jueves, 28 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Astronomía en el Islam… ¡A cada cual, lo suyo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí desde siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato. Aunque eso sí, construimos teorías para que cuadren las cuentas.

 

Para el cosmólogo, la única certeza es que el universo morirá un día. Algunos creen que la muerte final del universo llegará en la forma del Big Crunch. La gravitación invertirá la expansión cósmica generada por el Big Bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentarán espectacularmente hasta que toda la materia y la energía del universo estén concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del universo tal y como lo conocemos.

El uranio se produce mediante la reacción de fisión o fusión de los átomos, durante las cuales son liberadas grandes cantidades de energía que pueden ser utilizadas de muy distintas maneras, no siempre recomendables. Sin embargo, como se trata de un descubrimiento humano de secretos de la Naturaleza, aquí lo contamos.
Hacia principios de siglo se hizo una serie de observaciones desconcertantes, que condujeron al esclarecimiento.  El inglés William Crookes logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio.  Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que esta procedía exclusivamente de dicha impureza, que él denomino “uranio X”.  Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas.  Si se dejan reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera: por su propia radiactividad, el uranio se convertía en el uranio X, más activo aún.
Hablemos de la Astronomía del Islam, desde el punto de vista científico, alejados de la religión, y, simplemente bajo la perspectiva de los hechos tal y como sucedieron, con los personajes que fueron los primeros actores de aquel reparto.

Maome.jpg

 

 

Ilustración del siglo XV de una copia de un manuscrito de Al-Biruni que representa a Mahoma predicando El Corán en La Meca.

Poco después de la muerte del profeta Mahoma en el año 632, los musulmanes establecieron una especie de commanwealth o comunidad de naciones desde España hasta Asia Central. Llevaron a todas las tierras conquistadas una astronomía popular árabe que era una mezcla de la hindú, persa y griega que se unificaba con la local de cada lugar de conquista, y, hasta el siglo X no adquirió las características distintivas propias. A partir de entonces y hasta el siglo XV los expertos musulmanes fueron inigualables en sus conocimientos de astronomía que, en sus fundamentos más profundos estaba presente el legado de la antigua Mesopotamia.

Masjid al-Nabawi en Medina. En esta mezquita se encuentra la tumba de Mahoma y de los dos primeros califas, Abu Bakr y Umar ibn al-Jattab.

En sus formas más tardías los zijs llegaron a ser unos documentos formados por varios cientos de páginas de textos y tablas. Algunos aspectos de la astronomía matemática que se podía encontrar en un zij típico incluían: trigonometría; astronomía esférica; ecuaciones solares, lunares y planetarias; latitudes lunares y planetarias; posiciones planetarias; paralajes; visibilidad solar y planetaria; geografía matemática (lista de ciudades con sus coordenadas geográficas correspondientes) con lo que se determina la dirección de la Meca; uranometría (tablas de estrellas fijas con sus coordenadas), y, no en menor proporción, astrología matemática.

La lista de astrónomos del Islam sería interminable.

“Abu al-Hasan ‘Ali ibn ‘Abd al-Rahman ibn Ahmad ibn Yunus al-Sadafi al-Misri (c. 950-1009) fue un importante matemático y astrónomo musulman egipcio, cuyas obras destacaron por estar adelantadas a su tiempo, habiendo sido hechas en base a cálculos meticulosos y atención al detalle.”

Ibn_Yunus.jpg

                    El cráter Ibn Yanus en la Luna que lleva su nombre.

En uno de estos zij, el famoso astrónomo egipcio Ibn Yunus describe cuarenta conjunciones planetarias y treinta eclipses lunares. Aplicando lo que sabemos actualmente sobre las posiciones de los planetas, se llega a la conclusión de que los resultados de Yunus son absolutamente correctos.

Aunque la religión no fue la única fuerza impulsora que espoleó el crecimiento de la astronomía en el mundo islámico -el hecho de ser una sociedad tolerante, multirracial y de una gran erudición, con una lengua predominante, el árabe, también fomentó este crecimiento-, las cuestiones sacras desempeñaron asimismo un importante papel.

El Islam necesitaba resolver de algún modo el problema de orientar exactamente hacia La Meca todas sus estructuras sagradas, así como a las personas que realizaban los cultos diarios. La cartografía de los cielos surgió de esta necesidad de fijar las coordenadas de los lugares santos y la dirección correcta,  o gibla, de la orientación hacia la Cava, el altar de La Meca hacia el cual se vuelven los musulmanes cinco veces al día para rezar sus oraciones.

Pero ¿hacia donde está La Meca? Probablemente en los primeros tiempos las autoridades religiosas determinaron la gibla observando ciertos cuerpos celestes, tales como la estrella de Belén, que estaban en la dirección que en general tomaban los peregrinos cuando caminaban hacia La Meca. La propia Cava está alineada con unas direcciones específicas; su eje principal (meridional) se sitúa hacia el punto por donde sale la estrella Canope; su eje secundario, el de las fachadas este u oeste. Se alinea con el punto por donde el Sol sale el  solsticio de verano y se pone en el solsticio de invierno. Un experto situado en un altar distante tenía que idear algún procedimiento para orientarse hacia el segmento de la Cava correspondiente a su ubicación, como si realmente se encontrara frente a ese segmento del perímetro de la Cava.

Las esferas armilares se pueden dividir en dos categorías, unas usadas para la observación como las utilizadas por Hiparco, Eratóstenes, Ptolomeo, Tycho Brahe y los árabes, donde cada uno de ellos fue perfeccionando el instrumento; y la otra como instrumento de demostración, para mostrar los principales elementos de la astronomía y geometría esférica. Las esferas usadas para la observación eran más grandes y poseían menos anillos que aquellas que servían como instrumentos de demostración, lo cual las hacía más precisas y fáciles de usar.  Algunas de ellas incluían visores para orientar el instrumento apropiadamente y generar mayor precisión en la observación, de tal manera que, una vez dirigida hacia una estrella, se podían leer sus coordenadas celestes sobre sus escalas graduadas.

En 1957, dos brillantes historiadores se reunieron para estudiar un manuscrito astronómico de un autor árabe del siglo XIV. El documento, cuyo contenido parecía increíble, era desconocido para la mayoría de los historiadores de la ciencia. Lo había escrito Ibn al-Shatir, muwaqqit de la mezquita Umayyad central de Damasco. El texto redactado por el encargado del cómputo del tiempo, así debe entenderse el oficio de al-Shatir, adelantaba ideas de la teoría de Copérnico. Y ello, más de cien años antes del nacimiento del astrónomo polaco.

La astronomía griega se transmitió hacia el Este a los sirios, indios y árabes después de la caida del Imperio Romano. Los astrónomos árabes recopilaron nuevos catálogos de estrellas en los siglos IX y X y desarrollaron tablas del movimiento planetario. El astrónomo árabe Azarquiel, máxima figura de la escuela astronómica de Toledo del siglo XI, fue el responsable de las Tablas toledanas, que influyeron notablemente en Europa.

