domingo, 23 de febrero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

     Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

emilio silvera

Fuente: León Lederman

¡El Universo y Nosotros! ¿Sabremos algún día la verdadera relación?

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Max Planck nos decía:

 

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”. 

 

Y, desde luego, no parece que fuese muy desencaminado, nuestra complejidad es tan grande que, llegar a comprendernos, no será nada fácil. Aunque eso sí, sólo una cosa está clara: ¡Somos parte del Universo!


Las respuestas está en nuestras Mentes, sólo hay que saber buscar

¿Quién no ha tenido alguna vez, la sensación de que sabe la respuesta ? ¿De que todo está ahí, en su mente, escondido y a punto de salir a la superficie? Esas sensaciones que parecen querer hablarnos, contarnos ese secreto tan largamente perseguido por muchos y no desvelado por ninguno. Sin embargo, ese momento es efímero y, lo mismo que llegó, se fue. La frustración que deja en nostros esa sensación de tener ese algo a mano y de que se nos esfume y desaparezca sin más, es verdaderamente…dolorosa.

Bueno, a mí me pasa continuamente, siento que de un momento a otro, mi mente, me daría respuestas a preguntas que no han sido contestadas.  El  tiempo inexorable pasa y, las respuestas no llegan. ¡Qué impotencia! Parece como si una gran Nebulosa ocupara nuestra mente y todo lo tuviera envuelto en una espesa niebla que no nos deja ver lo que buscamos.

Imagino que, de vez en cuando, la niebla se ve despejada por alguna especie de “viento solar” dejando ver lo que allí está presente.  En algunas mentes, entonces, saltan esas respuestas (Newton, Planck, Einstein y otros) y son ofrecidas al mundo para que puedan continuar avanzando.

Los aspectos inconscientes de la actividad mental, como las rutinas motoras y cognitivas, así como los recuerdos, intenciones y expectativas inconscientes, las preocupaciones y los estados de ánimos, desempeñan un papel fundamental a la hora de conformar y dirigir nuestras experiencias conscientes.  Todo está siempre estrechamente relacionado, nada ocurre en nosotros que no esté unido a lo que pasa en nuestro entorno, somos una parte de un todo que se llama Universo, y, aún cuando somos autónomos en el pensamiento y en la manera de obrar, existen condicionantes exteriores que inciden, de una u otra manera en nosotros, en lo que somos.

Sin la fuerza de Gravedad, nuestras mentes serían diferentes (o no serían), estamos estrechamente conectados a las fuerzas que rigen el Cosmos y, precisamente, somos como somos, porque las fuerzas fundamentales de la Naturaleza, son como son y hacen posible la vida y la existencia de seres pensantes y evolucionados que son capaces de tener conciencia de SER, de hacer preguntas tales como: ¿de donde venimos? ¿Hacia donde vamos?

La qualia y la discriminación, correlatos neuronales de la percepción del color, ¿ un grupo neuronal, un quale ¿, los gualia y el núcleo dinámico, los qualia en el tiempo neuronal, el desarrollo de los qualia: referencia al propio yo, lo consciente y lo inconsciente, los puertos de entrada y de salida, los bucles largos y rutinas cognitivas, aprendizaje por el estudio y la experiencia, rupturas talamocorticales: posibilidades de núcleos escindidos, la observación, el lenguaje, el pensamiento, los mensajes exteriores, la unificación de datos y la selección lógica de respuestas, y, por fin: el significado último de las cosas (las preguntas de la filosofía), la metafísica.

Sí, por todas estas fases del estudio y del pensamiento he tenido que pasar para llegar a una simple conclusión:

No pocas veces, la imagen de nuestra imaginación  nos juega malas trastadas y nos hace ver… ¡Lo que ya no somos!

“No somos la imagen de nadie” y, simplemente, como seres que evolucionamos, sin que nos demos cuenta, mutamos y nos adaptamos al medio cambiante y, mientras eso ocurre, llegan mensajes que no comprendemos a la primera.   No, no exagero, dentro de esa imagen de frágil físico y de escasa capacidad para poder dar respuesta a ciertas preguntas, en realidad, se esconden cualidades y potenciales que, no sabemos ni podemos medir. En realidad, somos una compleja estructura de pensamientos que puede llegar…muy lejos.

Dentro de nuestro ser están todas las respuestas y solo necesitamos tiempo para encontrarlas.  Nuestra mente, es la energía del Universo, aún no sabemos utilizarla y pasaran, posiblemente, millones de años hasta que estemos preparados para saber lo que en realidad, es la conciencia.

Mientras eso llega, algunos curiosos como yo, con más voluntad que conocimientos, tratan de especular con ideas y conceptos que nos puedan dar alguna luz sobre tan complicado problema.

Nuestra mente es una maravilla de la Naturaleza, algo tan grande que, a pesar de los muchos avances y conocimientos alcanzados, no podemos explicar…  aún.

Está claro que, como me ha comentado un amigo, la materia tiene memoria y, es precisamente esa memoria, la que hace posible el avance de nuestros conocimientos a través de la mente que, sin duda, está directamente conectada con el resto del Universo y las fuerzas que lo gobiernan que son las que hacen posible su funcionamiento tal como acontece.

La curiosidad y la sabiduría, esas gotas del transcurrir del tiempo que salpican el río de la vida a través de la experiencia y nos hace saber… ¡Algunas cosas!

Pero nada es tan sencillo ni podemos hablar de lo sensorial sin tener en cuenta el plano más simple y cotidiano que está referido a la materia, a nuestro cuerpo, las sensaciones, las experiencias vivídas, lo que aprendemos, el estudio y la profundqa observación que nos lleva de la mano de la curiosidad hasta la fuente de la que mana el agua de la sabiduría.

Entender las claves que explican el devenir de la vida sobre este planeta, con la idea en el horizonte de aspiraciones intelectuales a que nos aboca la conciencia del SER, no resulta fácil, la complejidad de la empresa exige tener en cuenta múltiples factores que no siempre estamos preparados para comprender, y, sobre todo, debemos ser muy conscientes de que formamos parte de un Universo inmenso, y, estamos supeditamos a las fuerzas que lo rigen. Lo mejor para hacer nuestras vidas más fáciles, es tratar de comprender la Naturaleza de ese Universo nuestro.

