lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Religión y algunos pueblos del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en a otros mundos    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

Pero vayamos al trabajo que aquí nos ocupa:

Presentar a estas alturas a Isaac Asimov, sería un ejercicio inútil por ser alguien al que todos conocen por su faseta de escritor científico y de ciencia-ficción. Él escribió más de trescientos libros que iban desde la bioquímica y la física hasta Schakespeare y la Biblia. Todo lo quería tocar y, se introdujo en las más diversas ramas del saber humano para explicar sus ideas con respectos a esas muchas cuestiones que abordó con más o menos éxito. En lo que más destacó y se hizo más popular, fuen en la rama de la Ciencia-Ficción en las que nos dejó novelas inolvidables que, como la Saga de La Fundación conocida en todo el mundo. Como hoy tratamos sobre cosmología, se me ocurre que, podríamos utilizar una de sus obras como comienzo de este sencillo trabajo:

Una de sus mejores obras fue temprana. En 1941 publicó “Nightfall”, una historia sobre una civilización condenada a un destino funesto y ubicada en el planeta Lagash, que no giraba en torno a un único Sol, como lo hace la Tierra, sino que estaba inmerso en el campo gravitatorio de generado por seis soles independientes. Él no explicaba, en la obra, cómo era la órbita de ese planeta -sería un problema nada menos (y nada más) que de siete cuerpos-, nada fácil de explicar.

Recreación artística de Kepler-35b, orbitando dos estrellas

Para los habitantes de un planeta con más de un Sol, no sería fácil sobrellevar las diferencias que esto supondrían. Los planetas ahora desvelados, llamados Kepler-34b y Kepler-35b-, giran alrededor de un par de estrellas unidas gravitatoriamente que se orbitan entre sí. El primero se encuentra a 4.900 años luz de la Tierra y el segundo, aún más lejos, a 5.400 años luz. Si tuvieran habitantes, ¿qué sensación tendrían con esos dos focos luminosos sobre ellos?

Pero sigamos con la historia de los habitantes de Lagash que, en tal situación de estar iluminados por seis soles era que, recibían luz constante proveniente de los soles, cuando no eran unos eran los otros los que les enviaba sus rayos de luz y su calor.

Dado que no conocían ningún tipo de cielo nocturno, los astronómos extrapolan la idea de qué en su universo sólo existen unas pocas docenas de estrellas. Se trataba de unas luces misteriosas apenas visibles contra el resplandor de los seis soles. Así, los que consideraban importantes las estrellas estaban en minoria y eran considerado como gente “especiales” y, algo raras.

Además, en Lagash existía una silenciosa sensación incómoda. Los arqueólogos habían hallado restos de nueve culturas anteriores, cada una de las cuales había podido alcanzar una cultura muy avanazada del nivel de la cultura presente y luego, habían desaparecido. Los estratos geológicos indican que cada una de aquellas civilizaciones había permanecido durante un período de alrededor de dos mil años.

La historia de Asimov nos parece una fantasía pero, lo que hasta ahora sólo había sido cuestión de ciencia ficción, un grupo de astrónomos trabajando con el satélite espacial Kepler  han encontrado a un planeta desde el que, si se pudiera uno parar en él, se podrían apreciar amaneceres y atardeceres con dos soles, justo cómo el que apareció en la primera entrega de Star Wars desde el planeta Tatooine.

Así es, resulta que este planeta recientemente descubierto, que por lo pronto lleva el nombre de Kepler-16b,  se encuentra orbitando a un sistema binario de estrellas. Esto es, un par de estrellas girando una al rededor de la otra, mientras que el planeta gira al rededor de ese sistema.

planeta dos soles estrellas

Nos podríamos preguntas cómo serían en ese mundo de seis soles las cosas. Lla fotosíntesis de una planta queda afectada por el color de la luz que recibe. En la Tierra, la mayoría de las plantas evolucionaron al color verde con el fin de aprovechar el color amarillento de la luz solar que recibe la superficie de nuestro planeta. Nuestro sol, clasificado como una estrella enana amarilla, puede parecer de un brillo blanco visto desde el espacio, pero nuestra atmósfera nos hace verlo amarillo.