Al llegar el siglo IX, los astrónomos ya utilizaban instrumentos de cálculo trigonométrico y de otros tipos para determinar la gibla a partir de coordenadas geográficas. El enigma se convirtió muy pronto en un problema de astronomía esférica que utilizaba el cenit de la localidad en cuestión. En el tratado de geografía matemática de al-Biruni, por ejemplo, el objetivo era determinar la gibla correspondiente a Ghazni, Afganistán.

En el siglo IX, el gran mecenas de la ciencia el califa abasí al-Mamun, reunió a varios astrónomos en Bagdad para crear la casa de la Sabiduría (Bait al-Hikmah). Allí los astrónomos llevaron a cabo observaciones del Sol y de la Luna, con el fin de determina la latitud y la longitud locales para fijar la gibla. Recopilaron algunos de los mejores resultados de un zij titulado “Lo Comprobado” (al-Mumtahan).

Al-Biruni desarrolló técnicas para medir la Tierra y las distancias sobre ella utilizando la triangulación. Descubrió que el radio de la Tierra era 6.339,6 Kilómetros, un valor que no se obtuvo en Occidente hasta el siglo XVI. Uno de sus zijs contiene una tabla que da las coordenadas de seiscientos lugares, casi todos conocidos por él directamente.

Sin embargo, no todas las mediciones fueron hechas por el propio Biruni, sino que algunas las tomó de una tabla similar realizada por al-Jwarizmi (Parece ser que al-Biruni se dio cuenta de que, por lo que respecta a los lugares medidos tanto por al-Jwarismi como por Tolomeo, los valores obtenidos por al-Jwarismi eran los más precisos. Este personaje realizó también mediciones sobre la velocidad de la luz y constató que ésta, era inmensa si la comparaba con la del sonido.

La fascinación árabe por los aparatos mecánicos fomentó el desarrollo de la primera colección importante de instrumentos astronómicos diseñados para conseguir datos precisos sobre el tiempo, así como sobre el movimiento y la posición de los cuerpos celestes.

Lo dejo aquí, ya que, hablar de la Astronomía del Islam requeriría todo un tratado y una lista interminable de personajes que, como Thabit ibn Qurrah que realizó observaciones en la fundación de al-Mamun en Bagdad y en el siglo XI Ibn Yunus dirigió un equipo de observadores en El Cairo. En un Observatorio palaciego de Ghazni, en Afganistán, al Biruni consiguió y suministró unos datos que formaron la base sobre la que se realizaron los zijs más importantes de la astronomía islámica.

Tycho Brahe siempre ha sido presentado ante los estudiantes occidentales como el maestro de la creación y utilización de instrumentos anteriores al telescopio. La realidad es que al-Mamun construyó en el año 829 un esplendido observatorio y lo equipó con un sextante de piedra cuyo radio media unos 17 metros y con un cuadrante de 6 metros de radio. Este cuadrante era mayor que el famoso instrumento construido por Tycho Brahe siete siglos más tarde. Los sextantes de Beg  llegaban a tener un radio de hasta 55 metros y se decía que el margen de error de sus instrumentos era tan aceptable, o más, que el de los instrumentos de Tycho Brahe construido un siglo más tarde. La obra teórica de los árabes fue también superior. Tycho Brahe llegó a la conclusión de que la Tierra no hacía movimiento de rotación alguno, haciendo así que la astronomía retrocediera varios siglos.

Quiero finalizar aquí este pequeño comentario o resumen con un recuerdo. No siempre hemos sabido dar el mérito que tienen algunos de los personajes de la Historia, ni tampoco de los pueblos que poblaron la Tierra antes que nosotros.

Averroes

Al Sur de la puerta de Almodóvar de Córdoba, se levanta la estátua de Averroes. Jurista, médico, filósofo. El gran Averroes fue la máxima autoridad judicial de la época,(siglo XII). Fue acusado por los fundamentalistas de poner la razón humana por encima de la ley divina. La mirada del viejo filósofo se pierde las callejas mientras escucha el murmullo del agua del estanque junto al que reposa.

Nada de eso es cierto. De hecho, los eruditos islámicos admiraron y preservaron las matemáticas y la ciencia griega y actuaron como el hilo conductor de la ciencia de muchas culturas no occidentales, además de construir un edifcio propio impresionante en el campo de las ciencias. Lo cierto es que, la ciencia occidental es lo que es porque se construyó acertadamente sobre las mejores ideas de los distintos pueblos, los mejores e incluso, los mejores aparatos procedentes de otras culturas. Por ejmplo, los babilonios desarrollaron el teorema de Pitágoras (la suma de los cuadrados de los dos lados perpendiculares de un triángulo rectángulo es igual al cuadrado de la hipotenusa) al menos mil quinientos años antes de que Pitágoras naciera.

emilio silvera

Noticias NASA

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La Terrible Belleza de Medusa

 

 

http://1.bp.blogspot.com/-Ofs2akbn4nE/UKJdOTOw_WI/AAAAAAAAI8Y/vxhjVZPmDM8/s1600/121113_nebulosa-medusa-e-ic443_beautiful-space.jpg

 

 

Utilizando el Very Large Telescope de ESO, en Chile, un equipo de astrónomos ha captado la imagen más detallada jamás tomada de la nebulosa Medusa. Las estrellas que se encuentran en el corazón de esta nebulosa ya iniciaron su transición hacia la jubilación, arrojando sus capas externas al espacio y formando esta colorida nube. La imagen augura el destino final del Sol, el cual, finalmente, también se convertirá en un objeto de este tipo.

El nombre de esta hermosa nebulosa planetaria proviene de una horrible criatura de la mitología griega: la gorgona Medusa. También es conocida como Sharpless 2-274 y se encuentra en la constelación de Géminis (los gemelos). La extensión de la Nebulosa Medusa es de, aproximadamente, cuatro años luz, y se encuentra a una distancia de unos 1.500 años luz. A pesar de su tamaño es extremadamente débil y difícil de observar.

Medusa era una criatura horrible con serpientes en lugar de cabellos. Estas serpientes estarían representadas por los filamentos serpentinos de gas brillante de esta nebulosa. El resplandor rojizo del hidrógeno y la emisión verde, más débil, del oxígeno en forma de gas, se extienden mucho más allá de esta imagen, formando en el cielo una figura en forma de media luna. La eyección de masa de las estrellas en esta etapa de su evolución suele ser intermitente, lo cual puede dar lugar a estas fascinantes estructuras dentro de las nebulosas planetarias.

