viernes, 08 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cuándo comprenderemos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Son tantas las cosas que no sabemos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

“¿Vas a la feria de Scarborough? Perejil, salvia, romero y tomillo. Dale recuerdos a alguien que vive allí, a aquella que fue mi amor verdadero. (…) Si dices que no puedes, entonces te responderé: Perejil, salvia, romero y tomillo. Oh, hazme saber que al menos lo intentarás, o nunca serás mi amor verdadero”


Letra de Scarborough Fair

Perejil, salvia, romero y tomillo (Parsley, Sage, Rosemary and Thyme), una pócima de amor muy popular en la Edad Media, son las palabras que se repiten en la popular Scarborough Fair, una canción tradicional inglesa del siglo XII de autor desconocido que tiene multitud de versiones y letras diferentes aunque la más conocida (como nos recordó en su momento nuestro amigo Nelson)  es la del duo Simon y Garfunkel en el álbum Parsley, Sage, Rosemary and Thyme de 1966.

Scarborough Fair hace referencia a la Feria de Scarborough, localidad situada en la costa del Mar del Norte en el condado de Yorkshire, que en tiempos medievales representaba uno de los mayores puntos comerciales de toda Inglaterra, con un enorme mercado junto al mar que se prolongaba durante 45 días a partir del 15 de agosto.

 

http://www.bonsaisgigantes.net/zen/wp-content/uploads/2010/10/trapo-carretera-sobre-bosque.jpg

La Ciencia nos indica la manera de crear nuevos caminos que nos lleven hacia esa armonía que buscamos

Desde que Einstein en 1.905 nos dijo que el Tiempo no es un reloj universal que marcha al mismo ritmo para todos, y que un gemelo que parte en un viaje al espacio a gran velocidad no envejerá tanto como el otro que se queda en casa, nada ha sido lo mismo. Esa paradoja la  entendemos y nos parece escandalosamente increíble, y pese a todo es correcta. Cosas así despiertan la imaginación de las personas curiosas que, de alguna manera, despiertan a otra realidad y constatan que sus conceptos del “mundo” estaban equivocados.

Estar equivocados nos sorprende y, al mismo tiempo, nos enseña algo sobre nosotros mismos. No solo hay cosas que no sabemos, sino que las cosas que creemos saber pueden no ser ciertas. Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas y, si es el correcto, estaremos en esa verdad que incansables buscamos.

No resulta nada fácil descubrir los caminos por los que deambula la Naturaleza y las razones que ésta tiene para recorrerlos  de la manera que lo hace y no de otra. Una cosa es cierta, la Naturaleza siempre trata de conseguir sus fines con el menor esfuerzo posible y, cuestiones que nos parece muy complicadas, cuando profundizamos en ellas como la ciencia nos exige, llegan a parecernos más sencillas y comprensibles. Todas las respuestas están ahí, en la Naturaleza.

 

Este es un ensayo de Viktor Frankl

neurólogo, psiquiatra, sobreviviente del holocausto y el fundador de la disciplina; que conocemos hoy como Logoterapia.

No eres Tú, soy Yo…
¿Quién te hace sufrir? ¿Quién te rompe el corazón? ¿Quién te lastima? ¿Quién te roba la felicidad o te quita la tranquilidad? ¿Quién controla tu vida?…
¿Tus padres? ¿Tu pareja? ¿Un antiguo amor? ¿Tu suegra? ¿Tu jefe?…

Podrías armar toda una lista de sospechosos o culpables. Probablemente sea lo más fácil. De hecho sólo es cuestión de pensar un poco e ir nombrando a todas aquellas personas que no te han dado lo que te mereces, te han tratado mal o simplemente se han ido de tu vida, dejándote un profundo dolor que hasta el día de hoy no entiendes.”

Hecho en falta la observación del profesor haciendo la pregunta: ¿Por qué el llegar a saber nos puede hacer sufrir?  ¿Acaso estamos en aquello de ¡Ojos que no ven… Corazón que no siente?

Lo cierto es que… ¡Hay tantos mundos, como nuestras mentes puedan imaginar!