Existen muchas otras clases de estrellas que no son como el Sol en el vasto Universo, y muchas de ella están, como el el mundo de Lagahs compartiendo órbitas múltiples con otros tipos de estrellas: enanas rojas, estrellas azules, gigantes rojas, enanas blancas…Las estrellas  poseen diferentes colores dependiendo de su composición, edad, tamaño y temperatura. Quizás estemos acostumbrados al amarillo, pero la naturaleza realmente no tiene preferencias,  y, en un sistema de seis soles…para el planeta que depende de ellos, la cosa no sería fácil.

Gliese 667 55 CnC sistema solar multiple doble

Aquí teneis a Gliese 667, un sistema solar múltiple de dos estrellas. Lástima que no haya podido encontrar ninguna imagen que pusiera representar el sistema Solar de Lagahs, el planeta de seis soles que, tendría que ser una verdadera alucinación para sus habitantes.

Al final de la Historia del planeta Lahahs que estaba en un sistema de seis soles, se descubrió la terrible verdad de por qué, casi de dos mil en dos mil años, desaparecían las civilizaciones que estaban allí aposentadas y firmemente establecidas. Cada 2.049 años los seis soles se ponen y cae la noche, algo totalmente desconocido para los lagashianos que consecuentemente, sienten un inmenso terror hacia la oscuridad y el frío (seis soles les enviaban su luz y su calor durante todas sus vidas). El Miedo y el terror de aquel nuevo y aterrador escenario, les hace volverse locos y comienzan a provocar fuegos hasta que la cultuira muere y, como las anteriores, desaparece.

 

                        Ni estrellas que puedan guiar el rumbo de los viajeros

La oscuridad total del mundo parece ser un denominador común en todas esas profecías. Seguramente por eso la escogería Asimov. Un físico, Anthony Peratt, que ha trabajado en el National Laboratory de los Álamos y en el Departamento de Energía, afirma que a los lagashianos los destruyó algo más que el fuego. La apición del cielo nocturno y de incontables estrellas destruye su cosmología; socava su fe y los cimientos filosóficos de su sociedad, que entonces se derrumba.

Todos sabemos que la Cosmoogía es el estudio del Universo como un todo, de su historia y de su origen. Habitualmente, aunque no siempre, se basa en la Astronomía, así como en la religión y en las creencias sociales.

El antropólogo George P. Murdock hizo una lista de sesenta y ocho civilizaciones que han configurado sus cosmologías. Algunas de estas civilizaciones han desarrollado poco la ciencia y escasamente la astronomía. Nosotros los seres humanos, en cuanto identificamos un puñado de estrellas, pretendemos construir una imagen de todo el universo. La Directora del Programa de de religión del Hunter College de la City University de Nueva York, expresa su desacuerdo con la cifra de las 68 civilizaciones de dadas por Murdock: “Todas las civilizaciones tienen cosmologías de algún tipo que dicen como está estructurada la realidad. Al decir “realidad” se refiere a sus distintos universos, como ellos lo podían percibir”.

No pocas de aquellas Civilizaciones antiguas coincidieron en muchas cuestiones del “mundo que veían” y, destacaron de las demás: Sumerios, Babolonios, Hindúes, Chinos, Egipcios y Griegos, todos ellos, nos dejaron su impronta y, el resultado de todas aquellas culturas, fue recopilado y traducido por el mundo del Islam cuando llegó el oscurantismo en la Edad Media. Mucho despúes, en el Renacimiento, volvieron a florecer aquellos saberes del mundo para que pudieran lelgar hasta hnuestros días.