Imágenes de la nebulosa Medusa captadas por el telescopio Very Large Telescope de ESO
Imágenes de la nebulosa Medusa captadas por el telescopio Very Large Telescope de ESO. Image Credit: ESO

Durante decenas de miles de años, los núcleos estelares de las nebulosas planetarias permanecen rodeados por nubes de gas espectacularmente coloridas. Luego, tras unos pocos miles de años, el gas se dispersa lentamente en su entorno. Esta es la última etapa de la transformación de estrellas como nuestro Sol antes de terminar su vida activa como enanas blancas. La etapa de nebulosa planetaria en la vida de una estrella es una pequeña fracción de su vida útil total — comparada con una vida humana, sería un breve instante, equiparable al tiempo que tarda un niño en hacer una burbuja de jabón y verla alejarse a la deriva.

http://www.astroyciencia.com/wp-content/uploads/2011/10/nebulosa-medusa.jpg

La hostil radiación ultravioleta de la estrella muy caliente que se encuentra en el centro de la nebulosa, hace que los átomos del gas que se mueve hacia las zonas exteriores, pierdan sus electrones, dejando tras de sí un gas ionizado. Los colores característicos de este gas brillante pueden utilizarse para identificar objetos. En particular, la presencia de la luz verde procedente del oxígeno doblemente ionizado ([O III]) se utiliza como herramienta para detectar nebulosas planetarias. Mediante la aplicación de filtros adecuados, los astrónomos pueden aislar la radiación del gas brillante y hacer que las débiles nebulosas puedan discernirse mejor contra un fondo más oscuro.

Cuando se observó por primera vez la emisión verde del [O III]  de las nebulosas, los astrónomos creían haber descubierto un nuevo elemento, apodado nebulium. Más tarde, descubrieron que era simplemente una longitud de onda de radiación poco conocida procedente de la forma ionizada de un elemento conocido: el oxígeno.

http://www.levinor.es/wp-content/uploads/2013/05/abell_21_Crawford.jpg

La nebulosa también se conoce como Abell 21 (formalmente PN A66 21), ya que fue el astrónomo estadounidense George O. Abell quien descubrió este objeto en 1955. Durante algún tiempo, los científicos debatieron si la nube podría ser el remanente de una explosión de supernova. En la década de 1970, sin embargo, los investigadores fueron capaces de medir el movimiento y otras propiedades del material de la nube e identificarlo claramente como una nebulosa planetaria.

Nota: La primera, tercera y cuarta imagen, son de la misma Nebulosa tomada en otras regiones para verla de otras perspectivas.

 

Noticias NASA

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Formación Estelar y Turbulencia Magnética en la Nube Molecular de Orión

 

 

Gran Nebulosa de Orión, en una fotografía tomada por el observatorio Infrared.

 

Esta es la Nebulosa de orión, que nos es tan familiar y no transmite signos que nos pueda violentar

 

La imagen de más abajo con los tonos azules de un paraíso marino y la evocadora textura del fluir calmado de las olas del mar, esta imagen nos hace soñar con playas de arena y vacaciones exóticas. Pero lo que muestra tiene poco de tranquilo: la formación de estrellas en los turbulentas corrientes de gas y polvo de la Nube Molecular de Orión.

La imagen se basa en datos del satélite de la ESA Planck, que barrió todo el cielo entre  2009 y 2013 observando la radiación cósmica de fondo de microondas, la luz más antigua de la historia del universo. Planck detectó además emisión de material presente en nuestra propia galaxia, la Vía Láctea, así como de otras galaxias.

Nuestra galaxia está llena de una mezcla difusa de gas y polvo que ocasionalmente se vuelve más denso, creando nubes gigantes de gas en las que puede tener lugar la formación estelar. El polvo es un ingrediente crucial de estas nubes, aunque solo esté presente en trazas. En las frecuencias a las que observó Planck el polvo se vuelve muy brillante, por lo que resulta muy útil para los astrónomos que investigan la cuna de las estrellas en formación.

Formación Estelar y Turbulencia Magnética en la Nube Molecular de Orión
Formación Estelar y Turbulencia Magnética en la Nube Molecular de Orión. Image Credit: ESA

Los granos de polvo tienen forma alargada, y tienden a disponerse de forma que su eje más largo quede en ángulo recto respecto al campo magnético de la galaxia. Esto hace que su emisión esté parcialmente polarizada –vibra sobre todo en una dirección-. Dado que Planck contaba con detectores sensibles a la polarización, sus medidas también dan información sobre la dirección de los campos magnéticos que permean la galaxia.

Esta imagen combina una representación de la intensidad total de la emisión del polvo –en escala de colores- con datos sobre la orientación del campo magnético –representada por la textura-. Los tonos azules señalan las regiones con poco polvo, mientras que las áreas amarillas y rojas indican las nubes más densas –y en general más calientes-, que albergan más polvo y también gas.

La nebulosa de Orión en oxígeno, hidrógeno y azufre

                                                  La imagen obtenida de Astronomía Picture Of The Day, tiene la traducción española de Observario

“Pocas vistas astronómicas excitan la imaginación como la guardería estelar conocida como la nebulosa de Orión. El gas resplandeciente de la  nebulosa rodea las estrellas jóvenes y calientes que hay en el borde de una inmensa nube molecular interestelar.Muchas de las estructuras filamentosas que se ven en  esta imagen son en realidad  ondas de choque , o sea, frentes donde el material que se mueve rápido topa con gas que se mueve lento.

La nebulosa de Orión se extiende  unos 40  años luz y se encuentra a unos 1.500 años luz de distancia en el  mismo brazo espiral de nuestra galaxia que el Sol. A simple vista, la gran nebulosa de  Orión se puede localizar justo debajo y a la izquierda del fácilmente identificable cinturón de tres estrellas que hay en la popular constelación de Orion.

La imagen muestra la nebulosa en tres colores emitidos específicamente por el  hidrógeno , el  oxígeno y el gas de  azufre . Todo el  complejo de la nebulosa de Orion , que  incluye la  nebulosa Cabeza de Caballo , se dispersará lentamente durante los 100.000 años venideros.”

Los grumos rojos en el centro de la imagen forman parte del Complejo de la Nube Molecular de Orión, una de las grandes regiones de formación estelar más próximas –a unos 1.300 años del Sol-. El más llamativo de estos grumos, en la parte inferior izquierda, es la famosa Nebulosa de Orión, también conocida como M42. Esta nebulosa es visible a simple vista en la constelación de Orión, justo bajo las tres estrellas que forman el cinturón del cazador mitológico. Aquí hay una versión anotada de la imagen.

El campo magnético aparece regular, organizado en líneas casi paralelas, en la parte superior de la imagen. Es el resultado de la disposición a gran escala del campo magnético a lo largo del plano galáctico –por encima de la parte superior de esta imagen-. Sin embargo, el campo se vuelve menos regular en las partes central e inferior de la imagen, en la región de la Nube Molecular de Orión. Los astrónomos creen que la estructura turbulenta del campo magnético, apreciable en esta y otras nubes de formación estelar, tiene que ver con intensos procesos que envuelven el nacimiento de las estrellas.

La emisión del polvo se ha obtenido combinando observaciones de Planck a 353, 545 y 857 GHz, mientras que la dirección del campo magnético se basa en datos de polarización de Planck a 353 GHz. La imagen abarca unos 40º de lado a lado.

