Jun
15
Sí, muchas son, las cosas que no sabemos
por Emilio Silvera ~ Clasificado en El Universo y la Mente ~ Comments (2)
Hay cosas que no podemos explicar y una de ellas es “el mundo” transpersonal de la Conciencia Humana en el que destaca algo de increíble aceptación como, por ejemplo, la capacidad de conexión de la mente humana. Han existidos tribus nativas que parece que eran capaces de comunicarse sin necesidad verse ni oirse. Así lo demuestran las vestimentas, edificaciones y los distintos aparatos y herramientas que utilizaban distintas tribus separadas por miles de kilómetros y que, en su rudimentario mundo, no tenían la posiblidad de comunicarse y menos de verse, incluso algunas, pudieron vivir no ya en lugares distintos y alejados, sino que lo hicieron en distintos momento del tiempo. Y, sin embargo, según todos los indicios, tribus enteras pudieron compartir, de alguna manera, información.
En Laboratorios de nuestros días, se ha demostrado que existen personas que muestran una capacidad para la transferencia espontánea de imágenes e impresiones, y, en especial, cuando tienen una estrecha relación afectiva y emocional con la otra persona.
De manera inexplicable, algunas imágenes, ideas y símbolos universales arquetipos, aparecen y reaparecen en la cultura de todas las civilizaciones, tanto modernas como antigüas, sin que los componentes de esas civilizaciones hayan tenido contacto alguno.
No sabemos hasta donde puede llegar el poder de nuestras mentes que, de alguna manera, está conectada con el Universo del que formamos parte y, esos hilos invisibles que nos mantiene a todos unidos…algo tendrán que ver en todos estos fenómenos ciertos y comprobados.
3 Mapa de piri reis DATA:1513 Descubrimiento:1929
“Al verlo sabrás que es uno de esos mapas de América más antiguo pero lo raro es que el mapa fue hecho en 1513 ya sabemos que el descubrimiento de América fue en 1492 pero si se fijan en el mapa verán las islas Malvinas están en el mapa y estas fueron descubiertas en 1592 también los andes están representados a pesar de que todavía no se conocían igualmente en la parte de abajo hay una yama y a ese animal no se le reconoció hasta 1598 se ve también las costas del ártico y estas fueron descubiertas 800 años después.”
Cada día la Humanidad logra dar un paso más hacia terrenos antes desconocidos y hacia descubrimientos qu, hasta hace relativamente poco tiempo eran impensables que se pudieran alcanzar. Los descubrimientos actuales de los mayores logros alcanzados por la Conciencia humana nos vienen a recordar aquel pronunciamiento de Einstein:
“Un ser humano, es simplemente parte de un todo que llamamos Universo”.
Sí, por separado podemos ser una parte limitada en el espacio y en el Tiempo pero, unidos todos y enlazados como una cadena que recoge todos y cada una de las consciencias que aquí estuvieron presente a lo largo de los milenios…, podría ser posible pensar en una cierta conexión real con el pasado y que de alguna manera, tuviéramos una conexión mental con aquellos ancestros que nos dejaron sus conocimientos y experiencias que, de alguna manera, conservamos.
De los pueblos antiguos es mucho lo que tenemos que aprender: Los jardines colgantes de Bibilonia, el Faro de Alejandría, aquellas primeras ciudades de Sumeria, la Agricultura, la Alfarería, o, incluso el origen del lenguaje y de las matemáticas.
Sí, mucho hemos hablado aquí de la maravilla que el cerebro humano es, de la inmensa complejidad que está presente en en él, de lo mucho que sensorialmente podemos esperar de un objeto que tiene tantas neuronas como estrellas tiene nuestra Galaxia y, nos extraña y fascina que una estructura así, haya podido surgir a partir de la “materia inerte” que, posiblemente, no sea tan inerte como nuestra ignorancia nos lleva a pensar.
Sí, es cierto que hemos podido llegar hasta adquirir una cierta comprensión que, de ninguna manera, lo puede explicar todo. Sin embargo, si repasamos todos los enigmas (los innumerables enigmas) que en la Ciencia podemos encontrar, nos podamos percatar que, en el fondo de los mismos subyacen las respuestas que buscamos y que, nuestras mentes, son las herramientas fundamentales para lograrlo.