http://1.bp.blogspot.com/-NyfwfyIp9Fk/Tv3XQhg_jeI/AAAAAAAAHpc/LniSLEQ0qIw/s1600/gas-condenado_eso.jpg

Existe un  monstruo en el centro de nuestra galaxia está a punto de alimentarse del material presente en esa nube de gasEn efecto, recientes observaciones del VLT  indican que una nube de gas pronto se aventurará peligrosamente cerca del agujero negro supermasivo  que ocupa el centro de nuestra galaxia. La nube está siendo desgarrada, estirada y calentada. Los investigadores predicen que durante los próximos dos años parte de la nube será engullida por el agujero negro. ¿Os podeis imaginar que, nuestro mundo estuviera cerca de un monstruo estelar semejante? ¿Cuál sería nuestra reacción cuando el planeta comenzara a ser espaguetizado por esa fuerza de atracción descomunal? ¿Que reacciones y fuerzas se desatarían en el planeta?

Hoy, nuestros conocimientos del Universo son bastante aceptables y hemos podido comprobar que, nuestros modelos cosmológicos, se acercan a la realidad que podemos observar. Aqueloos tiempos lejanos en los que prevalecian las creencias y la intuición, han pasado para dar paso a la auténtica Ciencia que guía el camino que tenemos que seguir.

Claro que, si alguien me pidiera una justificación de la cosmología como ciencia, me vería en un gran apuro para poder dar una respuesta. La raíz de la palabra Cosmos nos remite a una palabra que abarca el todo. ¿Cómo se puede tener una Ciencia basada en que conozcamos todo? Cuando ni siquiera sabemos cuál puede ser el tamaño real del Universo.

Claro que, aunque eso resulta ser así, no por ello, la Cosmología deja de ser interesante y también, importante. Dado quen está estrechamente entrelazada con las creencias y aptitudes generales de nuestra sociedad, la cosmología puede ser una clave para conocer la psicología colectiva de una civilización. Generalmente, también suele haber algo de ciencia en esto.

emilio silvera

El Universo siempre asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 http://2.bp.blogspot.com/-EWkminHkVOk/ThuAP-Do5XI/AAAAAAAAAzU/gm_fBGp_T4c/s1600/Fractal_10.jpg

 

 

 

 

Cuando en la noche oscura y estrellada miramos hacia la esfera celeste que nos envuelve y podemos admirar la multitud de puntitos brillantes que, por causa de la atmósfera terrestre parecen titilar, como enviándonos mensajes que no sabemos descifrar, en realidad, esa imagen cotidiana no nos lleva hacia lo que realmente estamos viendo, hacia la grandeza que allí se oculta y, hacia los sucesos asombrosos que, en cualquiera de aquellas estrellas, por insignificante que pudiera ser, se están produciendo continuamente. Allí se están fusionando los elementos Hidrógeno en Helio y el Helio, con ayuda del Berilio y, como consecuencia del efecto Triple Alfa, en Carbono… ¡Además de muchos más procesos y transiciones!

Dos vistas de grupos de galaxias en luz natural y el luz infrarroja (ESA/NASA/JPL-Caltech/CXC/McGill Univ.)

El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos cúmulos de galaxias que, al colisionar con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Pero está claro, como digo, que todo el proceso estelar evolutivo nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas en las que se crean moléculas, se forman estrellas nuevas y mundos. La Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

                                        Microcristales de arcilla

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

                                                   Los átomos se juntan para formar moléculas

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

            Ya son muchas decenas de moléculas encontradas en las nubes interestelares

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.

AtomosDownload Atomos (132Wx101H)

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?

Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presene en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diesmilésima… ¡La Vida no sería posible!

NGC 3603 - Clúster de explosión de estrella

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todos los rangos, tamaños, composiicón y colores: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

http://polvosera.com/wp-content/uploads/2012/12/heic0704a.jpg

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

http://polvosera.com/wp-content/uploads/2012/12/eso1005a.jpg

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima).  ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.