Claro que, no siempre, cuando alcanzamos las respuestas y el saber llega a nosotros, podemos sentir felicidad, toda vez que, al ser consciente de la realidad, no pocas veces sufrimos. Existen mundos imposibles en los que, criaturas inimaginables pudieran estar gestando el venir a visitarnos para acabar con nuestra especie. ¿Nos gustaria saber de su existencia? ¿O, el amigo que no fue digno de tu conficnza? ¡La cruda realidad no siempre es de nuestro agrado, y, sin embargo, yo la prefiero!

Alguna vez me he preguntado si el conocimiento nos puede traer la felicidad y, la respuesta no es nada sencilla. Muchas veces he podido sentir cómo al adquirir un nuevo conocimiento he sentido dolor por comprender lo que hay detrás de ese saber. Otras veces, el dolor lo he sentido al ver a tantas criaturas inmersas en la ignorancia, no le dieron ninguna oportunidad. ¿Otra paradoja? ¿Como se puede sentir lo mismo, en este caso dolor, por una cosa y la contraria? ¡Qué compleja es nuestra mente!

Algún pensador ha dicho:

“La paradoja de nuestro tiempo en la historia es que  tenemos edificios más altos pero temperamentos más cortos,  autopistas más anchas, pero puntos de vista más estrechos.  Gastamos más pero tenemos menos, compramos más, pero gozamos menos.  Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo.  Tenemos más grados y títulos pero menos sentido,  más conocimiento, pero menos juicio,  más expertos, sin embargo más problemas,  más medicina, pero menos . “

¿No será que no hemos aprendido a determinar lo que realmente tiene algún valor? Somos tan torpes que elegimos aquello que nos cuesta mucho dinero y sacrificio conseguir y, no le damos importancia a esa mirada, la caricia del auténtico Amor, la risa de los niños.


Bueno, para no variar comencé un viaje hacia el “universo de Einstein” y llegué a un extraño mundo que no estaba en el mapa de mis pensamientos primeros, así que regreso sobre mis pasos y retomo el sendero que dejé para continuar comentándoles a ustedes algunas cuestiones.

Como algunos recordaréis, Albert Einstein fue escogido por la Revista Time (el nombre resulta irónico en ese caso concreto) como la personalidad del siglo XX. Precisamente comenzó ese siglo de manera impresionante en su año milagroso de 1.905. En ese año, inspirado en el trabajo de Planck del cuanto y yendo un poco más allá, dio la demostración estadística de la naturaleza atómica de la materia y, con su explicación de los fotones que inciden en superficies metálicas, que le valió el Nobel de Física , ayudó a poner en marcha la revolución cuántica con la que nunca se sintió cómodo. Claro que, no fue aquello lo que le llevó a la popularidad. La fama de Einstein le vino de la mano de la “relatividad”, la teoría de la estructura del espacio-tiempo, la geometría del Universo.

El espacio-tiempo de Einstein situó al ser humano en lugar más cercano al Universo.  Le hizo comprender que era una parte de la Naturaleza,  la que piensa. Y, pensando, llegamos a saber lo que el espacio-tiempo es, que los átomos son demasiado pequeños, los fotones demasiados y que, en realidad, no podemos tener opiniones firmes sobre estas cosas. Cuando recibimos noticias sobre ellas, las aceptamos como parte del progreso periódico y metódico de la ciencia. La materia está hecha (de tipos de) unidades indivisibles; la luz tiene una naturaleza de onda y partícula a la vez. Quien no es científico no tiene pruebas para contradecir el primer enunciado y ninguna comprensión clara sobre lo que se entiende sobre el segundo. Pero en 1.905 Einstein nos dijo también que el Tiempo es distinto para cada uno de nosotros dependiendo de un ritmo que lo hace relativo.

                     Mientras que para ellos el tiempo vuela, para el enfermo pasando dolor en la cama de un hospital… el Tiempo se hace eterno.

La relatividad, o la física del espaciotiempo, con su aura de los agujeros negros y un universo en expansiòn, capta nuestra atención porque es la materia de la vida diaria – espacio y tiempo- hecha exótica, como si el Asesor Fiscal consujera un Ferrari vestido con una túnica indonesia. Esto explica (de alguna mnanera) la constancia y fijación, la constante fascinación  que ejerce sobre los legos con algunos conocimientos científicos.