Poque, ¿Tiene memoria el Universo? El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella. Todo eso, lo podemos saber al leer en la memoria del Universo que nos dejó bien grabado (en este caso) en la Nebulosa del Cangrejo, lo que pasó.
Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.
Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra.iaAl parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.
¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver.
Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permaneza y todo se transforme.
Arriba contemplamos a la Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.
Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?
El espacio, la materia, el Tiempo, la energía
El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.
Es cierto que, nuestra inmensa intuición nos lleva a pensar que, en el Universo, existen muchas cosas que no comprendemos, otras muchas que ni sabemos que están ahí y, sin embargo, de alguna manera, las presentimos y, de vez en cuando, sí que podemos pensar en ellas, en cosas que aún no siendo conocidas, algo dentro de nosotros nos dice que están ahí, esperando que las descubramos.
Sí, hemos sabido crear ecuaciones que expresan la Naturaleza, y, también, tuvimos la intuición de saber de qué estaban hechas las cosas. Con el paso del Tiempo, las mentes humanas han podido desvelar algunos secretos que el Universo escondía celosamente. Sin embargo, son muchos más los que nos quedan por descubrir. Es decir, las preguntas siguen siendo muchas más que las respuestas.
¿Vacío? Lo que llamamos vacío está lleno… ¡siempre hay!
Pero, el tiempo pasa y los conocimientos avanzan, y, se llegará a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todas las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.
Allá por los años sesenta, Paul Dirac demostró que las fluctuiaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.
La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuandoPaul Davis y William Unruth propusieron la hiótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetria en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.
De las Placas Casimir ¿que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.
También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.
Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?
Sí, en el Universo resulta que están presentes misterios que no podemos explicar. El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.
Sí resulta ser todo muy misterioso y, nosotros, que somos parte de este Universo, tambiñén lo somos. Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana.
Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare..
Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor…
Como veiz, imaginación no nos falta, tenemos de sobra y, cuando no sabemos explicar alguno de los muchos enigmas que en el Universo son, acudimos a la imaginación que se inventa lo que aquello pueda ser y, lo acomoda a nuestras conveniencias tratándo de darnos un poco de esperanza, y, para cuando la verdad de aquel misterio se puede desvelar…dónde estaremos.
emilio silvera
Jun
15
¡Civilizaciones del pasado!
por Emilio Silvera ~ Clasificado en Civilizaciones antiguas ~ Comments (0)
Es fácil valorar el impacto de la Astronomía del Viejo Mundo en el hemisferio occidental: no se produjo ninguno. Según dice Aveni, las culturas mesoamericanas y otras del Nuevo Mundo estuvieron “herméticamente selladas” frente al resto de observadores del cielo que pudiera haber en los océanos Pacífico y Atlántico. Mientras la mayor parte de Europa languidecía, las culturas mesoamericanas, influenciadas únicamente entre sí, crearon un bagaje astronómico sofisticado, complejo, preciso y exclusivamente suyo.
Los intereses astronómicos mesoamericanos eran inseparables de los intereses religiosos y sociopolíticos (Mesoamérica se extiende desde el noroeste de México a través del centro de Guatemala y el Salvador.) Como en las antiguas civilizaciones de Mesopotamia, China, la India, Grecia e Italia, las deidades astronómicas formaban el núcleo del panteón precolombino. Las sociedades mesoamericanas veían a los cuerpos celestes como dioses que influían en sus destinos y controlaban lo que sucedía en la Tierra. los mesoamericanos también creían que, si lo intentavan con todas sus fuerzas, podían influir sobre esas divinidades.
México fue el asentamiento de algunas de las civilizaciones más antiguas y desarrolladas del hemisferio occidental. Existe evidencia de que una población dedicada a la caza habitó el área hacia el año 21000 a.C. o incluso antes. La agricultura comenzó alrededor del año 5000 a.C.; entre los primeros cultivos estuvieron la calabaza, el maíz, el frijol y el chile. La primera civilización mesoamericana importante fue la de los olmecas, quienes tuvieron su época de florecimiento entre el 1500 y el 600 a.C. La cultura maya, de acuerdo con la investigación arqueológica, alcanzó su mayor desarrollo al acercarse el siglo VI. Otro grupo, los guerreros toltecas, emigraron desde el norte y en el siglo X establecieron un imperio en el valle de México. Fueron los fundadores de las ciudades de Tula y Tulancingo (al norte de la actual ciudad de México) y desarrollaron una gran civilización todavía evidente por las ruinas de magníficos edificios y monumentos.