                                                       Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

La densidad de estas estrellas es increiblemente grande (8×1017 kg/m3), tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra. Es decir, que fácilmente la densidad de una E.N. pudiera ser de unas 500.000 veces la masa de la Tierra y tener un diámetro de sólo un par de decenas de kilómetros.   Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

                          El remanente estelar después de la explosiòn puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

foto

¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del trabajo me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera

Marte tuvo agua suficiente para cubrir todo el planeta

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 La NASA dibuja un océano con condiciones para la vida durante 1.500 millones de años.

 

 

Los científicos de la NASA Gerónimo Villanueva y Michael Mumma explican su hallazgo. / NASA

“Se dice que un periodista es un vasto océano de conocimiento con un dedo de profundidad, y algo parecido le ocurría a Marte. Hace 4.500 millones de años, nuestro vecino en el universo albergó suficiente agua como para cubrir todo el planeta con un mar extenso pero superficial, con una profundidad media de solo 137 metros, según anuncia hoy la NASA.

Las implicaciones son monumentales. Se sabía que el planeta había tenido agua, pero no cuánta ni por cuánto tiempo. “Marte fue húmedo durante unos 1.500 millones de años, mucho más tiempo del que fue necesario para que surgiera vida en la Tierra”, explica Gerónimo Villanueva, un ingeniero argentino de la NASA que ha encabezado al equipo de científicos que ha reconstruido el pasado marciano.

http://img.seti.cl/alma.jpg

El grupo de Villanueva ha empleado los tres telescopios de infrarrojos más potentes del mundo, incluyendo el observatorio europeo en el desierto de Atacama (Chile), para hacer “fotografías” de la atmósfera de Marte. Gracias a la precisión de los aparatos, los científicos han podido analizar durante seis años la proporción de dos tipos de moléculas de agua: la familiar H2O y su versión HDO, en la que aparece una variante más pesada del hidrógeno, el deuterio.

El balance entre estas dos moléculas es revelador. Mientras la versión pesada queda atrapada en el ciclo del agua marciano, la versión ligera tiende a escapar al espacio. Observando la proporción de cada uno de los dos tipos presente en los casquetes de hielo de los polos marcianos, los científicos pueden calcular la velocidad a la que Marte pierde agua y, por tanto, rebobinar para saber cuánta agua hubo en sus orígenes.

exoplaneta-y-elementos-vida-primigenia-fuente-nasa

La vida en la Tierra surgió en solo 800 millones de años, la mitad del tiempo en el que Marte fue húmedo

El retrato del planeta hace 4.500 millones se publica hoy en la revista Science y muestra que nuestro vecino era rojo, pero también azul. El agua, con un volumen comparable al océano Ártico terrestre, no se repartía de manera uniforme por todo el planeta, sino que se concentraba en las hundidas planicies del hemisferio Norte. “Era un océano poco profundo, 1,6 kilómetros como mucho, similar al mar Mediterráneo”, señala Villanueva, nacido en Mendoza hace 36 años.

Eran 20 millones de kilómetros cúbicos de agua líquida, el sustrato de la vida. En la misma época, en la misma agua y en el mismo rincón del universo, en la Tierra surgía la vida, hace al menos 3.500 millones de años, cuando accidentalmente se formó una molécula que era capaz de hacer copias de sí misma. La hipótesis de la comunidad científica es que en Marte pudo ocurrir lo mismo. Ahora, gracias a Villanueva, sabemos que la sopa marciana en la que pudo aparecer la vida duró entre 1.000 y 1.500 millones de años. En la Tierra bastaron 800 millones.