 

Observadores del cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Espacio Exterior y nosotros    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Desde que existe sobre la faz de la Tierra, el ser Humano siempre ha mirado al cielo. ¿Hubo quizá momentos en que coincidieron un monolito y una puesta de Sol del solsticio de verano como en el preludio de los monos que vemos en la película e Kubrick 2001: Una Odisea del Espacio? ¿Por qué no? Las observacionews astronómicas son anteriores a la escritura. El hecho de que los seres humanos integraran los sucesos del firmamento en una visión más amplia del orden humano parece corroborar una firme configuración del cerebro para dotar de pautas y organización los acontecimientos celestes.

 ¿Estarán las respuestas en las estrellas? Aparte de las pirámides y las estelas de piedra talladas con unos elaborados glifos, su historia se conserva en unos pocos códices, entre los que figura el Libro de la Creación escrito en lengua maya-quiché, el Popol Vuh. Sin embargo, la cosmología maya tiene muchos aspectos parecidos a la cosmología de otras culturas.

 Pirámide escalonada, Chichen Itza, "ciudad del brujo del agua". (Fuente: A. Ciudad, Los mayas, col. biblioteca iberoamericana, Anaya, Madrid, 1988. p. 35)

Las construcciones mayas se hicieron de madera y piedra básicamente. Entre las maderas se prefirieron la coba y el zapote, por ser muy resistentes a los ataques de las termitas. Entre las piedras se usaron caliza, arenisca, mármol y otras.  Realizaron todo tipo de construcciones: palacios rectangulares y alargados, templos, juegos de pelota, calzadas (sacbeob) que unían las ciudades principales, fortificaciones, baños de vapor (temazcal). Se conservan importantes pirámides escalonadas en piedra. En lo alto de éstas se colocaba el templo. Estaban decoradas con pinturas de una variada gama de colores, y relieves. Algunos de estos son inscripciones de la escritura jeroglífica maya, aun no descifrada completamente. Las construcciones más importantes de esta época fueron Copán, Quiriguá, Piedras Negras, Palenque y Tikal.

Y, sí, tenían una cosmología muy parecida a la de otros pueblos muy alejados de ellos y de los que no tenían medio de saber, por ejemplo, la cosmología hindú es muy parecida a la maya en lo relativo a los cicvlos alternos de destrucción y creación, y en los enormes intervalos de tiempo en que se sitúan estos ciclos; a la cosmología antigua de Mesopotamia, en el seguimiento meticuloso de los cuerpos celestes, que son manifestaciones de los dioses, y en la igualmente implacable condena de las teorías anticuadas.

       También en la China antigua se registraban las estrellas

Los movimientos de los cuerpos celestes se han registrado, anoptado o comentado en una variedad infinita de maneras, pero la seir econtinua de observaciones astronómicas han sido consecuente a tra´ves de las distintas culturas. Está claro que ahora, contamos con tecnología que nos permite poner en óbita satélites que nos transmiten a la Tierra en forma digital, para que lleguen a las pantallas de los ordenadores situados en oficinas cerradas, sin ventanas y bañadas de luz fluorescente, todos aquellos datos que, el ojo humano sería incapaz de captar pero, sin embargo, mucho hemos perdido en romanticismo. ¿Como se puede comparar eso con el placer y la emoción de mirar directamente a las estrellas y la Galaxia en una hermosa noche osucra sólo iluminada por los astros del cielo?

Desde que hicieron acto de presencia las luminosas ciudades, mirar las estrllas no es ya lo que solía ser. Las estrellas son ahora tan brillantes como lo eran en los tiempos de sumerios, pero la contaminación que producen las fuentes terrestres oscure el brillo y adultera el hermoso y virginidal panorama de aquel cielo primitivo y limpio que nos deha contemplar, en todo su esplendor, el paaisaje estrellado de las ocuras noches y que, en silencio, podíamos admirar y soñar y, dejar que nuestra imaginaciçon volara hacia mundos ignotos donde criaturas extrañas esperaban nuestra presencia para intercambiar los saberes de nuestros mundos.

El cinturón de Orión

Alnitak , Alnilam y Mintaka son las brillantes estrellas azuladas que nuestros ancestros asombrados miraban en la oscuridad de la noche. Estamos en una impresionante constelación situada en el ecuador celeste, que representa un gran zador de la Mitología griega, Orión y que está delinado por los prominentes estrellas Betelgeuse, Rigel, Bellatris y Saiph y, la linea de tres estrllas que forman el Cinturon de Orión, son las nombradas en promer lugar, tambien en la zona está la Nebulosa de Orión, M42 que contiene las estrellas múltiples comocida como trapecium y, en su borde, se encuentra la estrella doble Orionis… El lugar es una maravilla, una inmenso laboratorio natural.

Lo que nos parece mentira hoy es que, la astronomía de Mesopotamía pudiera constituir uno de los primeros tratamientos sistemáticos cientificos del mundo físico. Los antiguos astrónomos con sus intentos de predecir el futuro mediante la obsevación de los cielos, habían desarrollado ya para el siglo IV a. de C. un sistema complejo de progresiones aritméticas y métodos de aproximación. Dado que no podían ver lo que espera a un ser en su vida futura, se aficionaron a predecir los sucesos que se producirían en los cileos. La gran cantidad de observaciones que recopilaron y sus métodos matemáticos fueron unas contribuciones cruciales para el posterior florecimiento de la astronomía entre los hindús y musulmanes, así como entre los griegos.

Claro que, el esfuarzo realizado durante más de dos mil años por los astronómos de Mesopotamia quedaron olvidados bajo las ruinas de palacios y zigurats en lo que hoy es principlamente Irak. Todo lo que se sabía del tema procedía de unos pocos pasajes de la Biblia.

http://www.portalciencia.net/images/stonehenge10.jpg

Lo que no sólo nos sorprende una y otra vez a la vista de las proporciones ciclópeas de las piedras empleadas y que hubieron de ser levantadas con los recursos mecánicos más primarios (palancas, rodillos, taludes, cuerdas…), sino porque además las famosas piedras “azules” proceden de canteras situadas en Gales, a más de 200 Km.

Todo ello nos sorprende sin duda, pero la visita de Stonehenge, conlleva otras sensaciones añadidas: porque su presencia demoledora, su disposición inerte, extraña, allí en medio como una aparición, inevitablemente nos evoca un pasado de magias y misterios que todavía hoy parecen flotar en el ambiente.

Cuanto más avanzan los estudios arqueoastronómicos más numerosas son las pruebas de los conocimientos astronómicos de nuestros antepasados y más retrocede la fecha en que estos comenzaron. Muchos son los tesoros escondidos que desconocemos y que nos llevarían al asombro. Toda vez que, algunos de ellos nos hablan de conocimientos que, en aquellas épocas, no podemos imaginar que los pudieran atesorar.

Los hallazgos arqueológicos más antiguos muestran sorprendentes contenidos astronómicos. Stonehenge se construyó sobre conocimientos astronómicos muy precisos. También se desprende una función astronómica de la disposición de los crómlech y monolitos bretones, los trilitos ingleses, las piedras y túmulos irlandeses, la medicine Wheel de los indios norteamericanos, o la Casa Rinconada de los indios anasazi. Es evidente la importancia astronómico-religiosa de los yacimientos mayas de Uaxactun, Copán y Caracol, de las construcciones incas de Cuzco o de Machu Picchu, así como la función exquisitamente científica de antiguos observatorios astronómicos indios, árabes o chinos.