También explica la importancia de la relatividad para aquellos con demasiada poca paciencia y quizá demasiado autoconfianza. Cualquier físico relativista ha pasado por la experiencia de recibir, varias veces al año, una nueva teoría de la relatividad remitida por un pensador no-tradicional con inclinaciones técnicas que no ha “leído todos los libros” pero donde estaba equivocado Einstein.

Es curioso como otros (que sí han leído todos los libros) que trabajan cada día con los detalles finos de las matemáticas aplicadas, haciendo un trabajo honesto  y dirigiendo todos los esfuerzos a lo que podría ocurrir en una colisión de dos agujeros negros masivos, el asombro que al principio pudiera sentir con los resultados, quedan diluidos con la familiariadad del trabajo cotidiano que nos lleva a entender aquellos “asombrosos” resultados como más cercanos y menos extraño. El conocimiento aleja el asombro.

                   Si tratamos de saber… Alejamos de nosotros la ihgnorancia y el asombro

Este pequeño librito es una buena introducción a la Relatividad Especial y el ideal para consultas, escrito por Edwon Taylor y Jhon Wheeler nos lleva a dar un paseo por las intrincadas carreteras del espacio-tiempo, por la verdadera naturaleza del espacio y el tiempo que no siempre podemos llegar a comprender. El espacio y el tiempo son tan viejos (más) como el pensamiento humano. Los pensadores clásicos ya tuvieron mucho que decir sobre el tema. Algo de ello parece ahora curiosamente  ingenuo, y algo de ello sigue siendo impresionante profundo (fijaos en Zenón, ¿no os parece que ha sabido envejer de la manera más adecuada).

Claro que, las ideas modernas han necesitado miles de años para evolucionar y que encuentran su ubicación precisa en las matemáticas, el lenguaje del que finalmente, se vale la ciencia para explicar lo que las palabras no pueden. Por otra parte, es una sorpresa agradable que las claves de una discusión tan moderna de conceptos científicos incluídos en la relatividad, sean accesibles a quiénes no teniendo una formación matemática y física, asimile cuestiones algunas veces complejas pero, si se explican bien…

El libro de Taylor y Wheeler comienza con la historia de una persona que cruza un pequeño puenta que cruza un río recto y estrcho que corre por un paisaje llano. Aquella persona mira directamente río arriba y quiere dar una descripción cuantitativa de la localización de los lugares de interés, como el campanario de la Iglesia.

Podría hacerlo de muchas formas diferentes. Podría decir que el campario está a 024 metras de ella, y en una dirección a un ángulo de 30 grados a la  izquierda. Alternativamwente podría advertir que la camapa está a 800 metros “hacia delante” (en dirección río arriba) y 462 metros “a la izquierda” (lo que signiofica 462 metros a la izquierda del río. Lo que es común a ambos métodos de descripción (y a cualquier otro método) es que debe especificar dos números. Por esa razón decimos que el conjunto de localizaciones en el paisaje es un mundo bidemensional. En física se suele decir que las medidas están hechas por un “observador” y el método de localizar puntos en un “sistema de referencia” asociado al observador. Los números concretos a los que llega el observador (tales como 800 metros y 462 metros) se denominan “coordenadas” de una localización.

La existencia y la importancia de estos términos especiales sugiere correctamente que puede haber otros observadores y otros sistemas de referencia. De hecho, de esto es de lo que trata la relatividad: de relación entre medidas (es decir, coordenadas) en diferentes sistemas de referencia. Es crucial, entonces, que tengamos otro observador y que nuestros observadores discrepen en las medidas.

Provistos de una jerga bastante especial podemos ahora meter la punta del lápiz en el espaciotiempo. (Igual que las localizaciones son los lugares de un apisaje, los “sucesos” son los lugares en el espaciotiempo. Un suceso en cierto lugar u cierto tiempo. Es una posición en el tiempo tanto como en el espacio. Evidentemente el mundo de tales sucesos -el mundo que llamaremos espaciotiempo- es tetradimensional. Se necesitan tres coordenadas para especificar el “donde” de un suceso, y una coordenada para especificar el “cuando”.