Cultura Olmeca
El antiguo pueblo de los olmecas del sur del golfo de México originó la más antigua civilización en Mesoamérica (México y América Central), y cuyo esplendor se fecha desde aproximadamente el 1500 hasta el 900 a.C. Su área central ocupó unos 18.000 km2, en las pantanosas selvas de las cuencas ribereñas de los actuales estados mexicanos de Veracruz y Tabasco. Su influencia se extendió gradualmente hasta las tierras altas de México, esto es, el valle de México, conocido como el Anahuác, y los actuales estados de Oaxaca y Guerrero, por lo que influyeron en otras culturas posteriores como la mixteca y zapoteca. Los olmecas iniciaron su andadura, durante el denominado período olmeca I (1500-1200 a.C.), con pequeñas aldeas costeras que practicaban una agricultura incipiente y mantenían el importante aporte de la caza y la recolección. El período olmeca II (1200-400 a.C.) comprende San Lorenzo, su centro más antiguo conocido, que fue destruido en torno al año 900 a.C. y sustituido por La Venta, una ciudad creada según un patrón axial que influyó en el desarrollo urbanístico de América Central durante siglos. Una pirámide de tierra apisonada de 30 m de altura, una de las más antiguas de Mesoamérica, estaba situada en el centro de un complejo de templos y patios abiertos. El período olmeca III (400-100 a.C.) se caracteriza por su marcada decadencia, ubicado en los centros de Tres Zapotes y Cerro de las Mesas y que reflejan ya las influencias de las culturas de Teotihuacán y maya, que comenzaron su expansión en los primeros siglos de la era cristiana.
Los olmecas, cuyo nombre significa ‘país del hule’ (del azteca ulli, hule o caucho), fueron los primeros en emplear la piedra en la arquitectura y escultura, a pesar de tener que extraerla de los montes de Tuxtla, a 97 km al este de Tula. Sus obras escultóricas incluyen tanto las colosales cabezas masculinas de basalto de 2,7 m de altura y 25 toneladas de peso como pequeñas estatuillas de jade que pueden observarse, junto a otros productos olmecas, en la ciudad mexicana de Villahermosa. Su sistema de escritura fue el precursor de los jeroglíficos mayas, y es probable que el famoso calendario maya se haya originado en la cultura olmeca. La civilización olmeca dejó establecidos patrones de cultura que influyeron en sus sucesores en los siglos venideros; por ello está considerada como la cultura ‘madre’ más importante de México.
Cultura de Teohuacán
El yacimiento arqueológico de Teotihuacán contiene los restos de la ciudad más antigua del continente americano, situado en el municipio mexicano homónimo, 45 km al noreste de la actual ciudad de México. El lugar fue ocupado por primera vez en los siglos I y II a.C. De ser un pequeño asentamiento pasó a convertirse en una importante ciudad en el siglo II d.C., hasta cerca del año 700 d.C. Se han formulado varias hipótesis para explicar su decadencia y posterior abandono: disensiones internas, cambios climáticos, o invasiones de pueblos del norte. Su población se dispersó por la región central de México y también en lugares apartados, llegando algunos a establecerse en los países que en la actualidad son los de El Salvador y Nicaragua. La ciudad ocupaba una superficie muy amplia, 21 km2, y llegó a estar poblada por 125.000 habitantes siendo considerada ya en ese entonces una de las ciudades más grandes del mundo. Sus notables monumentos incluyen las Pirámides del Sol y de la Luna, unas de las edificaciones más grandes jamás construidas, la Ciudadela, el templo de Quetzalcóatl y la Avenida de los Muertos, que es una amplia vía flanqueada por los restos de antiguos templos de casi 2.000 m de longitud. Los muros de algunos de ellos están decorados con frescos de color que representan temas mitológicos o religiosos. El conjunto de las casas seguía un trazado urbanístico en forma de cuadrícula que rodeaba el centro monumental de la ciudad. Los habitantes de Teotihuacán, que, en realidad, fue una verdadera ciudad-estado, tuvieron estrechos contactos con la contemporánea cultura maya del Yucatán y de Guatemala, y su cultura ejerció una importante influencia en posteriores civilizaciones mexicanas como la de los aztecas.