Uaxactun

Lo que no sólo nos sorprende una y otra vez a la vista de las proporciones ciclópeas de las piedras empleadas y que hubieron de ser levantadas con los recursos mecánicos más primarios (palancas, rodillos, taludes, cuerdas…), sino porque además las famosas piedras “azules” proceden de canteras situadas en Gales, a más de 200 Km.

Todo ello nos sorprende sin duda, pero la visita de Stonehenge, conlleva otras sensaciones añadidas: porque su presencia demoledora, su disposición inerte, extraña, allí en medio como una aparición, inevitablemente nos evoca un pasado de magias y misterios que todavía hoy parecen flotar en el ambiente.

2.500 años a. de C., Stonehenge, y, por aquel tiempo, surge la astronomía sistemática en Egipto, Babilonia, la India y China. 1.500 años a. de C. se inventó el reloj de Sol en Egipto. 1.000 años a. de C. Homero declamó la Odisea y poco más tarde, surgió la cultura olmeca en México. En el año 700 a. C. Hesíodo escribe los trabajos y los días y florece la Cultura Maya en Guatemala. 600 años a. de C., Lao-Tse, Confucio, Buda, Zoroastro; y el Antiguo Testamento en Hebreo.

Verdaderamente si nos sumergimos en los hechos del pasado, no tenemos más remedio que asombrarnos de lo que, aquellos pueblos del paado, pudieron llegar a concebir y, en elgunas casos bien conocidos, incluso tuivieron ideas que aún hoy, prevalecen entre nosotros. No pocas de los objetos y conjuntos que vemos en el ceilo continúan teniendo los mismos nombres que ellos les pusieron.

Monografias.com

Podemos decir que, desde las ramas de los árboles hemos evolucionado tanto que, desde inventar la escritura y todas las maravillas que estos días hemos ido enumerando y en lo que han intervenido las ditintas culturas del pasado, hemos podido llegar a poder saber, sobre el marcroscosmos del Universo lejano que nos ha tríado ese Ingenio maravilloso llamado Hubble y también, hemos podido llegar al lejano mundo de lo muy pequeño por medio de inmensos aceleradores de partículas que, como el LHC, nos hablan de nuestras partíoculas que componen la materia y, posiblemenrte, nos hablará de cuesdtiones hasta ahora desconocida para nosotros.

Los pueblos antiguos registraron muy bien los movimientos de objetos celestes como Júpiter o la Luna, pero  no desarrollaron la idea de que existían planetas rotando alrededor del Sol. Sólo observaban y usaban su sentido común, el cual les hablaba de una Tierra quieta, por cuyo cielo desfilaban estrellas de origen desconocido.

Ahora sabemos que, la astronomía es el estudio de los cuerpos celestes, sus movimientos, los fenómenos ligados a ellos, y es, sin duda, la ciencia más antigua. Puede decirse que nació con el hombre y que está íntimamente ligada a su naturaleza de ser pensante, a su deseo de medir el tiempo, de poner orden en las cosas conocidas (o que cree conocer), a su necesidad de hallar una dirección, de orientarse en sus viajes, de organizar las labores agrícolas o de dominar la naturaleza y las estaciones y planificar el futuro.

La dispersión de los grupos kaingang por los campos y bosques de su territorio tradicional no impidió y no impide que estos indios reconozcan un sistema cosmológico común. En efecto, aún en la actualidad los grupos kaingang, además de un registro mitológico común, comparten creencias y prácticas acerca de sus experiencias rituales así como el profundo respeto a los muertos y el apego a las tierras en donde están enterrados sus antepasados. Pero retrocedamos de nuevo.

Ya hemos hablado aquí de aquellas legendarias ciudades. Lagash fue una de las ciudades más antiguas de Summer. Sus restos conforman una baja y larga línea de montículos de ruinas, conocida ahora como Tell al-Hiba en Irag, al noroeste de la unión en la unión en le desembocadura de los ríos Éufrates y Tigris y al este de Uruk. Está situada en el cauce de un antiguo canal, unos 5 kilómetros al este de Shatt-el-Haj y a poco menos de 16 kilómetros al norte de la actual.

Todas las ciudades importantes de Lagash contaron con complejos religiosos dedicados a diferentes dioses locales y nacionales, cuya cabeza en el panteón la ocupaba el dios titular de Girsu, llamado Ningirsu.

Entre las Ciudades – estado están las de Kish con cuatro dinastías; Uruk con cinco; Ur con tres; y Lagash con dos dinastías.

Calendario para la siembra

Los descubrimientos arqueológicos muestran que los primeros astrónomos-astrólogos aparecieron en Mesopotamia. Esta casta sacerdotal se dedicaba al estudio de los cielos nocturnos en busca de augurios para los gobernantes. La primera gran civilización mesopotámica fue la de Sumeria, surgida en el cuarto milenio a. C. Los sumerios idearon el arado, los vehículos con ruedas, los grandes proyectos de irrigación y la escritura. Acumularon también una cantidad significativa de mitos celestes que pasaron a sus sucesores, babilonios y asirios.

Los pueblos de Babilonia y Asiria desarrollaron, a partir del legado sumerio, una compleja comprensión de los cielos y sus patrones. Diseñaron calendarios para la siembra y lograron predecir los eclipses de Luna con exactitud. Los babilonios inventaron la medida de ángulos en grados.

La mayor parte de la sabiduría astronómica pasó casi inalterada de Mesopotamia a los griegos. Los griegos adoptaron, por ejemplo, el grado, e importaron constelaciones tan familiares como las de Auriga, Géminis, Leo, Capricornio y Sagitario, limitándose a traducir al griego sus nombres mesopotámicos.

 

                           Bien conocido es el mito de la Puerta Estelar Sumeria

Los sumerios, quienes dejaron constancia escrita de su historia en tablillas de arcilla. Pero no fueron los primeros que apreciaron que ciertos puntos luminosos de la bóveda celestes desplazaban con el paso del tiempo, mientras que otros permanecían fijos.

En la actualidad la distinción que hicieron entre “estrellas fijas “y “estrellas errantes” (en griego se llamarían ” planetas ” ) puede parecer banal, pero hace 6.000 – 8.000 años este descubrimiento fue un acontecimiento muy significativo.

Distinguir a simple vista, sin la ayuda de instrumentos, un planeta de una estrella y reconocerlo cada vez que, transcurrida ciertas horas, vuelve a aparecer en el cielo no es ninguna nimiedad. Los incrédulos pueden comprobarlo: sin sabe nada de astronomía, sin ningún instrumento, bajo un cielo repleto de estrellas como esos que ya sólo se ven en lugares aislados o en mitad del mar, no es fácil distinguir Marte de Júpiter o de Saturno.