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Arte que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

¡La Vida! Siempre me llamó la atención y elevó el grado de curiosidad ese gran misterio que llamamos ¡vida!, y, cada vez que he tenido la oportunidad, no me he perdido el poder aprender alguna cosa sobre ella. Ya os he contado en otras ocasiones mi experiencia con la eminente y privilegiada mente de…

Lynn Margulis comenzó a explorar los caminos de la genética a partir de un libro escrito en el siglo XIX por Edmund B.Webs.  En ese texto encontró reflexiones sobre la herencia citoplasmática y datos sobre las bacterias, entonces no muy consideradas en el estudio del origen de la vida.

Ya no está entre nosotros. Sin embargo, tuve el honor de estrechar su mano

Lynn Margulis fue una importante e influyente bióloga estadounidense. Además de ser una de las madres del evolucionismo, aportó notables conocimientos a la ciencia, como por ejemplo, su teoría de la aparición de las células eucariotas, o la de la simbiogénesis, por nombrar solo algunas.

La doctora Margulis fue profesora del Departamento de Geociencias de la Universidad de Massachusselts (Estados Unidos) relacionó el papel de las bacterias con la microbiología, una ciencia surgida de la medicina, de la salud pública y del procedimiento seguido para procesar los alimentos.  De ahí saltó al estudio del tema que ocupa su curso magistral: Contribución de los microbios a la evolución.

El pequeño Monasterio franciscano de La Rábida en Huelva, dónde Colón fue acogido por los frailes y se fraguó el viaje a Las Américas.

Una de las pinturas de Daniel Vázquez Díaz

http://huelva24.com/upload/img/periodico/img_25510.jpg

Junto al Monasterio se levanta un enorme obelisco que fue construido en conmemoración del cuarto centenario del nuevo continente y, en su interior, como podeis ver arriba, existen obras pictóricas conmemorativas de la gesta que pintó Daniel Vazquez Díaz. El monasterio tipológicamente pertenece al Gótico-Mudéjar incorporado a la Rábida desde el período Almohade.

Placa conmemorativa

La iglesia-Santuario es de dimensiones pequeñas y estructura compacta posee una sola nave y un hermoso artesonado de influencia mudéjar que cubre la bóveda primitiva. El ábside posee arcos apuntados. En las paredes conserva pinturas de Juan de Dios realizadas en el Siglo XVIII que tratan temas de la vida de San Francisco.

Claustro mudéjar del Monasteio de la Rábida

El claustro del Monasterio de la Rábida es pequeño y sigue el modelo de San Isidoro y Guadalupe: estilo mudéjar. Se amplió en el siglo XVII con un cuerpo superior y se le incorporaron almenas como protección de invasiones.

Tiene en sus paredes frescos del siglo XV que han sido restauradas. El claustro estuvo punto de desaparecer en 1855 por la desamortización, y salvado el conjunto por el Gobernador Alonso. Es uno de los monumentos mas importantes y significativos en la historia de España y de América, fue declarado primer monumento histórico de los pueblos Hispanos y en 1856 fue declarado el tercer monumento nacional y patrimonio de la humanidad.

4554167256_5bd7789490

Me desvío del tema. Muy cerca del entorno, junto al Monasterio, está la Sede de la Universidad Internacional Iberoamericana de La Rábida, en la que, se imparten Cursos de verano y se acogen a grandes personalidades en los distintos campos del saber que dan conferencias muy apreciadas. Aquí, en el pasado no muy lejano, tuve la suerte de asistir a una de Lynn Margulis y pude hablar con ella que respondío a mis preguntas con amabilidad y sabiduría.

Ella centraba el curso en la enorme importancia que tenían los microbios para nosotros, no siempre bien valorados.  Los microbios pueden ser definidos como organismos que no podemos ver a simple vista y, la cultura popular dice que tan sólo sirven de agentes para canalizar enfermedades, pero esa apreciación conlleva un error muy serio.  Por ejemplo: el 10% del peso del cuerpo humano en seco está compuesto por microbios, sin los cuales no podemos vivir ni siquiera un día.  Ellos asumen tareas tan importantes como la de generar el oxígeno del aire que precisamos para respirar.  Además, tienen un papel fundamental en la evolución de la vida: todos los seres vivos considerados simples –animales, plantas, hongos, etc.- están hechos de microbios en combinación simbiótica con otros organismos.  Se trata de una historia que se aleja en el pasado hasta 3.500 millones de años en el curso de la vida sobre la superficie de nuestro planeta: La Tierra.

Los conceptos que maneja y esgrime la doctora en genética, están encuadrados en una visión totalmente contradictoria con la religión y otros muchos conceptos culturales.

Pregunté a la doctora Margulis si la mala imagen de los microbios nacía de un estudio deficiente de la microbiología, o si simplemente surgía a partir de tópicos sin fundamentos.  Su contestación fue:

“La asociación de esos pequeños organismos con aspectos negativos se explica por el origen de su estudio científico, que siempre estuvo relacionado con descubrimientos ligados a la investigación en torno a enfermedades.  Junto a esta idea, lo cierto es que pensamos en formas ideales que corresponden al esquema platónico de hace casi 30 siglos, cuando en realidad no existen tales ideas sino organismos que interaccionan con el medio ambiente en el que se encuentran. Esta colaboración recibe el nombre de ecología. De hecho, el concepto de independencia no tiene sentido en este campo: al margen de los microbios moriríamos inmediatamente”.

 

 

 

Nos creemos lo contrario pero, siempre seremos aprendices, no tenemos tiempo para más

 

Aquel día, como casi todos los días de mi vida, aprendí cosas nuevas y muy interesantes que me confirmaron que nuestras vidas, podrían ser cualquier cosa, menos simples. Es tal el nivel de complejidad implicado que, precisamente por eso, no somos capaces de explicarla al completo, solo vamos dominando parcelas limitadas que, algún día, al ser unidas, nos darán las respuesta.