En eso de que todo es relativo, acordaos de aquel Jefe de Estación que miraba pasar el tren y veía, como desde una de las ventanillas, un niño arrojaba una pelota de goma a una velocidad de 20 Km/h. El tren marchaba a 100 Km/h. Resulta que el padre del niño, sentado junto a él, llevaba una máquina que media la velocidad a la que corria la pelota y, el Jefe de Estación, pasado en el Anden, tenía otra igual que también la media. El resultado de ambas mediciones era discrepante. Al padre del niño le daba una medida de 20 Km/h, mientras que al Jede de Estación le dió una medida de 120 IKm/h. ¿cómo podía ser eso? Lo cierto es que, el padre del miño que portaba la máquina, también estaba en movimiento a 100 Km/h que la máquina no media, dado que ella, también se movía y sólo media la velocidad de la pelotita. El Jefe de Estación parado en el Anden, midió que la pelota corria hacia adelante a 120 Km/h,. es decir, la máquina había sumado los 20 Km/h con los que el niño impulso a la pelota más los 100 Km/h a los que marchaba el tren.

Así, el mismo suceso, medido por dos observadores diferentes y con sistemas de referencias diferentes, no podían dar, el mismo resultado. Claro que, ejemplos de la realltividad especial podríamos dar muchos que han sido confirmados y que, al no estar familiarizadoas con ellos, nos llevarían hacia el asombro que todo ignorante siente ante hechos incomprensibles pero, maravillosos.

La relatividad tanto especial como general, nos trajeron muchas cosas y, sobre todo, muchas promesas que no todas se han cumplido (aún). En relación a una de ellas, alguien ha pronosticó que entre 2,.010 y 2.015, un detector de ondas gravitatorias en vuelo espacial llamado LISA nos revelerá la distorsión del espaciotiempo alrededor de muchos agujeros negros masivos en el universo lejano, y cartografiará dicha distorsión con exquisito detalle  -los tres aspectos de la diostorsión:  la curvatura del espacio, la distorsión del tiempo y el torbellino del espaciotiempo alrededor del horizonte.

En nuestro Universo ocurren sucesos que no hemos sabido detectar y que, de alguna manera, nos mostrarían otra clase de Universo, es decir, el Universo sería el mismo pero, lo veríamos de otra manera. Hasta el momento el Universo que conocemos es ese que nos han posibilidado los fotones. Las ondas de luz captadas por los potentes telescopios que nos traen hasta nosotros a las más lejanas galaxias, los cúmulos y a las más bellas Nebulosas. Sin embargo, ahí fuera, ocurren otras muchas cosas que no podemos ver. ¿Qué pasará realmente con el espacio-tiempo en presencia de esas inmensas densidades de materia que viven dentro de los agujeros negros gigantes y, que pasará, cuando dos ellos chocan?

                                       Es cierto, como nos dicen los del Instituto de Astrofíca de Andalucía:

Casi todo lo que sabemos del Cosmos lo hemos aprendido mediante el análisis de la luz que nos llega de él. Con mayor generalidad deberíamos referirnos a la observación de la radiación electromagnética, de la que la luz visible es solo una parte. Y decimos “casi todo” porque los rayos cósmicos y los neutrinos nos aportan también importantes claves. En cualquier caso, nuestro modelo del universo más allá de la Tierra es, en buena medida, una imagen tallada con herramientas electromagnéticas. Un modelo muy rico, sin duda alguna. Pero quizá, por estar esencialmente construido a partir de estas proyecciones sobre nuestros muros de luces y sombras solo electromagnéticas, podría ser también un modelo sesgado. ¿Cómo saberlo? ¿Disponemos de alguna manera independiente para evaluar, y en su caso enriquecer, este modelo de génesis electromagnética? La respuesta es sí: las denominadas ondas gravitatorias nos proporcionan lo que podemos considerar como otra luz con la que observar el cosmos, complementaria e independiente a la luz electromagnética.”

 

 

Montserrat Villar, fue la coordinadora del Año Internacional de la Astronomía en España y es investigadora del Instituto de Astrofísica de Andalucía (CSIC). Una científica muy bien preparada a la que el mundo (aunque no siempre es consciente de ello), le debe algunos favores. Su entrega más allá del deber… ¡La hace muy especial!