Civilización Maya
El Maya es un grupo de pueblos indígenas mesoamericanos perteneciente a la familia lingüística maya o mayense, que tradicionalmente han habitado en los estados mexicanos de Yucatán, Campeche, Tabasco y Chiapas, en la mayor parte de Guatemala y en regiones de Belice y Honduras.
El pueblo más conocido, el maya propiamente dicho, que da nombre a todo el grupo, ocupa la península de Yucatán. Entre los demás pueblos significativos se hallan los tzeltales de las tierras altas de Chiapas; los choles de Chiapas; los quichés, cakchiqueles, pokonchis y pokomanes de las montañas de Guatemala y los chortís del este de Guatemala y el oeste de Honduras. Todos estos pueblos formaban parte de una civilización y cultura comunes que, en muchos aspectos, alcanzó las más elevadas cotas de desarrollo entre los indígenas de todo el área mesoamericana.
Extensión del área maya y su localización en el globo terrestre
Organización económica y social
La agricultura ha constituido la base de la economía maya desde la época precolombina y el maíz es su principal cultivo. Los mayas cultivaban también algodón, frijol (poroto o judía), camote (batata), yuca y cacao. Las técnicas del hilado, el tinte y el tejido consiguieron un elevado grado de perfección. Como unidad de cambio se utilizaban las semillas de cacao y las campanillas de cobre, material que se empleaba también para trabajos ornamentales, al igual que el oro, la plata, el jade, las conchas de mar y las plumas de colores.
Los mayas formaban una sociedad muy jerarquizada. Estaban gobernados por una autoridad política, el Halach Uinic, jefe supremo, cuya dignidad era hereditaria por línea masculina, y el Alma Kan, sumo sacerdote. El jefe supremo delegaba la autoridad sobre las comunidades de poblados a jefes locales o bataboob, capataces de explotación agrícola que cumplían funciones civiles, militares y religiosas. La unidad mínima de producción era la familia campesina, que cultivaba una ‘milpa’ (parcela de una 4-5 hectáreas) mediante el sistema de rozas, para atender a sus necesidades y generar, a veces, un excedente del que se apropiaba la clase dirigente.
Arquitectura
La cultura maya produjo una arquitectura monumental, de la que se conservan grandes ruinas en Palenque, Uxmal, Mayapán, Copán, Tikal, Uaxactún, Quiriguá, Bonampak, Tulún y Chichén Itzá, entre muchas otras. Estos lugares eran enormes centros de ceremonias religiosas. Se consideran tres estilos arquitectónicos: el río Bec, el Chenes y el Puuc, cada uno con características de ingeniería y ornamentación propias. La distribución de las ciudades consistía en una serie de estructuras piramidales, la mayoría de las veces coronadas por templos o cresterías labradas, y agrupadas alrededor de plazas abiertas. Las pirámides escalonadas estaban recubiertas con bloques de piedra pulida y por lo general llevaban tallada una escalinata en una o varias de sus caras. La infraestructura de las pirámides estaba formada habitualmente por tierra y piedras, pero a veces se utilizaban bloques de piedra unidos con mortero.
Mayas, Aztecas e Incas… Tikal (Guatemala) y Copán (Honduras) son testimonios elocuentes de esta admirable arquitectura monumental.
Aunque en la actualidad representa una excepción, se cree que el Templo de las Inscripciones de Palenque, que aloja la tumba del rey Pacal, puede no ser el único monumento de uso funerario que se construyó en la cultura maya. El tipo más común de construcción consiste en un núcleo de escombros o piedra caliza partida, mezclada con hormigón o cemento, y recubierta con piedra pulida o estuco. Las paredes de piedra se edificaban, por lo general, sin mortero. La madera se utilizaba para los dinteles de las puertas y para las esculturas. Su gran hallazgo técnico fue el sistema de la falsa bóveda por aproximación de filas de bloques de piedra, para cubrir espacios alargados o estrechos, que concluyen en el característico arco maya, del cual existen 10 tipos diferentes. Las ventanas eran poco frecuentes, muy pequeñas y estrechas. Los interiores y exteriores se pintaban con colores vivos. Se dedicaba especial atención a los exteriores y se decoraban profusamente con esculturas pintadas, dinteles tallados, molduras de estuco y mosaicos de piedra. Las decoraciones se disponían generalmente en amplios frisos que contrastaban con franjas de ladrillos lisos. Las viviendas de los comunes se parecían seguramente a las chozas de adobe y techumbre de ramas que todavía hoy se pueden apreciar entre los mayas contemporáneos.