En fin amigos, que como habreis podido deducir, aunque nuestras limitaciones nos impongan barreras, no debemos rendirnos ante ninguna de ellas y, si persistimos, finalmente encontraremos el camino de pasarlas para poder ir un poco más allá. Era Jhon Wheeler el que nos decía: “Vivímos en una isla rodeada por un mar de ignorancia.  Pero, cada nuevo conocimiento que adquirimos, hace la isla mayor, y, la ignorancia decrece en nesa pequeña proporción”

Claro que, si los conocimientos que vamos adquiriendo son continuados… Finalmente, ¿podríamos secar ese mar de ignorancia?

Pero, ¿que tiene todo esto que ver con el título del trabajo? Bueno, lo único que puedo decir es que, nosotros… ¡También somos universo!

emilio silvera

Sólo en nuestra Galaxia, miles de planetas habitables.

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

CIENCIA

josé manuel nieves / madrid

Nuevos cálculos implican la existencia potencial de mucha agua y, lo más importante, de mucha vida.

 

 

Miles de millones de planetas en zona habitable, solo en nuestra galaxia
Archivo

Hasta ahora, los astrónomos han descubierto ya miles de exoplanetas en nuestra galaxia, la Vía Láctea. Mundos lejanos que giran alrededor de otras estrellas y muchos de los cuales, además, forman parte de sistemas planetarios que recuerdan a nuestro Sistema Solar. La sonda Kepler, especialmente diseñada para esta búsqueda, es el instrumento que más planetas extrasolares ha descubierto hasta ahora. Y ha sido precisamente utilizando sus datos como un grupo de investigadores de la Universidad Nacional de Australia y el Instituto Niels Bohr, en Copenhague, ha calculado cuál es la probabilidad de que las estrellas de nuestra galaxia tengan planetas en la zona habitable, esto es, a la distancia precisa de ellas para permitir que exista agua líquida en sus superficies.

Los resultados han sido sorprendentes. De hecho, los cálculos muestran que miles de millones de estrellas de nuestra galaxia pueden tener entre uno y tres planetas en sus zonas habitables, lo que implica la existencia potencial de mucha agua y, lo más importante, de mucha vida. El esperanzador estudio se publica hoy en Monthly Notices of the Royal Astronomical Society.

Gracias a los instrumentos del Kepler los astrónomos han descubierto ya cerca de mil planetas alrededor de estrellas de nuestra galaxia y trabajan ahora para confirmar otros tres mil potenciales. Muchas estrellas cuentan con sistemas que contienen entre dos y seis planetas, aunque podría ser que hubiera más fuera del alcance de los instrumentos de la sonda Kepler, que está mejor equipada para buscar mundos grandes y que estén relativamente cerca de sus soles.

Pero los mundos que orbitan muy cerca de sus estrellas suelen ser demasiado calientes para la vida. Por eso, los investigadores han tratado de averiguar si también podría haber mundos algo más lejos de esos soles, en sus zonas habitables, donde el agua y la vida son teóricamente posibles. Para conseguirlo, los autores del estudio han llevado a cabo una serie de cálculos basados en una nueva versión de un método que tiene ya 250 años de antigüedad y que se conoce como la Ley de Titus-Bode.

Una ley planetaria

 

Formulada alrededor del año 1770, esta ley permitió calcular la posición exacta de Urano mucho antes de que fuera descubierto. La Ley de Titus-Bode afirma que existe una relación entre los periodos orbitales de los distintos planetas de nuestro sistema solar. Así, la relación entre el periodo orbital del primer y segundo planeta es la misma que existe entre el segundo y el tercero, que entre el tercero y el cuarto y así sucesivamente. Por eso, si sabemos cuánto tardan algunos de los planetas en completar una órbita alrededor de su estrella, es posible calcular cuánto tardarían otros planetas que aún no conocemos en hacer lo mismo, lo que nos permitiría calcular su posición.

“Decidimos usar este método para calcular las posiciones potenciales de planetas en 151 sistemas en los que Kepler ya había encontrado entre tres y seis mundos -explica Steffen Kjaer Jacobsen, del Instituto Niels Bohr-. En 124 de los sistemas planetarios, la Ley de Titus-Bode logró fijar la posición de los planetas. Usando el mismo método, intentamos predecir dónde podría haber más planetas algo más externos en esos sistemas solares. Pero sólo hicimos los cálculos para planetas cuya existencia pudiera después ser confirmada con los instrumentos del propio Kepler”.

En 27 de los 151 sistemas planetarios analizados, los planetas observados no se ajustaban, a primera vista, a la Ley de Titus-Bode. Por lo que los investigadores intentaron encajar los planetas en el “patrón” en el que los planetas deberían ubicarse. Luego añadieron los planetas aparentemente “perdidos” entre los que ya eran conocidos y añadieron, por último, un planeta adicional en cada sistema, más allá del mundo más lejano conocido. De este modo, lograron predecir un total de 228 planetas en los 151 sistemas planetarios.

“Hicimos entonces una lista prioritaria con 77 planetas de 40 sistemas planetarios -explica Jacobsen-. Los que tenían más posibilidades de ser vistos por Kepler. Y animamos a otros investigadores a buscar esos mundos. Si los encuentran, sería un indicativo de que el método se sostiene”.

Los planetas más cercanos a sus estrellas están demasiado calientes como para tener agua y vida. Y los más alejados tampoco sirven por todo lo contrario: son demasiado fríos. Pero entre estos extremos está la zona habitable, donde el agua y la vida son teóricamente posibles. Por supuesto, la zona habitable varía de estrella a estrella, y depende de lo grande y brillante que ésta sea.

Por eso, los investigadores calcularon el posible número de planetas en las zonas habitables basándose en esos mundos “extra”, que habían añadido a los 151 sistemas planetarios estudiados siguiendo la Ley de Titus-Bode. Y el resultado fue de entre uno y tres planetas en la zona habitable para cada uno de los sistemas.