Filosilicatos... en Nili Fossae
Figura 1: Filosilicatos destacados en morado y azul en las paredes de Nili Fossae, un antiguo cañón en las tierras altas de Marte. (NASA/JPL/JHUAPL/University of Arizona/Brown University)

Los datos del argentino muestran que Marte ha perdido el 87% del agua de sus océanos primitivos. El 13% restante se congeló sobre los polos Sur y Norte. Pero los nuevos mapas de la atmósfera marciana elaborados por la NASA sugieren otra posibilidad excitante. Revelan la existencia de microclimas, con diferentes proporciones de los dos tipos de agua, pese a que el planeta es mayoritariamente desértico. “Son variaciones muy sorprendentes, que pueden significar que hay reservorios de agua bajo la superficie de Marte”, apunta Villanueva.

El ingeniero recuerda que la misión europea ExoMars planea aterrizar en Marte en 2018, con un taladro de dos metros. Si se confirma la existencia de agua subterránea, facilitaría el envío de astronautas al planeta rojo. El agua no solo sirve para beber, sino que con la tecnología adecuada se puede emplear para obtener hidrógeno como combustible de la nave de regreso o para dar energía a una colonia de humanos.”

    Las huellas que podemos ver hoy, nos hablan de un pasado con agua abundante

Hasta aquí el Reportaje publicado en el País en el que me he tomado el atrevimiento de adornar con varias imágenes acordes a los textos, y, desde luego, lo que hace algunos millones de años fue aquel planeta, ahora mediante el estudio lo podemos saber pero… ¿Seguirá existiendo alguna clase de vida en Marte?

Tal y como fueron las cosas allí, es lógico pensar que, en alguna parte tendrá que estar, al menos una parte de las inmensas cantidades de agua que existía en aquel planeta. Me gustaría hacer una visita a esas ingentes cuevas, grutas y galerias que el muy activo pasado volcánico de Maerte orado en el subsuelo.

En esos lugares alejados de la superficie que recibe una intensa radiación nosiva para la vida, a más profundidad y con mayor temperatura, el agua podría estar corriendo y, de hecho, en muchas imágenes de las fotografías enviadas por los ingenios espaciales allí presentes, se ve como el agua aflora desde el subsuelo.

Siendo así (que lo es), la vida, auque en forma de líquenes, hongos, bacterias…etc., podría estaqr tan ricamente instalada en ecosistemas nuevos alejados del nefasto suelo que, al no estar presevado por una densa atmósfera como en la Tierra… No es el lugar más adecuado para que la vida prolifere.

emilio silvera

¡Universos paralelos! Pero…, ¿los habrá?

Autor por Emilio Silvera    ~    Archivo Clasificado en Multiverso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Hablando de universos paralelos, Douglas Adams nos dice:

“Lo primero que hay que comoprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta el momento no es verdadero.”

Claro que nosotros podemos imaginar y plantearnos una serie de escenarios que sean diferentes a éste nuestro, en el que, sólo podemos contemplar un Universo, el nuestro. Tenemos una visión plausible del Universo basada en que hay una sóla forma para las constantes y las leyes de la Naturaleza. Los universos son entidades de una vasta complejidad y no trucos difíciles de hacer, y cuanto más complicado son, más piezas hay que encajar. Además, ¿no tenemos de sobra con el nuestro, al que no hemos llegado a comprender?

La idea de que haya otros universos no es nueva. En los siglos XVIII y XIX se especuló con esa idea como parte del problema de la existencia de otros mundos.  Charles Pantin decía: “La aparente unicidad del universo depende básicamente del hecho de que podamos concebir muchas alternativas para él.”

De todas las maneras, estaría bien que algún día lejos aún en el futuro, los científicos pudieran descubrir que sí existe la posibilidad de pasar de un Universo a otro, y a otro, y a otro. De tal manera que, llegado el momento, pudiéramos trasladarnos de casa para evitar, ciertos escenarios desfavorables para nosotros y que, en un Universo relativiamente apacible como lo es el nuestro ahora, estaría la solución de poder hacer la mudanza.