Admitamos que se consigue. Ahora, noche tras noche, hay que encontrar esa misma lucecita en movimiento, seguir su recorrido y volver a identificarla cada vez que reaparezca tras una larga ausencia. En el mejor de los casos, se necesitará mucho tiempo y paciencia antes de empezar a tomar conciencia de la orientación, y es muy probable que la mayoría no lo consiga.

No resultaba nada fácil disitnguir los planetas a simple vista y seguir sus movimientos

A pesar de esas dificultades evidentes, todos los pueblos, por antiguos que fueran conocían muy bien los movimientos de los astros, tan regulares que espontáneamente hablaron de “mecánica celeste “cuando empezaron a usar las matemáticas para describirlos. Si los sumerios fueron los primeros en medir con exactitud los movimientos planetarios y en prever los eclipses de Luna organizando un calendario perfecto, los que mejor usaron la imaginación para llegar a las explicaciones teóricas que no dependieran sólo de la tecnología fueron los griegos.

En el siglo VI a.C., tras milenios en los que la obra de un dios bastaba para explicarlo todo, se empezó a buscar una lógica en el orden natural que relacionara los fenómenos. Los filósofos naturalistas fueron los pioneros en afirmar la posibilidad del hombre de comprender y describir la naturaleza usando la mente. Era, en verdad, una idea innovadora.

http://trigonometriaviaje.files.wordpress.com/2011/06/hiparco.jpg

Los primeros “científicos” se reunieron en Mileto. Tales, Anaximandro y Anaxímenes hicieron observaciones astronómicas con el gnomon, diseñaron cartas náuticas, plantearon hipótesis más o menos relacionadas con los hechos observados referidas a la estructura de la Tierra, la naturaleza de los planetas y las estrellas, las leyes seguidas por los astros en sus movimientos. En Mileto, la ciencia, entendida como interpretación racional de las observaciones, dio los primeros pasos.

Por supuesto, la mayor parte de la humanidad continuaba creyendo en dioses y espíritus ..Como ahora. A pesar de que esta nueva actitud filosófica frente al mundo sólo fuera entendida durante siglos por una élite de pensadores, la investigación racional de la naturaleza ya no se detendría jamás.

http://1.bp.blogspot.com/_nGmVFuXBy6Q/TNYqZeTs1tI/AAAAAAAAAAQ/Piqmy_Isgow/s1600/imagen+1.jpg

El estudio de la trigonometría pasó después a Grecia, en donde se destaca el matemático y astrónomo Griego Hiparco, por haber sido uno de los principales desarrolladores de la Trigonometría. Las tablas de “cuerdas” que construyo fueron las precursoras de las tablas de las funciones trigonométricas de la actualidad.

Desde Grecia, la trigonometría pasó a la India y Arabia donde era utilizada en la Astronomía. Y desde Arabia se difundió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente que hace parte de la matemática.

Con la fundación de la Escuela Jónica por Tales de Mileto comenzó el verdadero estudio científico de la Geometría. Este estudio recibió un impulso considerable con las aportaciones de la escuela Pitagórica y alcanzó la cima de su desarrollo con la creación de la primera Escuela de Alejandría a la que dieron vida Euclides, Arquímedes y Apolonio.

En el siglo VI se constituyó la escuela pitagórica. En un ambiente de secta, Pitágoras y otros filósofos creyeron que el mundo estaba ordenado por dos principios antagónicos: lo finito (el bien, el cosmos y el orden) y lo infinito (el mal, el caos y el desorden). Sus estudios matemáticos tenían un valor mágico y simbólico: Pitágoras descubrió relaciones numéricas enteras tras cada armonía formal y musical y, dado que la música es armonía de los números, la astronomía era armonía de las formas geométricas.

http://3.bp.blogspot.com/_BQE8864mcS0/TF8_O7VGBmI/AAAAAAAAHkM/vrJRoIRySR8/s1600/socrates.jpg

Sócrates

Filósofo griego, maestro de Platón, tuvo a Aristóteles como discípulo. Sócrates es considerado como uno de los más grandes y los tres filósofos son representantes fundamentales de la filosofía griega. Tuvo un sueño tres días antes de morir y se lo comentó a uno de sus discípulos, Critón. Le dijo que había visto a una bella dama que le llamaba por su nombre y que le había recitado unos versos de Homero:

“Sócrates, al tercer día llegarás a la fértil Ptía” (Verso 363 de Ilíada IX. Platón cambia la primera persona por la segunda. Ptía es la patria de Aquiles, en el valle de Esperquio – Noroeste de Grecia). Y así fue, tres días después se ejecutó su sentencia de muerte dándole a beber un zumo de cicuta, que era un veneno que utilizaban los griegos para quitar la vida a los condenados a pena de muerte.

Aristarco de Samos

(Samos, actual Grecia, 310 a.C. – Alejandría, actual Egipto, 230 a.C.) Astrónomo griego. Pasó la mayor parte de su vida en Alejandría. De la obra científica de Aristarco de Samos sólo se ha conservado De la magnitud y la distancia del Sol y de la Luna. Calculó que la Tierra se encuentra unas 18 veces más distante del Sol que de la Luna, y que el Sol era unas 300 veces mayor que la Tierra. El método usado por Aristarco era correcto, no así las mediciones que estableció, pues el Sol se encuentra unas 400 veces más lejos. Un cálculo bastante preciso fue realizado algunos decenios más tarde por Eratóstenes.

Aristarco de Samos (310-230 a.C.) fue el primer astrónomo genuino de la historia. No sólo sus convicciones eran lógicas y correctas, como se demostró más tarde, sino que fue el primero en usar instrumentos matemáticos para investigar el cosmos. Estaba convencido de que la Tierra giraba alrededor del Sol permanecía inmóvil en el centro de la esfera estelar y que esta también era inmóvil. Dado que no conseguía observar efectos de paralajes estelares, dedujo que las estrellas se encontraban a una distancia enorme de la Tierra. Entonces intentó medir la enormidad de dicho espacio estableciendo la distancia Tierra-Sol en función de la Tierra-Luna y, para ello, se basó en la medida de los ángulos y en simples cálculos geométricos. Descubrió que la Luna se halla a 30 diámetros terrestres de nuestro planeta y que el Sol está 19 veces más lejos (1.140 diámetros terrestres). Ahora sabemos que son datos erróneos a causa de leves inexactitudes de las medidas “a ojo “, pero esta diferencia no respeta un ápice a la importancia conceptual y filosófica del enfoque. Era la primera vez en la historia que alguien intentaba aumentar sus conocimientos sobre el Universo de forma experimental, es decir, usando la lógica, las leyes matemáticas y geométricas conocidas, observando y midiendo. Es un enfoque moderno de un complejo problema astronómico.

Eratóstenes de Cirene (276-194 a.C.)Eratóstenes de Cirene Más que un modelo de cosmos, la aportación de Eratóstenes al conocimiento del mundo vino dada por sus estudios sobre las dimensiones de la tierra y por ende de su posición comparativa respecto al sol y la luna.

Erastóstenes de Cirene (276-194 a.C.) procedió de forma semejante. Con un sencillo y genial cálculo matemático halló las dimensiones de nuestro planeta: el meridiano terrestre equivale a, unos 39.400 km (un valor sorprendentemente cercano al valor medio, establecido en 40.009 km).