Sólidos y con agua líquida

Más allá de los 151 sistemas planetarios analizados, los científicos se fijaron también en otros 31 sistemas en los que ya se ha descubierto algún planeta en las zonas habitables o en los que bastaba con añadir un solo mundo extra para llevar a cabo los cálculos.

“En estos 31 sistemas planetarios -asegura Jacobsen- nuestros cálculos mostraron que tienen una media de dos mundos dentro de la zona habitable. Según las estadísticas y las indicaciones que tenemos, un buen porcentaje de esos planetas serían sólidos, con agua líquida y con posibilidades de albergar vida”.

Si extrapolamos estos resultados al resto de nuestra galaxia, significaría que sólo aquí, en la Vía Láctea, podría haber miles de millones de estrellas con planetas en la zona privilegiada para la vida. Jacobsen asegura que lo que pretende ahora es animar a otros investigadores para que rebusquen en los datos de Kepler y comprueben si los planetas predichos por él y su equipo existen realmente y se encuentran en las posiciones calculadas.

Coreografía de un par de electrones

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

TRIBUNA

El movimiento sincronizado de los electrones en el átomo de Helio ha podido ser visualizado y controlado por primera vez utilizando pulsos láser de ottosegundos. Así lo contaron en Tribuna los autores del trabajo, Luca Argenti y Fernando Martín.

 

 

    Fotogramas de la película del movimiento de un par de electrones en el átomo de helio.

Físicos y químicos nos sorprenden cada día con el control que pueden ejercer sobre la materia. Por primera vez, investigadores españoles y alemanes hemos conseguido obtener la película del movimiento de los dos electrones que constituyen el átomo de helio e incluso controlar los pasos de esta singular pareja de baile. Para ello, hemos empleado una combinación de pulsos de luz visible y ultravioleta con una duración de tan solo unos pocos cientos de attosegundos (un attosegundo es una mil millonésima de una milmillonésima parte de un segundo). El control sobre el movimiento de pares de electrones podría revolucionar nuestra visión de la química, ya que los enlaces entre los distintos átomos que constituyen las moléculas, desde el agua al ADN, son el resultado del apareamiento de dos electrones. Por tanto, la perspectiva de utilizar láseres de attosegundos para controlar el destino de los electrones apareados en un enlace abre el camino a la producción de sustancias que no pueden ser sintetizadas utilizando procedimientos químicos convencionales.

Representación animada de un átomo de deuterio, uno de los isótopos del hidrógeno.

Para explicar algunas características extrañas en el espectro del átomo de hidrógeno, en 1913, el físico Niels Bohr introdujo un modelo planetario en el que el electrón cargado negativamente, unido al núcleo cargado positivamente por la fuerza electrostática de Coulomb, está restringido a moverse solamente a lo largo de órbitas muy concretas. Esta cuantificación del movimiento electrónico abrió un nuevo capítulo de la física y química modernas, sin el cual no se podría haber alcanzado el conocimiento de la materia del que se dispone hoy en día. En el modelo de Bohr, las cosas suceden rápidamente: el año sideral, es decir, el tiempo que el electrón necesita para completar la órbita más corta alrededor del núcleo, tiene la increíblemente corta duración de 0.000 000 000 000 000 152 segundos, o 152 attosegundos (as), un valor que se hace aún más pequeño cuando se consideran elementos más pesados en la tabla periódica de los elementos químicos.

El attosegundo es, de hecho, la escala de tiempo natural en el que los electrones se mueven en la materia ordinaria. El movimiento ultrarrápido predicho por el modelo de Bohr no pudo ser confirmado directamente hasta que, a comienzos de este siglo, una serie de avances revolucionarios generó la tecnología láser capaz de producir destellos de luz suficientemente cortos (el récord mundial es de 67 as) para hacer fotografías del movimiento de un electrón y así generar la película de ese movimiento. En contraste con el mundo macroscópico, una película del movimiento del electrón no revela un desplazamiento a lo largo de una trayectoria bien definida. Como consecuencia del comportamiento ondulatorio de la materia a nivel atómico, el electrón aparece como una nube difusa (o paquete de ondas) en movimiento. La densidad de la nube indica la probabilidad de encontrar al electrón en distintas regiones del espacio.

En los sistemas más grandes que el hidrógeno, con varios electrones, la misma fuerza de Coulomb que une a un electrón con el núcleo también actúa repulsivamente entre los electrones. El efecto de tal repulsión es apantallar la carga nuclear, debilitando así el efecto atractivo del núcleo sobre cada uno de los electrones. Sin embargo, en gran medida, los electrones siguen actuando como partículas independientes y, por tanto, el movimiento del paquete de ondas que representa a todos los electrones no es mucho más complicado que el observado para un solo electrón en el átomo de hidrógeno. Hasta ahora, los experimentos llevados a cabo para seguir el movimiento de los paquetes de onda en átomos complejos fueron capaces de poner en marcha un solo electrón a la vez, confirmando esta imagen de que los electrones se mueven de forma casi independiente los unos de los otros.

La repulsión electrostática entre los electrones, sin embargo, tiene un efecto secundario, más sutil. De la misma manera que un pasajero de autobús evita sentarse al lado de otros pasajeros y toparse con ellos a medida que camina por el pasillo, los electrones tratan de evitarse el uno al otro cuando se mueven en el interior de un átomo o una molécula; el movimiento de los electrones se dice que está correlacionado. De este modo, los electrones minimizan su repulsión mutua y, como consecuencia, estabilizan el átomo o molécula a la que pertenecen. Dicha estabilización es responsable del balance energético de todos los procesos naturales, y es clave para nuestra comprensión y control del comportamiento de la materia, como la transferencia de energía en sistemas fotosintéticos, la protección de datos en los futuros ordenadores cuánticos, etcétera. A pesar de ello, el movimiento de dos electrones correlacionados ha eludido la observación experimental directa hasta el momento presente. Además, es muy difícil de reproducir teóricamente, ya que, incluso para el átomo de helio, que es el sistema más simple con dos electrones, las ecuaciones físico-cuánticas que describen este movimiento no pueden resolverse exactamente y, en su lugar, deben realizarse costosos cálculos numéricos en superordenadores.