Pasear por las playas de otros mundos

Claro que nuestras excursiones por los nuevos senderos que han abierto los intentos de entender y aplicar los valores de las constantes universales plantean muchas grandes preguntas sobre la Naturaleza de las cosas. Hemos comprobado que los cosmólogos contemplan activamente la Naturaleza de “otros mundos” en los que las constantes de la naturaleza toman otros valores diferentes que en el nuestro. Parece que cambios muy pequeños en muchas de nuestras constantes harían la vida imposible. esto plantea la cuestión más profunda de si estos “otros mundos” -universos- existen en algún sentido y, si es así, qué los hace diferentes del universo que nosotros vemos y conocemos.

También ofrece una alternativa al viejo argumento de que el aparente buen ajuste del mundo para ue posea todas aquellas propiedades requeridas para la vida es prueba de alguna forma de diseño espcial. Pues si existen todas las alternativas posibles, debemos encontrarnos necesariemente habitando en una de las que permiten la vida. U podríamos ir aún más lejos y aventurar la conjetura de que podríamos esperar encontrarnos en el tipo más probable de universo que sustenta vida. La primera persona que parece haber expresado este enfoque de los muchos universos, fue el biólogo Charles Pantin, quien trató de encontrar un contexto más atractivo para reflexionar sobre propiedades especiales de la estructura, constantes y leyes del universo introduciendo la idea de un conjunto de muchos “mundos” -universos-, cada uno de ellos con una serie diferenciada de propiedades físicas.

 Multiverso Nature 438_7069_739.jpeg

Si pudiéramos saber que nuestro propio Uiverso era sólo uno entre un número indefinido con propiedades cambiantes quizá podríamos invocar una solución análoga al principio de selección natural; que sólo en ciertos universos, entre los que se incluye el nuestro, se dan las circunstancias especiales para la existencia de la vida, y al menos que se satisfaga esta condición, no habrá observadores para advertir tal hecho.

Claro que, concebir siquiera tal multiverso de todos los universos posibles es que hay muchas cosas qu podrían ser diferentes. De nuestro estudio de las matemáticas sabemos que existen lógicas diferentes a la que utilizamos en la práctica, en la que los enunciados son o verdaderos o falsos. Análogamente, hay diferentes estructuras matemáticas; diferentes leyes de la Naturaleza posibles; diferentes valores para las constantes de la naturaleza; diferentes números para los valores de espacio y de tiempo; diferentes condiciones de partida para el universo; y diferentes resultados aleatorios para secuencias complejas de suscesos. Frente a ello, la colección de todos los mundos posibles tendría que incluir, como mínimo, todas las permutaciones y combinaciones posibles de estas diferentes cosas. Obtener una comprensiòn de tal galimatías es pedir demasiado.

 

Un multiverso cuajado de pompas cristalinas, cada una un universo lleno de galaxias, de mundos… ¿de vida?

Ya nos podemos hacer una idea de lo que podría suceder si realmente existieran esos otros universos posibles, en los que unos tendrían más dimensiones que el nuestro, la Gravedad sería diferente, la fuerza electromagnética tendría otros parámetros o escalas, y, la radiación a la que lleva la fuerza nuclear débil podría ser más fuerte y devastadora, mientras que, la fuerzxa nuclear fuerte, sería diferente y, la materia que conformaría tendría propiedades desconocidas en nuestro universo. Claro que, no podemos saber si realmente esos universos serían posibles y, siendo asó (que lo es), la pregunta es: ¿hay realmente universos alternativos permitidos o, en realidad son tan posibles como la existencia de círculos cuadrados?

No me extrañaría que cuando la Teoría de Todo sea un hecho, nos muestre también que es muy restrictiva cuando se trate de dar “permiso” para la existencia de esos universos “paralelos” que nuestras mentes soñaron como consecuencia de una ignorancia que sólo se puede permitir, ciertas licencias, por medio de la imaginación infinita en la que, la ciencia, no puede poner barreras.