Escritura
Equivalencia fonética de los glifos mayas
EL sistema de escritura maya se supone que es mixto y fue usado desde el 200 a. C. hasta el 900 d. C. en su forma monumental (primera línea) y desde el 1300 al 1500 d. C. en su forma cursiva (segunda línea). En el primer caso el sentido de la escritura es de arriba hacia abajo en columnas de a dos, en el segundo caso es en sentido serpenteante.
Los pueblos mayas desarrollaron un método de notación jeroglífica y registraron su mitología, historia y rituales en inscripciones grabadas y pintadas en estelas (bloques o pilares de piedra), en los dinteles y escalinatas y en otros restos monumentales. Los registros también se realizaban en códices de papel amate (corteza de árbol) y pergaminos de piel de animales. Sólo existen tres muestras de estos códices: el Dresdensis (Dresde), actualmente en Dresden; el Perezianus (Peresiano o de París), en París; y el Tro-cortesianus (Tro-Cortesiano o Matritense maya). Estos códices se utilizaban como almanaques de predicción en temas como la agricultura, la meteorología, las enfermedades, la caza y la astronomía.
En el siglo XVI se escribieron textos en lengua maya pero con alfabeto latino, y entre los más importantes se encuentran el Popol Vuh, relato mítico sobre el origen del mundo y la historia del pueblo maya, y los llamados libros de Chilam Balam, crónicas de chamanes o sacerdotes en las que se recogen acontecimientos históricos. La obra del obispo fray Diego de Lanza, Relación de las cosas de Yucatán, ha resultado una fuente importantísima para descifrar la grafía maya.
Calendario y Religión
Entre los mayas, la cronología se determinaba mediante un complejo sistema calendárico. El año comenzaba cuando el Sol cruzaba el cenit el 16 de julio y tenía 365 días; 364 de ellos estaban agrupados en 28 semanas de 13 días cada una, y el año nuevo comenzaba el día 365. Además, 360 días del año se repartían en 18 meses de 20 días cada uno. Las semanas y los meses transcurrían de forma secuencial e independiente entre sí. Sin embargo, comenzaban siempre el mismo día, esto es, una vez cada 260 días, cifra múltiplo tanto de 13 (para la semana) como de 20 (para el mes). El calendario maya, aunque muy complejo, era el más exacto de los conocidos hasta la aparición del calendario gregoriano en el siglo XVI.
La religión maya se centraba en el culto a un gran número de dioses de la naturaleza. Chac, dios de la lluvia, tenía especial importancia en los rituales populares. Entre las deidades supremas se hallaban Kukulkán, versión maya del dios azteca Quetzalcóatl; Itzamná, dios de los cielos y el saber; Ah Mun, dios del maíz; Ixchel, diosa de la luna y protectora de las parturientas, y Ah Puch, diosa de la muerte. Una característica maya era su total confianza en el control de los dioses respecto de determinadas unidades de tiempo y de todas las actividades del pueblo durante dichos períodos.
Historia
Los orígenes de la civilización maya son objeto de discrepancias académicas en virtud de las contradictorias interpretaciones de los hallazgos arqueológicos. El período formativo comenzó, cuando menos, hacia el 1500 a.C. Durante el período clásico, aproximadamente entre el 300 y el 900 d.C., los mayas extendieron su influjo por la zona sur de la península de Yucatán y el noroeste de las actuales Guatemala y Honduras. Se construyeron entonces los grandes centros ceremoniales como Palenque, Tikal y Copán. Los centros maya fueron abandonados de forma misteriosa hacia el año 900 y algunos individuos emigraron al Yucatán.