Para poder tomar en cuenta la indistinguibilidad de los dos electrones del helio siguiendo las reglas de la Mecánica Cuántica, lo cual requiere que en una …

Esta semana, en la revista Nature, los investigadores teóricos de la Universidad Autónoma de Madrid, Luca Argenti y Fernando Martín, en colaboración con el grupo experimental de Thomas Pfeifer, del Instituto Max Planck de Heidelberg, explicamos cómo hemos reconstruido por primera vez el movimiento simultáneo de dos electrones excitados en el helio, a partir de datos experimentales y cálculos de física cuántica inéditos. Hemos utilizado una versión de alta resolución de una técnica conocida como espectroscopia de absorción transitoria de attosegundos, mediante la cual se midió la transparencia de una muestra de helio a destellos cortos de luz ultravioleta en función del tiempo transcurrido entre este destello y otro de luz roja generado por un láser de titanio-zafiro.

Al igual que un adulto empuja a un niño en un columpio, el pulso ultravioleta lleva el átomo a un estado excitado, donde ambos electrones oscilan. Actuando de manera adecuada, las piernas de los niños pueden amplificar o amortiguar las oscilaciones del columpio. Y midiendo la amplitud de dichas oscilaciones se puede deducir el punto en el que el niño movió las piernas, es decir, reconstruir el movimiento original del columpio. De una manera similar, en el experimento, el pulso de luz roja fortalece o debilita la absorción de la luz ultravioleta en función del tiempo transcurrido entre los dos pulsos. A partir de la modulación de la absorción ultravioleta, hemos logrado reconstruir la oscilación de los dos electrones, y de ahí deducir la evolución del correspondiente paquete de ondas. Más allá del seguimiento de este movimiento, también pudimos modificarlo y controlarlo aumentando la intensidad del pulso rojo. Volviendo a la analogía del columpio, es como si el niño estuviera, además, sujetando una cometa: un fuerte golpe de viento alteraría por completo la oscilación del columpio.

Con este trabajo, consideramos que hemos abierto el camino para la observación directa del movimiento electrónico correlacionado en átomos y moléculas, y quizá para controlar el movimiento de los electrones apareados en enlace químicos, lo que permitiría la producción de sustancias que no pueden ser obtenidas con procedimientos químicos convencionales.

Luca Argenti y Fernando Martín son investigadores teóricos del Departamento de Química de la Universidad Autónoma de Madrid

¿Cuándo comprenderemos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Son tantas las cosas que no sabemos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

“¿Vas a la feria de Scarborough? Perejil, salvia, romero y tomillo. Dale recuerdos a alguien que vive allí, a aquella que fue mi amor verdadero. (…) Si dices que no puedes, entonces te responderé: Perejil, salvia, romero y tomillo. Oh, hazme saber que al menos lo intentarás, o nunca serás mi amor verdadero”


Letra de Scarborough Fair

Perejil, salvia, romero y tomillo (Parsley, Sage, Rosemary and Thyme), una pócima de amor muy popular en la Edad Media, son las palabras que se repiten en la popular Scarborough Fair, una canción tradicional inglesa del siglo XII de autor desconocido que tiene multitud de versiones y letras diferentes aunque la más conocida (como nos recordó en su momento nuestro amigo Nelson)  es la del duo Simon y Garfunkel en el álbum Parsley, Sage, Rosemary and Thyme de 1966.

Scarborough Fair hace referencia a la Feria de Scarborough, localidad situada en la costa del Mar del Norte en el condado de Yorkshire, que en tiempos medievales representaba uno de los mayores puntos comerciales de toda Inglaterra, con un enorme mercado junto al mar que se prolongaba durante 45 días a partir del 15 de agosto.

 

http://www.bonsaisgigantes.net/zen/wp-content/uploads/2010/10/trapo-carretera-sobre-bosque.jpg

La Ciencia nos indica la manera de crear nuevos caminos que nos lleven hacia esa armonía que buscamos

Desde que Einstein en 1.905 nos dijo que el Tiempo no es un reloj universal que marcha al mismo ritmo para todos, y que un gemelo que parte en un viaje al espacio a gran velocidad no envejerá tanto como el otro que se queda en casa, nada ha sido lo mismo. Esa paradoja la  entendemos y nos parece escandalosamente increíble, y pese a todo es correcta. Cosas así despiertan la imaginación de las personas curiosas que, de alguna manera, despiertan a otra realidad y constatan que sus conceptos del “mundo” estaban equivocados.

Estar equivocados nos sorprende y, al mismo tiempo, nos enseña algo sobre nosotros mismos. No solo hay cosas que no sabemos, sino que las cosas que creemos saber pueden no ser ciertas. Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas y, si es el correcto, estaremos en esa verdad que incansables buscamos.

No resulta nada fácil descubrir los caminos por los que deambula la Naturaleza y las razones que ésta tiene para recorrerlos  de la manera que lo hace y no de otra. Una cosa es cierta, la Naturaleza siempre trata de conseguir sus fines con el menor esfuerzo posible y, cuestiones que nos parece muy complicadas, cuando profundizamos en ellas como la ciencia nos exige, llegan a parecernos más sencillas y comprensibles. Todas las respuestas están ahí, en la Naturaleza.

 

Este es un ensayo de Viktor Frankl

neurólogo, psiquiatra, sobreviviente del holocausto y el fundador de la disciplina; que conocemos hoy como Logoterapia.

No eres Tú, soy Yo…
¿Quién te hace sufrir? ¿Quién te rompe el corazón? ¿Quién te lastima? ¿Quién te roba la felicidad o te quita la tranquilidad? ¿Quién controla tu vida?…
¿Tus padres? ¿Tu pareja? ¿Un antiguo amor? ¿Tu suegra? ¿Tu jefe?…

Podrías armar toda una lista de sospechosos o culpables. Probablemente sea lo más fácil. De hecho sólo es cuestión de pensar un poco e ir nombrando a todas aquellas personas que no te han dado lo que te mereces, te han tratado mal o simplemente se han ido de tu vida, dejándote un profundo dolor que hasta el día de hoy no entiendes.”

