos. Raramente la Ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo. Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizás imposibles- de formular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolución cósmica reduce un poco esta dificultad al ofrecer a nuestra consideración el muy diferente del universo en los primeros momentos de la evolución cósmica). La cuestión de la vida extraterrestre, pues, va más allá de problemas como el de si estamos sólos en el universo, o si podemos esperar tener compañia cósmica o si debemos temer tener invasiones exteriores; sino que también sería una manera de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.
Hay cuestiones que van mucho más allá de nuestros pensamientos, sobrepasan la propia filosofía y entran en el campo inmaterial de la Metafísica, quizá el único ámbito que realmente pueda explicar lo que la Mente es. Allí reside la esencia de lo complejo, del SER. Ya sabéis:
“Todo presente de una sustancia simple
es naturalmente una consecuencia de su estado
anterior, de modo que su presente está cargado de su futuro.”
Sabemos eso pero, ¿Qué futuro es el nuestro? Si estrapolamos lo anterior a nosotros y a nuestro futuro resultará que, el futuro será para nosotros lo que queramos que sea, es decir, lo podemos construir con nuestras acciones de hoy que harán el mañana.
emilio silvera
Mar
18
Buscando la Gravedad cuántica
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Quién sabe cómo nos veremos nosotros dentro de unos cientos de años
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”. Lo cierto es que, para que las dos teorías, cuántica y relativista se reúnan sin que surjan los dichosos infinitos, se tiene que plantear dentro de una teoría de dimensiones extra. Esas teorías de más dimensiones, requieren de complejas formulaciones que no todos, podemos entender.
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para verla?
Ni vemos la longitud de Planck ni las dimensiones extra
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
Nuestro es tridimensional y no podemos ver otro más allá… ¡si existe!
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que tanto se habla.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.
Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacicones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.
¡Necesitamos algo más avanzado!
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada pero, nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.
El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, que siendo infinitesimal, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.
Los del LHC dicen haber encontrado el Bosón de Higgs pero, no he podido leer ni oir, alguna explicación clara y precisa de cómo le dá masa a las demás partículas (la mejor explicación sobre el tema la he leido de nuestro amigo y contertulio Ramón Marquez. Él dice que la masa de las partículas es el resultado del efecto frenado al viajar por los océanos de Higgs, una idea brillante, sencilla de entender y razonable para explicar tal fenómeno). Espero que, el Nobel se justifique y que expongan con detalle lo que pasa en los llamados “océanos de Higgs” por el que las partículas circulan para adquirir sus masas que les “proporciona” el recien “hallado” bosón.
¿Cómo llegamos aquí? Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más
apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
No dejamos de experimentar para saber ccómo es nuestro mundo, la Naturaleza, el Universo que nos acoge
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.
La asignatura pendiente de la física teórica del siglo XX ha sido la unificación de la relatividad general y la mecánica cuántica. Las aproximaciones que se han hecho van desde la cuantificación canónica del campo gravitatorio hasta la ampliación de las simetrías en la teoría de supercuerdas. Existen también teorías que buscan una nueva interpretación de las teorías del espacio-tiempo, como se vio en el congreso sobre la ontología del espacio-tiempo que tuvo lugar en junio de 2006 en Montreal.
Penrose es actualmente Profesor emérito de Matemáticas de la Universidad de Oxford, y ya en los años 60 presentó su teoría de los “spin networks” que después fue tomada por Ashtekar y Rovelli, y otros, en la teoría de la gravitación cuántica.
A partir de los años 70, Penrose presentó su teoría de los “twistor”, que algunos físicos han aplicado a la teoría de las supercuerdas para resolver el enigma de las 11 dimensiones del espacio-tiempo. En su último libro “El camino a la Realidad” Penrose ha reivindicado la paternidad de las teorías de los “spin networks” y de los “twistors” que se empieza a utilizar por los físicos teóricos y que nosotros vamos a resumir brevemente.

Roger Penrose es uno de los nuevos humanistas del siglo que se ha interesado por los problemas de las matemáticas, de la física, de la biología, de la psicología y de la filosofía. Siguiendo el modelo de Popper de los tres mundos, ha trabajado sobre la flecha del mundo 1 de la física, al mundo 2 de la conciencia, y del mundo 3 de las matemáticas, al mundo 1.
En esta última dirección ha publicado numerosos libros y artículos, donde aborda la asignatura pendiente de la unificación de la mecánica cuántica y la teoría del campo gravitatorio. El camino que ha seguido Penrose es encontrar una base común a ambas.
Para ello ha introducido dos modelos: los “spin networks” y los “twistors”, el primero discreto, con una métrica intrínseca, no relativista, previo al concepto de espacio, el segundo continuo, con una métrica extrínseca, relativista e inmerso en un espacio-tiempo dado.
Con estos modelos intenta Penrose responder a la pregunta sobre el “por qué” de la realidad física, en vez del “cómo”. Nos encontramos así ante uno de los grandes misterios de la razón humana que nos acercan al misterio del Universo.
“Spin networks” y gravedad cuántica
El modelo de los “twistors” se ha aplicado con éxito a la clasificación de las partículas elementales y a la formulación de la relatividad general. Pero recientemente algunos modelos de la gravedad cuántica han retomado la idea de los “spin networks” de Penrose para desarrollar un modelo discreto llamado loop quantum gravity donde el espacio subyacente está discretizado.
Claro que son varias las corrientes que quieren abrirse camino hacia otras físicas nuevas.
La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.
Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.
¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.
La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.
Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.
La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.
De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.
Aunque creo que aíun nos esconde algún secreto, todos sabemos ya cuál es, el «pegamento» que mantiene unidas a las grandes estructuras que podemos observar a nuestro alrededor (galaxias, cúmulos y supercúmulos) La Relatividad General vino a definir lo que ahora es una auténtica cosmología que nos marcaron los parámetros de cómo funciona el Universo a gran escala.
En cuanto a nuestra comprensión del universo a gran escala (supercúmulos de galaxias, ondas gravitacionales, posibles estrellas de Quarks-Gluones… el propio Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado. El Tiempo y la Entropía tienen mucho que decir en todo eso y, por el camino hacia el conocimiento pleno, tendremos que comprender, de manera completa y exacta que es la Luz, la Gravedad y… ¡tántas cosas!
Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el movimiento de las galaxias o la expansión del espacio mismo, la posible existencia de otros universos…
emilio silvera