En el período postclásico, desde el 900 hasta la llegada de los españoles en el siglo XVI, la civilización maya tenía su centro en el norte de Yucatán. La migración tolteca de los itzáes, procedentes del valle de México, impactó fuertemente en sus estilos artísticos. Chichén Itzá, Mayapán y Uxmal fueron ciudades esplendorosas. La Liga de Mayapán, que dominó la península de Yucatán durante dos siglos, preservó la paz durante algún tiempo, pero tras un período de guerra civil y de revolución, las ciudades quedaron abandonadas. Los españoles vencieron con facilidad a los grupos mayas más importantes, pero el gobierno mexicano no logró subyugar las últimas comunidades independientes hasta 1901. Actualmente los mayas forman la mayoría de la población campesina en Yucatán y Guatemala.
La lengua maya (también llamada yucateca) la hablan unas 350.000 personas en Yucatán, Guatemala y Belice.
Cultura tolteca
Los toltecas (en nahuatl, ‘maestros constructores’), pueblo nativo de México que emigró desde el norte de lo que ahora es México, tras la decadencia (en torno al año 700 d.C.) de la gran ciudad de Teotihuacán, y que estableció un estado militar en Tula, a 64 km al norte de la moderna Ciudad de México, en el siglo X d.C. Se pensó que su llegada marcó el cenit del militarismo en Mesoamérica, puesto que el ejército tolteca empleó su mayor potencia para dominar las sociedades vecinas. El pueblo tolteca creó una refinada cultura, que incluía conocimientos sobre la fundición del metal, el trabajo de la piedra, la destilación y la astronomía. Su arquitectura y su arte reflejan influencias de Teotihuacán y de la cultura olmeca.
Los restos de Tula, a veces llamada Tollan Xicocotitlán, incluyen tres templos piramidales, de los cuales el más grande está rematado por columnas de 4,6 m de altura en forma de estilizadas figuras humanas conocidos como “atlantes” (guerreros); se cree que estaba dedicado a Quetzalcóatl, la Serpiente Emplumada, deidad que los toltecas adaptaron de culturas anteriores y la adoraron como el dios del planeta Venus. Según la leyenda, un dios rival tolteca Tezcatipotla, hizo que Quetzalcóatl y sus seguidores abandonaran Tula en torno al año 1000 d.C. Se desplazaron al sur y posteriormente desarrollaron la ciudad maya de Chichén Itzá, convirtiéndola en su capital y en un importante centro religioso. La civilización tolteca decayó en el siglo XII, cuando los chichimecas, junto con otros pueblos indígenas, invadieron el valle central y saquearon Tula. Los toltecas del sur fueron absorbidos por los mayas, a los que habían conquistado anteriormente. Hacia el siglo XIII la caída de Tula y del poder tolteca abrió el camino para la ascensión de los aztecas.
Cultura zapoteca
Los zapotecas fueron uno de los pueblos que tuvieron un papel muy importante en el desarrollo cultural de Mesoamérica. Establecidos por lo menos desde un milenio antes de la era cristiana en la sierra, valle central y en el istmo de Tehuantepec, Oaxaca, los zapotecas recibieron la influencia de los olmecas. Eran éstos los creadores de la cultura madre que comenzó a florecer en las costas del golfo de México, en la región limítrofe de los actuales estados mexicanos de Veracruz y Tabasco.
Hacia el siglo VI a.C. los zapotecas estaban en posesión de un sistema calendárico y también de una forma de escritura. De ello dan testimonio las centenares de estelas con inscripciones que se conservan en el centro ceremonial de Monte Abán. Dichas estelas se conocen como de ‘los danzantes’, ya que las posturas de las figuras humanas con las que se registran tales inscripciones, mueven a pensar que están bailando. En esa primera etapa del desarrollo zapoteca comenzaron a construirse tumbas de cajón o rectangulares en las que aparecen ofrendas y representaciones del dios de la lluvia conocido como Cocijo, deidad que habría de tener un lugar muy importante en el panteón zapoteca.