Hecho en falta la observación del profesor haciendo la pregunta: ¿Por qué el llegar a saber nos puede hacer sufrir?  ¿Acaso estamos en aquello de ¡Ojos que no ven… Corazón que no siente?

Lo cierto es que… ¡Hay tantos mundos, como nuestras mentes puedan imaginar!

Claro que, no siempre, cuando alcanzamos las respuestas y el saber llega a nosotros, podemos sentir felicidad, toda vez que, al ser consciente de la realidad, no pocas veces sufrimos. Existen mundos imposibles en los que, criaturas inimaginables pudieran estar gestando el venir a visitarnos para acabar con nuestra especie. ¿Nos gustaria saber de su existencia? ¿O, el amigo que no fue digno de tu conficnza? ¡La cruda realidad no siempre es de nuestro agrado, y, sin embargo, yo la prefiero!

Alguna vez me he preguntado si el conocimiento nos puede traer la felicidad y, la respuesta no es nada sencilla. Muchas veces he podido sentir cómo al adquirir un nuevo conocimiento he sentido dolor por comprender lo que hay detrás de ese saber. Otras veces, el dolor lo he sentido al ver a tantas criaturas inmersas en la ignorancia, no le dieron ninguna oportunidad. ¿Otra paradoja? ¿Como se puede sentir lo mismo, en este caso dolor, por una cosa y la contraria? ¡Qué compleja es nuestra mente!

Algún pensador ha dicho:

“La paradoja de nuestro tiempo en la historia es que  tenemos edificios más altos pero temperamentos más cortos,  autopistas más anchas, pero puntos de vista más estrechos.  Gastamos más pero tenemos menos, compramos más, pero gozamos menos.  Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo.  Tenemos más grados y títulos pero menos sentido,  más conocimiento, pero menos juicio,  más expertos, sin embargo más problemas,  más medicina, pero menos . “

¿No será que no hemos aprendido a determinar lo que realmente tiene algún valor? Somos tan torpes que elegimos aquello que nos cuesta mucho dinero y sacrificio conseguir y, no le damos importancia a esa mirada, la caricia del auténtico Amor, la risa de los niños.


Bueno, para no variar comencé un viaje hacia el “universo de Einstein” y llegué a un extraño mundo que no estaba en el mapa de mis pensamientos primeros, así que regreso sobre mis pasos y retomo el sendero que dejé para continuar comentándoles a ustedes algunas cuestiones.

Como algunos recordaréis, Albert Einstein fue escogido por la Revista Time (el nombre resulta irónico en ese caso concreto) como la personalidad del siglo XX. Precisamente comenzó ese siglo de manera impresionante en su año milagroso de 1.905. En ese año, inspirado en el trabajo de Planck del cuanto y yendo un poco más allá, dio la demostración estadística de la naturaleza atómica de la materia y, con su explicación de los fotones que inciden en superficies metálicas, que le valió el Nobel de Física , ayudó a poner en marcha la revolución cuántica con la que nunca se sintió cómodo. Claro que, no fue aquello lo que le llevó a la popularidad. La fama de Einstein le vino de la mano de la “relatividad”, la teoría de la estructura del espacio-tiempo, la geometría del Universo.

El espacio-tiempo de Einstein situó al ser humano en lugar más cercano al Universo.  Le hizo comprender que era una parte de la Naturaleza,  la que piensa. Y, pensando, llegamos a saber lo que el espacio-tiempo es, que los átomos son demasiado pequeños, los fotones demasiados y que, en realidad, no podemos tener opiniones firmes sobre estas cosas. Cuando recibimos noticias sobre ellas, las aceptamos como parte del progreso periódico y metódico de la ciencia. La materia está hecha (de tipos de) unidades indivisibles; la luz tiene una naturaleza de onda y partícula a la vez. Quien no es científico no tiene pruebas para contradecir el primer enunciado y ninguna comprensión clara sobre lo que se entiende sobre el segundo. Pero en 1.905 Einstein nos dijo también que el Tiempo es distinto para cada uno de nosotros dependiendo de un ritmo que lo hace relativo.

                     Mientras que para ellos el tiempo vuela, para el enfermo pasando dolor en la cama de un hospital… el Tiempo se hace eterno.

La relatividad, o la física del espaciotiempo, con su aura de los agujeros negros y un universo en expansiòn, capta nuestra atención porque es la materia de la vida diaria – espacio y tiempo- hecha exótica, como si el Asesor Fiscal consujera un Ferrari vestido con una túnica indonesia. Esto explica (de alguna mnanera) la constancia y fijación, la constante fascinación  que ejerce sobre los legos con algunos conocimientos científicos.

También explica la importancia de la relatividad para aquellos con demasiada poca paciencia y quizá demasiado autoconfianza. Cualquier físico relativista ha pasado por la experiencia de recibir, varias veces al año, una nueva teoría de la relatividad remitida por un pensador no-tradicional con inclinaciones técnicas que no ha “leído todos los libros” pero donde estaba equivocado Einstein.

Es curioso como otros (que sí han leído todos los libros) que trabajan cada día con los detalles finos de las matemáticas aplicadas, haciendo un trabajo honesto  y dirigiendo todos los esfuerzos a lo que podría ocurrir en una colisión de dos agujeros negros masivos, el asombro que al principio pudiera sentir con los resultados, quedan diluidos con la familiariadad del trabajo cotidiano que nos lleva a entender aquellos “asombrosos” resultados como más cercanos y menos extraño. El conocimiento aleja el asombro.

                   Si tratamos de saber… Alejamos de nosotros la ihgnorancia y el asombro

Este pequeño librito es una buena introducción a la Relatividad Especial y el ideal para consultas, escrito por Edwon Taylor y Jhon Wheeler nos lleva a dar un paseo por las intrincadas carreteras del espacio-tiempo, por la verdadera naturaleza del espacio y el tiempo que no siempre podemos llegar a comprender. El espacio y el tiempo son tan viejos (más) como el pensamiento humano. Los pensadores clásicos ya tuvieron mucho que decir sobre el tema. Algo de ello parece ahora curiosamente  ingenuo, y algo de ello sigue siendo impresionante profundo (fijaos en Zenón, ¿no os parece que ha sabido envejer de la manera más adecuada).