Mi amiga Montserrat, estando juntos en la celebración del Año Internacional de la Astronomía medijo: “”La auténtica revolución para el ser humano sería encontrar vida fuera de la Tierra” Y, desde luego, ese es el sueño de muchos Astrónomos y Astrofísicos que piensan en la inmensa posibilidad que existe de que, la Vida, pulule por todo el Universo. Sin embargo, son las distancias por una parte y el tiempo por la otra, las que nos ponen muros por delante que, al menos de momento, no podemos franquear.

En cuanto a las Ondas gravitacionales (OG) es una de las predicciones más importantes de la Teoría de la Relatividad General de Einstein. A nivel mundial, se está realizando un gran esfuerzo para descubrir la radiación gravitacional, ya que su detección será la prueba contundente para verificar la teoría de Einstein. El estudio de las OG se realiza desde el punto de vista teórico, numérico y experimental. Se espera que pronto tengamos algunos resultados muy fiables que vengan a confirmar (como ya pasó con otros aspectos de la teoría) que lo que nos dicen las ecuaciones de campo de la relatividad general, es un fiel reflejo de lo que el Universo es.

onda gravitacional

Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha sido medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, que será puesta en órbita en la próxima década, se dedicará a detectar y analizar las ondas gravitacionales.

                                       ¿Qué son las ondas gravitacionales?

Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha sido medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, se dedicará a detectar y analizar las ondas gravitacionales.

En la Actualidad existen otros proyectos como LIGO que están tratando de buscar esas ondas que nos hablararían de un Universo diferente al que conocemos exclusivamente por medio de las señales electromagnéticas.

      ¿Qué pasa cuando chocan dos agujeros negros?

Cuando dos galaxias se unen, sus agujeros negros supermasivos (miles de millones el tamaño del sol) eventualmente tienen que interactuar, ya sea en un violento impacto directo o acercándose hacia el centro hasta tocarse uno con otro. Y es ahí donde las cosas se ponen interesantes. En vez de acercase de buena manera, las fuerzas de ambos monstruos son tan extremas que uno de ellos es pateado fuera de la galaxia recién unida a una velocidad tan tremenda que nunca puede regresar. Por su parte, el agujero que da la patada recibe una enorme cantidad de energía, que inyecta en el disco de gas y polvo que lo rodea. Y entonces este disco emite un suave resplandor de rayos X que dura miles de años. El choque de dos agujeros negros es un suceso rarísimo y, como de manera directa nunca lo hemos podido observar, aquí dejamos una referencia de lo que creemos que podría ser.

No son pocos los sucesos que están presentes en el Universo y de los que no tenemos ni idea y otros, que sabemos que están ahí pero, son también unos completos desconocidos. Es mucho lo que nos queda por andar en este inmenso campo que, no está precisamente llano y, en el largo camino de la ciencia, nos encontramos con grandes inconvenientes que sirven de freno a nuestras ánsias de saber.

                  ¿Qué pasa cuando chocan dos galaxias?

Es muy común que las galaxias choquen e interactúen unas con otras. De hecho, se cree que las colisiones y uniones entre galaxias son uno de los principales procesos en su evolución. La mayoría de las galaxias han interactuado desde que se formaron. Y lo interesante es que en esas colisiones no hay choques entre estrellas. La razón es que el tamaño de las estrellas es muy pequeño comparado con la distancia entre ellas. En cambio, el gas y el polvo sí interactúan de tal manera que incluso llegan a modificar la forma de la galaxia. La fricción entre el gas y las galaxias que chocan produce ondas de choque que pueden a su vez iniciar la formación de estrellas en una región dada de la galaxia.

El texto de arriba es algo contradictorio como muchos otros que sobre el Universo podemos leer. Si resulta que el choque de galaxias es de lo más normal en el Universo (como de hecho sabemos), ¿cómo pueden decirnos más arriba que el choque de agujeros negros es muy raro, si resulta que en “casi” todas las galaxias, en sus núcleos, residen grandes agujeros negros, al colisonar éstas es lógico pensar que, sus agujeros negros, también lo hagan.