En los siglos siguientes, según los datos proporcionados por la arqueología, pueden distinguirse varios períodos de ulterior desarrollo. En el que abarca desde el 300 a.C. hasta el 100 d.C., se dejó sentir la presencia de algunos elementos que más tarde se desarrollarían con mayor fuerza entre los mayas. De esa época provienen asimismo edificaciones más suntuosas, entre ellas las de varios juegos de pelota y algunos templos en Monte Albán y en otros lugares de Oaxaca como Yagul, Teotitlán, y Zaachila.
Vista hacia el sureste de los Valles Centrales desde la cumbre de Monte Albán
A ese período siguió el del auge de la cultura zapoteca entre el año 100 d.C. y el 800 d.C. Coincidió con el esplendor de Teotihuacán en la región central. Fue entonces cuando el centro de Monte Albán llegó a su máximo florecimiento. De ello dan fe los templos, palacios, adoratorios, plazas, juegos de pelota y otras edificaciones que allí pueden contemplarse. Además de Cocijo, dios de la lluvia, se adoraba a la pareja de dioses creadores llamados Pitao Cozaana y Pitao Nohuichana, representación de la dualidad que también aparece en las otras regiones de Mesoamérica. En este período de esplendor se consolida la presencia zapoteca en los ya mencionados Yagul y Zaachila, y en otros muchos lugares como Huajuapan, Juchitán, Piedra Labrada y algunos ya situados en los actuales territorios de Puebla y Guerrero.
Al período de esplendor siguió uno de franca decadencia. Otro grupo étnico, el de los mixtecos, ocupó su principal centro ceremonial y se impuso en gran parte del territorio oaxaqueño. Los zapotecas, a veces sometidos a los mixtecos y en ocasiones aliados con ellos, establecieron su ciudad principal en Zaachila. A pesar de su decadencia, los zapotecas lograron conservar en parte su independencia y salir victoriosos en varias guerras que tuvieron contra grupos vecinos y oponiendo resistencia a los intentos de los mexicas o aztecas que trataban de sojuzgarlos. Tan sólo la conquista española puso fin a la existencia autónoma zapoteca.
Descendientes de los antiguos pobladores de diversos lugares de la sierra, de los valles centrales y la costa de Oaxaca, los zapotecas contemporáneos, a pesar de haber vivido por siglos marginados y depauperados, han conservado muchas de sus tradiciones, formas de vida, creencias y organización social. Elemento que les confiere profundo orgullo es el hecho de que un zapoteca serrano, Benito Juárez , no sólo haya sido presidente de la República sino el máximo defensor de ella frente a la intervención francesa que, promovida por Napoleón III, fue victoriosamente rechazada.
Tanto por las variantes que existen en su lengua como por sus formas de vida y condiciones económicas, los zapotecas ostentan considerables diferencias entre sí. Así, en tanto que perdura su aislamiento y pobreza en muchos lugares de la sierra, hay en cambio zapotecas en la región del istmo de Tehuantepec cuyos niveles de vida son comparables a los de la población no indígena. Entre éstos últimos zapotecas pervive, no obstante, su sentido de identidad cultural y el empleo de la lengua que es además objeto de cultivo y vehículo de expresión literaria, tanto en cantos y poemas como en la narrativa. La acentuada fisonomía cultural de los zapotecas del istmo es perceptible de muchas formas. Una de ellas la ofrece la gracia y altivez de sus mujeres, las célebres tehuanas, con sus característicos tocados y sus ricas joyas.
Los zapotecas contemporáneos, herederos del rico legado cultural de sus antepasados, constituyen uno de los grupos étnicos más grandes de México. De acuerdo con el censo de 1990, se acercaban al medio millón de personas.
Cultura mixteca
El pueblo amerindio de los mixtecos de la familia lingüística otomanque, habitante de los actuales estados mexicanos de Oaxaca, Guerrero y Puebla. La cultura mixteca floreció en el sur de México desde el siglo IX hasta principios del XVI y sus miembros fueron los artesanos más famosos de México. Sus trabajos en piedra y en diferentes metales nunca fueron superados. Entre sus especialidades se podían citar los mosaicos de plumas, la alfarería polícroma decorada y el tejido y bordado de telas.