Claro que, las ideas modernas han necesitado miles de años para evolucionar y que encuentran su ubicación precisa en las matemáticas, el lenguaje del que finalmente, se vale la ciencia para explicar lo que las palabras no pueden. Por otra parte, es una sorpresa agradable que las claves de una discusión tan moderna de conceptos científicos incluídos en la relatividad, sean accesibles a quiénes no teniendo una formación matemática y física, asimile cuestiones algunas veces complejas pero, si se explican bien…

El libro de Taylor y Wheeler comienza con la historia de una persona que cruza un pequeño puenta que cruza un río recto y estrcho que corre por un paisaje llano. Aquella persona mira directamente río arriba y quiere dar una descripción cuantitativa de la localización de los lugares de interés, como el campanario de la Iglesia.

Podría hacerlo de muchas formas diferentes. Podría decir que el campario está a 024 metras de ella, y en una dirección a un ángulo de 30 grados a la  izquierda. Alternativamwente podría advertir que la camapa está a 800 metros “hacia delante” (en dirección río arriba) y 462 metros “a la izquierda” (lo que signiofica 462 metros a la izquierda del río. Lo que es común a ambos métodos de descripción (y a cualquier otro método) es que debe especificar dos números. Por esa razón decimos que el conjunto de localizaciones en el paisaje es un mundo bidemensional. En física se suele decir que las medidas están hechas por un “observador” y el método de localizar puntos en un “sistema de referencia” asociado al observador. Los números concretos a los que llega el observador (tales como 800 metros y 462 metros) se denominan “coordenadas” de una localización.

La existencia y la importancia de estos términos especiales sugiere correctamente que puede haber otros observadores y otros sistemas de referencia. De hecho, de esto es de lo que trata la relatividad: de relación entre medidas (es decir, coordenadas) en diferentes sistemas de referencia. Es crucial, entonces, que tengamos otro observador y que nuestros observadores discrepen en las medidas.

Provistos de una jerga bastante especial podemos ahora meter la punta del lápiz en el espaciotiempo. (Igual que las localizaciones son los lugares de un apisaje, los “sucesos” son los lugares en el espaciotiempo. Un suceso en cierto lugar u cierto tiempo. Es una posición en el tiempo tanto como en el espacio. Evidentemente el mundo de tales sucesos -el mundo que llamaremos espaciotiempo- es tetradimensional. Se necesitan tres coordenadas para especificar el “donde” de un suceso, y una coordenada para especificar el “cuando”.

En eso de que todo es relativo, acordaos de aquel Jefe de Estación que miraba pasar el tren y veía, como desde una de las ventanillas, un niño arrojaba una pelota de goma a una velocidad de 20 Km/h. El tren marchaba a 100 Km/h. Resulta que el padre del niño, sentado junto a él, llevaba una máquina que media la velocidad a la que corria la pelota y, el Jefe de Estación, pasado en el Anden, tenía otra igual que también la media. El resultado de ambas mediciones era discrepante. Al padre del niño le daba una medida de 20 Km/h, mientras que al Jede de Estación le dió una medida de 120 IKm/h. ¿cómo podía ser eso? Lo cierto es que, el padre del miño que portaba la máquina, también estaba en movimiento a 100 Km/h que la máquina no media, dado que ella, también se movía y sólo media la velocidad de la pelotita. El Jefe de Estación parado en el Anden, midió que la pelota corria hacia adelante a 120 Km/h,. es decir, la máquina había sumado los 20 Km/h con los que el niño impulso a la pelota más los 100 Km/h a los que marchaba el tren.

Así, el mismo suceso, medido por dos observadores diferentes y con sistemas de referencias diferentes, no podían dar, el mismo resultado. Claro que, ejemplos de la realltividad especial podríamos dar muchos que han sido confirmados y que, al no estar familiarizadoas con ellos, nos llevarían hacia el asombro que todo ignorante siente ante hechos incomprensibles pero, maravillosos.

La relatividad tanto especial como general, nos trajeron muchas cosas y, sobre todo, muchas promesas que no todas se han cumplido (aún). En relación a una de ellas, alguien ha pronosticó que entre 2,.010 y 2.015, un detector de ondas gravitatorias en vuelo espacial llamado LISA nos revelerá la distorsión del espaciotiempo alrededor de muchos agujeros negros masivos en el universo lejano, y cartografiará dicha distorsión con exquisito detalle  -los tres aspectos de la diostorsión:  la curvatura del espacio, la distorsión del tiempo y el torbellino del espaciotiempo alrededor del horizonte.

En nuestro Universo ocurren sucesos que no hemos sabido detectar y que, de alguna manera, nos mostrarían otra clase de Universo, es decir, el Universo sería el mismo pero, lo veríamos de otra manera. Hasta el momento el Universo que conocemos es ese que nos han posibilidado los fotones. Las ondas de luz captadas por los potentes telescopios que nos traen hasta nosotros a las más lejanas galaxias, los cúmulos y a las más bellas Nebulosas. Sin embargo, ahí fuera, ocurren otras muchas cosas que no podemos ver. ¿Qué pasará realmente con el espacio-tiempo en presencia de esas inmensas densidades de materia que viven dentro de los agujeros negros gigantes y, que pasará, cuando dos ellos chocan?

                                       Es cierto, como nos dicen los del Instituto de Astrofíca de Andalucía:

Casi todo lo que sabemos del Cosmos lo hemos aprendido mediante el análisis de la luz que nos llega de él. Con mayor generalidad deberíamos referirnos a la observación de la radiación electromagnética, de la que la luz visible es solo una parte. Y decimos “casi todo” porque los rayos cósmicos y los neutrinos nos aportan también importantes claves. En cualquier caso, nuestro modelo del universo más allá de la Tierra es, en buena medida, una imagen tallada con herramientas electromagnéticas. Un modelo muy rico, sin duda alguna. Pero quizá, por estar esencialmente construido a partir de estas proyecciones sobre nuestros muros de luces y sombras solo electromagnéticas, podría ser también un modelo sesgado. ¿Cómo saberlo? ¿Disponemos de alguna manera independiente para evaluar, y en su caso enriquecer, este modelo de génesis electromagnética? La respuesta es sí: las denominadas ondas gravitatorias nos proporcionan lo que podemos considerar como otra luz con la que observar el cosmos, complementaria e independiente a la luz electromagnética.”