Hiparco (188-125 a.C.) también fue un atento e inteligente observador. Compiló un catálogo de 1.080 posiciones estelares y comparó sus observaciones con las realizadas 154 años antes por Timocaris. Así descubrió la precisión de los de equinoccios y cuantificó este lentísimo desfase de la eclíptica respecto al ecuador en unos 47 minutos al año (un valor muy parecido al calculado hoy: 50,1 minutos).

Y si la Tierra era inmensa, el Sol debía de serlo aún más. Así, el espacio asumió dimensiones incalculables. Pocos escogidos eran capaces de asimilar y aceptar estas afirmaciones revolucionarias. Quizá por ello, después de Hiparco no sucedió nada más durante 300 años. Resultaba más sencillo dar por válidas las teorías del gran Aristóteles.

Bueno, amigos, aquí lo dejo por hoy ya que, hemos hecho un buen recorrido que os dará una idea amplia de todos lo acontecido duranrte un buien período de nuestra historia aquí en la Tierra y de cómo, hemos podido ir avanzando gracias a muchos pueblos  que, curiosos, se interesaron en el por qué pasaban las cosas de aquella manera determina (o, eran predeterminada?).

¡Quién sabe! ¡Sabemos tan poco!

emilio silvera

¡La Física! ¿Estará perdiendo el Norte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Rocas interpretadas como pequeños deltas en un lago superficial de...

    Curiosity descubre un antiguo Lago en Marte

 ¿Queremos imitar el salto cuántico viajar más rápido?

A finales del siglo XIX y principios del XX algunos podían creer que los secretos de la Naturaleza estaban todos descubiertos gracias a los hallazgos que en el pasado hicieran Newton y otros y más recientemente Maxwell, Planck, Einstein y otros muchos que, con sus trabajos nos desvelaron cómo funcionaba la gravedad, qué era en realidad la electricidad y el magnetismo y también, nos llevaron el fascinante mundo de lo muy pequeño con el cuanto de acción, h, de Planck que nos trajo poco más tarde, la mecánica cuántica.

La mecánica, la óptica, la electricidad… todo estaba descubierto y explicado. Los científicos de la época pansaban que sus futuros colegas sólo se dedicarían a realizar medidas para obtener las constantes con mayor precisión vez. Después de todo aquello, se siguió avanzando y continuamos haciéndonos preguntas creyendo que nos llevarían a las respuestas últimas.

Si, por ejemplo, las supercuerdas nos conducen a las respuestas últimas, entonces, ¿en qué dirección debemos nuestra investigación?, ¿es que nos hemos introducido tanto en el mundo de lo desconocido y lo ininteligible que estamos a punto de ahogarnos en un mar de lo absurdo?, ¿estamos enterrados bajo tántas preguntas de los imposibles que deberíamos considerarnos perdidos?, ¿tiene algún sentido especular acerca de la “Teoria de Todo” en un  mundo extraño de las unidades de Planck?

Bueno, si queremos ser sinceros…, podemos discrepar de algunas de las cuestiones que hoy se están debatiendo y ser críticos con otras. Sin embargo, no podremos negar los avances que realmente se están logrando en el mundo de las nuevas tecnologías que, gracias a la Física, ya están en el futuro y, en nuestras vidas cotidianas lo estamos viendo continuamente.

Por otra , nada despierta más nuestra curiosidad que lo ininteligible y, precisamente por eso, tiene tanto éxito y llama la atención teorías como la de las supercuerdas. Miremos, por ejemplo, lo que es tan curioso en el mundo de la longitud de Planck es que no podemos encontrar absolutamente ningún modelo que nos pueda dar una descripción razonablemente autoconsistente de partículas que interaccionan entre sí con fuerzas gravitatorias tan intensas y que, al mismo tiempo, obedezcan a las leyes de la mecánica cuántica. Por tanto, incluso si hubiéramos sido capaces de realizar experimentos con choques de partículas con energías planckianas, no hubiéramos sabido como comparar los resultados con una teoría. Aquí hay para los físicos: hacer una teoría. No nos importa demasiado como describa esa teoría la interacción gravitatoria, pero tenemos suficientes requisitos en la lista como para que encontrar  esa candidata a ser la teoría sea una labor extremadamente difícil. La Teoría de Supercuerdas parecía estar a punto de conseguirlo, pero falló en los últimos momentos. Dicen que necesitamos la energía de Planck para poder verificarla y, si es así, nos queda espera para rato.

Mientras buscamos esas teorías que están más allá de nuestras posibilidades reales de hoy, la Ciencia no se para y sigue avanzando en otros muchos campos que, como antes decía, nos están llevando a pasos agigantados un futuro que ya está con nosotros y, lo está haciendo con tal rapidez que ni nos hemos percatado de ello.

En cuanto a esa soñada Teoria de Todo, en primer lugar debe ser matemáticamente exacta y tiene que permitirnos calcular con extrema precisión el comportamiento de las partículas bajo todas las circunstancias imaginables. Por ahí circulan una y mil “teorías” que exponen las ideas más variopintas que imaginarnos podamos pero, desgraciadamente, son inútiles para los físicos porque sus descripciones no reúnen el rigor ni la prcisión que deben estar presentes en toda buena teoría. Por otra , los físicos prefieren que la teoría trate la fuerza gravitatoria de tal manera que esté de acuerdo con la obtenida en la formulación de la teoría de la relatividad general de Einstein. Sabemos que la fuerza gravitatoria cuerpos pesados como las estrellas y los planetas obedece a esta teoría con gran exactitud (como ha sido confirmado espectacularmente en las observaciones de los púlsares, estrellas compactas que rotan a gran velocidad. Nuestra teoría candidata debería explicar estas observaciones).

No digamos de los intrincados caminos que la Física ha sobrevolado cuando se ha querido meter en la posibilidad de viajes en el Tiempo y, los físicos se encontraron con una y mil paradojas extrañas. Además, como nos ocurre con la Teoría de cuerdas, al meternos en un sendero desconocido y de intrincados peligros…nunca hemos podido llegar al final después de largos y costosos recorridos. ¿Servirá para algo los muchos esfuerzos realizados?

Por otra somos conscientes y conocedores de que las leyes de la mecánica cuántica son inexorables y, por tanto, queremos que nuestra teoría sea formulada en términos de la mecánica cuántica. Tanto la mecánica cuántica como la teoría de la relatividad tienen la propiedad de que, tan pronto como uno admita la más pequeña desviación de esos principios, ambas darían lugar a una teoría totalmente diferente, que de ninguna manera se parecería al mundo que conocemos (o pensamos conocer). “Un poco relativista” o “un poco mecanicuántico” tan poco sentido como “un poco embarazado”. Podríamos imaginar, por otra parte, que la mecánica cuántica o la relatividad general, o ambas, serían marcos demasiado restrictivos nuestra avanzada teoría, de manera que habría que extender sus principios, llegar más lejos.