Universos Paralelos ¿ tiene el nuestro un gemelo ? (4 de 4)

Como no sabemos, como la ignorancia nos lleva a la especulación y a la conjetura, pensamos y pintamos esos universos paralelos de mil maneras distintas y, en cada uno de ellos, podríamos encontrar un “mundo” diferente. En unos, como en el nuestro estará presente la vida, en otros, por no haberse producido expansión alguna, todas las galaxias conformarán una sólo y enorme galaxia universal que será la portadora de las estrellas y los mundos, otros universos habrán nacido muertos, y, también los habrá en los que, al ser diferentes las fuerzas, no reunirán las condiciones para que, ninguna clase de vida pueda estar allí presente. Otros muchos también, aunque estarán allí formando parte del Multiverso, no podrán ni consioderar universo al ser sistemas cerrados estáticos, en los que, ni la materia ni la energía tienen actividad para formar estrellas, galaxias y mundos…¿Para qué serviría un universo así?

¡Qué nos gusta imaginar! En realidad tenemos una Imaginación creadora, lo que no es posible hacer de manera física, hasta que lo podamos concebir, antes, lo hemos hecho una y otra vez xon nuestra imaginación y, de ahí, surgen las ideas quen nos llevan a plasmar en hechos lo imaginado. ¡No sería la primera vez que tal cosa ocurre!.

Estas pequeñas fantasías muestran de qué forma es concebible que el comportamiento que podríamos estimar consciente pudiera emerger de una simulación por ordenador. Pero si preguntamos dónde está “este” compartamiento consciente parce que nos vemos empujados a decir que vive en el programa. Es parte del software que se está ejecutando en la máquina y que consiste en una colección de deducciones muy complejas (“teoremas”) que se siguen de las reglas de partida que definen la lógica de la programación. esta vida “existe” en el formalismo matemático.

 

De todas las maneras, de existir esos otros universos, surgieron de la misma manera que surgió el nuestro, ya que, las leyes de la Naturaleza son las mismas en todas partes pero… ¿Serán las mismas en potros universos que podrían ser distintos al nuestro? No sabemos ni podemos imaginar como sería la física de esos otros universos que, en algunos las cosas serían una repetición de este nuestro y, en otros, podrían tener otras leyes fundamentales y hasta la química y la física serían otras, no hablemos, de qué formas de vida podrían estar en ellos presente.

Estos ejemplos tratan de captar unos aspectos de la Naturaleza que están reflejados, de manera perfecta, en un programa de ordenador,  que es, actualmente, la única manera que tenemos de poder reproducir lo que podría ser. Físicamente estamos imposibilitados para comprobar dicha existencia y, hacemos un buen modelo de lo que debería ser un multiverso, insertamos dentro del programa todos y cada uno de los ingredientes necesarios y, cuando podemos contemplar en la pantalla los resultados definitivos ya refinados, la sensación que podemos percibir, si el programa es bueno y está bien diseñado, es que estamos visitando un auténtico multiverso, la reunicón de muchos mundos que podrían ser y, cada cual, con sus características propias.

Claro que, si todo es tan subjetivo como algunos creen que es, podríamos estar en un  universo que no es un universo sino una simple idea fugaz, pero, sales del momentaneo desvarío cuando en la vida cotidiana, sientes la sacudida muy real, al tener que dar la entrada de una casa para vivir, es en ese momento, y, en una prosaica situación, cuando te das cuenta de que hay una realidad que no resulta tan bella como todas aquellas otras que nos transportan a esos mundos soñados que están alumbrados por brillantes y azuladas estrellas. El “universo” de la vida cotidiana…¡Es otra cosa!

emilio silvera

Jamón ibérico, bueno hasta para la tensión

Autor por Emilio Silvera    ~    Archivo Clasificado en Nuestra Salud    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Cerdo Ibérico en la Sierra de Aracena (Huelva), consumiendo la bellota que hace que los jamónes sean tan especiales y únicos en el mundo. El Jamón de la Sierra de Huelva (no solo el Jabugo), es una fuente de salud.
Veámos el reportaje de ABC
N. RAMÍREZ DE CASTRO / madrid