 

 

Montserrat Villar, fue la coordinadora del Año Internacional de la Astronomía en España y es investigadora del Instituto de Astrofísica de Andalucía (CSIC). Una científica muy bien preparada a la que el mundo (aunque no siempre es consciente de ello), le debe algunos favores. Su entrega más allá del deber… ¡La hace muy especial!

Mi amiga Montserrat, estando juntos en la celebración del Año Internacional de la Astronomía medijo: “”La auténtica revolución para el ser humano sería encontrar vida fuera de la Tierra” Y, desde luego, ese es el sueño de muchos Astrónomos y Astrofísicos que piensan en la inmensa posibilidad que existe de que, la Vida, pulule por todo el Universo. Sin embargo, son las distancias por una parte y el tiempo por la otra, las que nos ponen muros por delante que, al menos de momento, no podemos franquear.

En cuanto a las Ondas gravitacionales (OG) es una de las predicciones más importantes de la Teoría de la Relatividad General de Einstein. A nivel mundial, se está realizando un gran esfuerzo para descubrir la radiación gravitacional, ya que su detección será la prueba contundente para verificar la teoría de Einstein. El estudio de las OG se realiza desde el punto de vista teórico, numérico y experimental. Se espera que pronto tengamos algunos resultados muy fiables que vengan a confirmar (como ya pasó con otros aspectos de la teoría) que lo que nos dicen las ecuaciones de campo de la relatividad general, es un fiel reflejo de lo que el Universo es.

onda gravitacional

Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha sido medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, que será puesta en órbita en la próxima década, se dedicará a detectar y analizar las ondas gravitacionales.

                                       ¿Qué son las ondas gravitacionales?

Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha sido medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, se dedicará a detectar y analizar las ondas gravitacionales.

En la Actualidad existen otros proyectos como LIGO que están tratando de buscar esas ondas que nos hablararían de un Universo diferente al que conocemos exclusivamente por medio de las señales electromagnéticas.

      ¿Qué pasa cuando chocan dos agujeros negros?

Cuando dos galaxias se unen, sus agujeros negros supermasivos (miles de millones el tamaño del sol) eventualmente tienen que interactuar, ya sea en un violento impacto directo o acercándose hacia el centro hasta tocarse uno con otro. Y es ahí donde las cosas se ponen interesantes. En vez de acercase de buena manera, las fuerzas de ambos monstruos son tan extremas que uno de ellos es pateado fuera de la galaxia recién unida a una velocidad tan tremenda que nunca puede regresar. Por su parte, el agujero que da la patada recibe una enorme cantidad de energía, que inyecta en el disco de gas y polvo que lo rodea. Y entonces este disco emite un suave resplandor de rayos X que dura miles de años. El choque de dos agujeros negros es un suceso rarísimo y, como de manera directa nunca lo hemos podido observar, aquí dejamos una referencia de lo que creemos que podría ser.

No son pocos los sucesos que están presentes en el Universo y de los que no tenemos ni idea y otros, que sabemos que están ahí pero, son también unos completos desconocidos. Es mucho lo que nos queda por andar en este inmenso campo que, no está precisamente llano y, en el largo camino de la ciencia, nos encontramos con grandes inconvenientes que sirven de freno a nuestras ánsias de saber.

                  ¿Qué pasa cuando chocan dos galaxias?

Es muy común que las galaxias choquen e interactúen unas con otras. De hecho, se cree que las colisiones y uniones entre galaxias son uno de los principales procesos en su evolución. La mayoría de las galaxias han interactuado desde que se formaron. Y lo interesante es que en esas colisiones no hay choques entre estrellas. La razón es que el tamaño de las estrellas es muy pequeño comparado con la distancia entre ellas. En cambio, el gas y el polvo sí interactúan de tal manera que incluso llegan a modificar la forma de la galaxia. La fricción entre el gas y las galaxias que chocan produce ondas de choque que pueden a su vez iniciar la formación de estrellas en una región dada de la galaxia.

El texto de arriba es algo contradictorio como muchos otros que sobre el Universo podemos leer. Si resulta que el choque de galaxias es de lo más normal en el Universo (como de hecho sabemos), ¿cómo pueden decirnos más arriba que el choque de agujeros negros es muy raro, si resulta que en “casi” todas las galaxias, en sus núcleos, residen grandes agujeros negros, al colisonar éstas es lógico pensar que, sus agujeros negros, también lo hagan.

El Universo de Einstein…, al menos hasta el momento, ha resultado ser cierto y, aunque los científicos del Proyecto OPERA se empeñaran en hacer correr a los neutrinos algo más que a los fotones (el límite marcado por Einstein para la velocidad que se puede alcanzar en el Universo, es decir, la Luz, c, que en el vacío alcanza los 299.792.458 metros por segundo), lo cierto es, que todo fue un equívoco y, el fotón, sigue firme como el Peñón de Gibratar como diría Dirac.

Lo cierto es que, saber, lo que se dice saber…sabemos algo pero muy poco como para poder sacar pecho y pasear por ahí pavoneándonos de los listos que somos. Es mejor admitir nuestra gran ignorancia y, siendo conscientes de ello, luchar con más fuerza por erradicarla. ¡Ah! Pero una cosa que estamos repitiendo una y otra vez, resulta ser falsa: El saber si ocupa lugar. Lugar en el espacio (tengo la librweria a doble hilera y me cuesta encontrar lo que necesito), de tiempo, buscar información sobre los temas tratados se lleva un gran período de tiempo al tener que hacer los apartados más convenientes para el trabajo que se desea presentar y, por último, algún que otro dinero que, se nos va cuando podemos ver este o aquel nuevo libro que nos promete emociones nuevas.

emilio silvera