El Universo de Einstein…, al menos hasta el momento, ha resultado ser cierto y, aunque los científicos del Proyecto OPERA se empeñaran en hacer correr a los neutrinos algo más que a los fotones (el límite marcado por Einstein para la velocidad que se puede alcanzar en el Universo, es decir, la Luz, c, que en el vacío alcanza los 299.792.458 metros por segundo), lo cierto es, que todo fue un equívoco y, el fotón, sigue firme como el Peñón de Gibratar como diría Dirac.

Lo cierto es que, saber, lo que se dice saber…sabemos algo pero muy poco como para poder sacar pecho y pasear por ahí pavoneándonos de los listos que somos. Es mejor admitir nuestra gran ignorancia y, siendo conscientes de ello, luchar con más fuerza por erradicarla. ¡Ah! Pero una cosa que estamos repitiendo una y otra vez, resulta ser falsa: El saber si ocupa lugar. Lugar en el espacio (tengo la librweria a doble hilera y me cuesta encontrar lo que necesito), de tiempo, buscar información sobre los temas tratados se lleva un gran período de tiempo al tener que hacer los apartados más convenientes para el trabajo que se desea presentar y, por último, algún que otro dinero que, se nos va cuando podemos ver este o aquel nuevo libro que nos promete emociones nuevas.

emilio silvera

El Tiempo de Planck y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Curiosidades    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas crea la estabilidad.

Estas estructuras, podemos decir que son entidades estables que existen en el Universo. Existen porque son malabarismos estables entre fuerzas competidoras de atracción y repulsión. Por ejemplo, en el caso de un planeta, como la Tierra, hay un equilibrio entre la fuerza atractiva de la Gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e (electrón), h (constante de Planck), G (constante de gravitación) y mp (masa del protón), c (la velocidad de la luz en el vacío). Pero, ¿que es el Tiempo de Planck.

Tiempo de Planck

10-43 s.

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por  segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-43 segundos. En la cosmología del Big Bang, hasta un tiempo (Tp) después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo. Expresado en números corrientes que todos podamos entender, su valor es 0’000.000.000.000.000.000.000.000.000.000.000.000.000.000.1 de 1 segundo, que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metrtos (veinte órdenes de magnitud menor que el tamaño de del protón de 10-15 metros). el límite de Planc es Lp = √(Għ/c3 ≈ 1’61624 x 10-35 m.

Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.

El tiempo es la escalaera con peldaños infinitos que nos llevan hasta el fin de la eternidad…

Si preguntamos ¿qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio-133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc, etc. Cada una de estas versiones del tiempo tiene una respuesta diferente, ya que no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo universal. Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

Reloj de Cesio cuyo funcionamiento se basa en la diferencia de energía entre dos estados del núcleo de Cesio-133 cuando se sitúa en un campo magnético. En un tipo, los átomos de cesio-133 son irradiados con radiación de radiofrecuencia, cuya frecuencia es elegida para corresponder a la diferencia de energía entre los dos estados. Es decir, nos valemos de un sistema complejo para determinar lo que el tiempo es basado en lo que de él nos indica la Naturaleza.

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas; los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es sólo uno; ese que comenzó cuando nació el universo y que finalizará cuando éste llegue a su final.

Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

Según todos los indicios, la Física nosm dice que, al llegar a la singularidad de un agujero negro, no podremos encontrar ni tiempo ni espacio. Es una región que, estando en este mundo, es como si estuviera en otro al que sólo se podrá llegar a través de la teoría tan esperada de la gravedad cuántica. Aquí, en la Singularidad, la Relatividad de Einstein llega y hace mutis por el foro.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Muchos son los misterios que nos quedan por resolver y muchos también los objetos que, estando ahí, aún no han sido localizados. La vastedad del inmenso Universo, hace difícil saber la realidad de todo su contenido y, necesitaremos siglos de estudio y observación para poder acernos, aunque sea mínimamente, a sus secretos.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

Arthur C. Clarke nos decía: “Magia es cualquier tecnología suficientemente avanzada”

Pero también es magia el hecho de que en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver estructuras complejas matemáticas que hacen posible que la humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Resultado de imagen de La geometría de Riemann de los espacios curvos

                              La nueva geometría de Riemann nos dijo como era la realidad del espacio, la Geometría del Universo

Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis. Al igual que aquel otro genio, Ramanujan, murio muy joven.

emilio silvera