Un estudio del Hospital Ramón y Cajal acaba con tres mitos: no engorda, no eleva los triglicéridos ni favorece la hipertensión

 

 

Es una de las joyas de nuestra gastronomía y desde hace años también se sabe que el jamón ibérico es un alimento muy saludable. Su consumo regular aporta hierro, vitaminas y minerales esenciales y es bueno para nuestro sistema cardiovascular, casi tanto como los pescados azules, las nueces o el aceite de oliva. Se trata de un bocado suculento que, como decía Grande Covián, parece un «olivo con patas». Pero no deja de ser un embutido con un alto contenido de grasa saturada y de sal, motivos por los que tradicionalmente se desaconseja en enfermos con problemas cardiovasculares y se pide cautela en el consumo a personas sanas.

Ahora un nuevo estudio, realizado en el Hospital Ramón y Cajal de Madrid, acaba con tres mitos relacionados con su consumo: ni engorda, ni eleva los triglicéridos ni tampoco la tensión arterial. Y, sobre todo, lo más importante es que por primera vez se ha demostrado que mejora uno de los termómetros de la salud vascular: el endotelio, el tejido que tapiza nuestras arterias.

La inflamación de ese tejido está en el origen de la mayor parte de las enfermedades cardiovasculares. Su labor es como la de un director de orquesta en el funcionamiento del sistema cardiovascular. Controla la presión sanguínea y la coagulación, es a la vez diana y fuente de hormonas y participa en la defensa frente a patógenos. Cuando el endotelio sufre se dispara el riesgo de padecer un infarto.

Efecto memoria

 

 

Jabrá que comer algo más de Jamón para mekorarla

 

«Hemos comprobado que el consumo de 50 gramos al día de jamón ibérico durante seis semanas mejora el endotelio, además lo hace con efecto memoria y los beneficios se mantienen después de dejar de consumirlo», explica José Sabán, responsable de la Unidad de Endotelio y Medicina Cardiometabólica del hospital madrileño y director de la investigación. La mejora se consigue gracias al óxido nítrico «un gas liberado por un endotelio más saludable que actuaría como un potente vasodilatador, además de antioxidante», apunta.

Pese al consumo diario, los participantes en el estudio no aumentaron su peso, ni experimentaron una subida de triglicéridos, típica del consumo de cualquier embutido. Además, pese a ser un alimento rico en sodio, produjeron un descenso de la tensión arterial.

Mejor con jamón de bellota

 

 

 

El estudio del Ramón y Cajal se hizo con dos tipos de jamones de buena calidad -de cebo y de bellota- y dos grupos de voluntarios. Ambos tipos de jamón mostraron beneficios cardiovasculares, aunque la mejora endotelial fue superior entre los que consumieron bellota, de cerdos criados a la manera tradicional, al aire libre y alimentados de hierbas y bellotas. La explicación está en el mayor contenido de unos compuestos llamados polifenoles, unos potentes antioxidantes y antiinflamatorios a nivel vascular.

Para demostrar que los beneficios procedían del jamón, durante la investigación se controló la alimentación de los participantes reduciendo de forma expresa el consumo de otros alimentos ricos en antioxidantes como es el aceite de oliva, el vino tinto, el chocolate negro, el té verde y los frutos rojos. Una nutricionista también veló para que no hicieran un ajuste calórico de la dieta.

De momento es un estudio piloto con medio centenar de participantes, pero los resultados abren la puerta a nuevos trabajos que permitan conocer si habría más beneficios con otras cantidades. ¿Qué pasaría con 100 gramos diarios? ¿Y con personas con algún problema cardiovascular? La investigación está pendiente de publicación.