Diferencias en partículas y formas entre el modelo estándar y la Teoría de Cuerdas

La cuerda es cuántica y gravitatoria, de sus entrañas surge, por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y se convierte en supercuerda -con mayores grados de libertad- es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.

Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menas complejas, cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está casi vacía, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.

Está claro que no trato de explicar aquí una teoría que no comprendo y, el tratar el tema se debe a la curiosidad de tratar de indicar el camino, o, los caminos, por los que se podría llegar más lejos, al , algo más allá. De una cosa si que estoy seguro: ¡Las cuatro fuerzas fundamentales del Universo, un día fueron una sola fuerza!

En el universo existen numerosas estrellas cuyas masas son considerablemente mayores que las del Sol, debido a lo cual, la fuerza gravitotoria en su superficie es considerablemente más intensa que sobre la Tierra o sobre el Sol. La enorme cantidad de materia de una de esas estrellas causa una presión inimaginablemente alta en su interior, pero como  las tenperaturasd en el interior de las estrellas es también altísima, se produce una presión contraria que evita que la estrella se colapse. La estrella, sin embargo, pierde calor continuamente. Al proncipio de su vida, en las estrellas se producen todo de reacciones nucleares que mantienen su temperatura alta y que incluso la pueden elevar, pero antes o después el combustible nuclear se acaba. Cuanto más pesada sea la estrella, mayor es la prsión y la temperatura, y más rápidamente se consume su combustible. La contrapresión disminuye progresivamente y la estrella se va colapsando bajo la presión,  según dismunye el tamaño de la estrella, la fuerza gravitatoria aumenta hasta que finalmente se produce una implosión -un colapso repentino y completo- que no puede ser evitado por más tiempo: ¡ha nacido un agujero negro!

Según todos los indicios, cuando la estrella es muy masiva, la Improsión finaliza convirtiendo toda la inmensa masa de la estrella en un A. N., pero antes, explota como supernova y llena el espacio de los materiales coplejos que han sido fabricados en sus nucleares, siembra el espacio con una Nebulosa de la que, años más tarde, nacerán nuevas estrellas y nuevos mundos…Y, ¿quién sabe? ¡Si nuevas formas de Vida!

A menudo implosión libera tanto calor que las capas exteriores de la estrella explotan por la presión de la radiación, y la implosión queda interrumpida produciéndose una esfera extremadamente compacta de “material nuclear” que conocemos como una estrella de neutrones. Algunas veces, estas estrellas de neutrones rotan con una tremenda velocidad (más de 500 revoluciones/segundo), y, debido a irregularidades en la superficie, emiten una señal de radio que pulsa con esa velocidad.

Si todos estos sucesos pudieran ser observados una distancia segura, las señales emitidas por el material durante la implosión pronto serían demasiado débiles para ser detectadas y, en el caso de un afgujero negro, el objeto se vuelve de ese color y desaparece de nuestra vista convertido en una “bola de gravedad pura”, se pueden calcular sus propiedades con precisión matemática. Sólo se necesitan tres parámetros para caracterizar completamente al agujero negro: su masa, su movimiento angular (cantidad de movimiento de rotación) y su carga eléctrica.

También se calcular como se comportan los chorros de partículas cuando se aventuiran cerca del agujero negro. Hawking ya nos habló de ello y explicó con suficiente claridad, lo que pasaba era que, en contra de lo que pudiéramos pensar, el agujero emite un débil flujo de partículas en ciertas circunstancias. ¿Esas partículas son reales! Agujero Negro está emitiendo un flujo constante de partículas de todas las especies concebibles.

NASA

El Telescopio Espacial Hubble y Chandra han captado la imagen de un impresionante anillo de Agujeros negros. La fotografía corresponde al conjunto Arp 147, en el que aparecen 2 galaxias interactuando entre sí y que se ubican a una distancia de 430 millones de años luz de la Tierra. La NASA combinó datos del Chandra con imágenes del Hubble. Mientras los tonos rojos, azules y verdes fueron resultado del trabajo del Hubble; los de color magenta, del Chandra. La captura muestra un anillo formado por estrellas masivas que evolucionaron rápidamente y explotaron en supernovas, como consecuencia de una colisión galáctica. Es así como dejaron densas estrellas de neutrones y posiblemente, también agujeros negros.

En el Universo ocurren sucesos que no podemos ni imaginar, tales son las fuerzas y energías que ahí están presentes y que dan lugar a maravillas que desembocan en transiciones de fase que convierten unas cosas en otras muy distintas haciendo que la diversidad exista, que la belleza permanezca, que la monotonía no sea el camino.

Es cierto que nunca hemos podido estar tan cerca de un agujero negro como poder comprobar, in situ, la radiación Hawking que, para su formulación, sólo utilizó leyes bien establecidas de la naturaleza y que, por tanto, el resultado debería ser incuestionable, pero no es del todo cierto por dos razones:

La primera razón es que nunca ( he dicho) hemos sido capaces de observar un agujero negro de cerca y mucho de un tamaño tan pequeño que su radiación Hawking pueda ser detectada. Ni siquiera sabemos si tales miniagujeros negros existen en nuestro universo, o si sólo forman una minoría extremadamente escasa entre los objetos del cielo. Aunque pensemos conocer la teoría, no nos habría hecho ningún daño haber podido comprobar sus predicciones de una o de otra. ¿Sucede todo exactamente como pensamos actualmente que debería suceder?

Otros, como Gerald ´t  Hooft, consiguieron construir otro de teorías alternativas y le dieron resultados distintos a los de Hawking, en la que el Agujero Negro podia radiar con una intensidad considerablemente mayor que la que la teoría de Stephen predecía.

Hay un aspecto relacionado con la radiación Hawking mucho más importante. El agujero negro disminuye su tamaño al emitir partículas, y la intensidad de su radiación crece rápidamente según se reduce su tamaño. Justo de llegar a los estadios finales, el tamaño del agujero negro se hará comparable a la longitud de Planck y toda la masa llegará a ser sólo un poco mayor que la masa de Planck, Las energías de las partículas emitidas corresponderan a la masa de Planck.

¡Solamente una teoría completa de la Gravedad Cuántica podrá predecir y describir exactamente lo que sucede al agujero negro en ese ! es la importancia de los Agujeros Negros la teoría de partículas elementales en la Longitud de Planck. Los agujeros negros serían un laboratorio ideal para experimentos imaginarios. Todos alcanzan, por sí mismos, el régimen de energía de los números de Planck, y una buena teoría debe ser capaz de decirnos como calcular en ese caso. casi una década, Gerad ´t Hoofft ha resaltando esa objeción en la teoría de supercuerdas: no nos dice nada de los agujeros negros y mucho de cómo un agujero negro comenzar su vida como un agujero negro de tamaño “astronómico” y acabar su vida explosivamente.

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto, avanzan las tecnologías, se adquieren más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si, es cierto, que pueda existir alguna “materia oscura”, o, si existen bosones dadores de masa, o…¡tántas cosas más que, la lista, sería interminable! de las cosas que no sabemos.

emilio silvera