Las contribuciones más importantes de los mixtecos son: los registros pictográficos en códices hechos sobre piel de venado de la historia militar y social que narran aspectos del pensamiento religioso, de los hechos históricos y de los registros genealógicos de su cultura; la orfebrería, cuyas muestras como pectorales, narigueras, anillos o aretes, demuestran que manejaron con maestría el oro trabajado con la técnica de la cera perdida, así como el labrado del alabastro, el jade, la turquesa y la obsidiana, entre otros. Las piezas más notables que se conocen proceden de los enterramientos de Monte Albán, descubiertos por el arqueólogo Alfonso Caso, y se exhiben en el Museo Regional de Oaxaca. Otros legados mixtecos son: un calendario análogo al utilizado por los aztecas y sus técnicas agrícolas.
Entre los siglos XI y XII de nuestra época, los mixtecos adoptaron una influencia tolteca cuya característica civilizadora los motivó a buscar asentamientos más estables que los que habían tenido; se dedicaron a dominar a los zapotecas por medio de invasiones de sus tierras, guerras y alianzas políticas por matrimonios. De ese modo se apoderaron, por ejemplo, de Monte Albán, que había sido abandonada por los zapotecas y los mixtecos convirtieron en necrópolis, enriqueciendo notablemente sus monumentos funerarios. Tanto en esa ciudad, como en Mitla, aportaron conceptos arquitectónicos evolucionados como las grecas geométricas de piedras ensambladas que adornan los palacios. Otras ciudades zapotecas de las que se apoderaron los mixtecos son Zaachila y Yagul, también en el estado de Oaxaca, con las que se complementa el conjunto del impresionante legado de estas culturas. Los mixtecos influyeron en el declive de la civilización maya en el sur, y permanecieron independientes de los aztecas en el norte. Es posible que la población mixteca actual ronde el medio millón de personas, distribuidas en 3 regiones principales: la Mixteca Alta (en las zonas frías de la sierra Madre del Sur), la Mixteca Baja (siguiendo el curso del río Atoyac) y la costa (estados de Oaxaca y Guerrero).
De la Civilización Azteca hablaremos otro día y aparte de ser extenso lo que de ella podemos decir y nos introducirá en ese mundo misterioso del pasado del que tanto hemos podido aprender sobre la Historia de la Humanidad,como hemos podido comprobar de lo leído anteriormente de todos aquellos fantásticos pueblos.
emilio silvera
Jun
14
¡Fluctuaciones de vacío! ¿Que son?
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Un fuerte campo gravitatorio puede inducir un efecto desbocado en las fluctuaciones cuánticas que se producen en el espacio, aparentemente vacío, …
En física cuántica, la fluctuación cuántica es un cambio temporal en la cantidad de energía en un punto en el espacio como resultado del Principio de Incertidumbre que imaginó Werner Heisenberg. De acuerdo a una formulación de este principio energía y tiempo se relacionan de la siguiente forma:
Esto significa que la conservación de la energía puede parecer violada, pero sólo por breves lapsos. Esto permite la creación de pares partícula-antipartícula de partículas virtuales. El efecto de esas partículas es medible, por ejemplo, en la carga efectiva del electrón, diferente de su carga “desnuda”. En una formulación actual, la energía siempre se conserva, pero los estados propios del Hamiltoniano no son los mismos que los del operador del número de partículas, esto es, si está bien definida la energía del sistema no está bien definido el número de partículas del mismo, y viceversa, ya que estos dos operadores no conmutan.
Las fluctuaciones del vacío entre una esfera y una superficie plana
En un estudio realizado por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:
“La materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.
Cada protón (o neutrón) se compone de tres quarks – véase ilustración – pero las masas individuales de estos quarks apenas comprenden el 1% del total de la masa del protón ¿Entonces de dónde sale el resto? La teoría sostiene que esta masa es creada por la fuerza que mantiene pegados a los quarks, y que se conoce como fuerza nuclear fuerte. En términos cuánticos, la fuerza fuerte es contenida por un campo de partículas virtuales llamadas gluones, las cuales irrumpen aleatoriamente en la existencia para desaparecer de nuevo. La energía de estas fluctuaciones del vacío debe sumarse a la masa total del neutrón y del protón.”
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso, en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen, su esencia, lo que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está?
Claro que hemos llegado a saber que las llamadas fluctuaciones del vacío son oscilaciones aleatorias, impredecibles e ineliminables de un campo de fuerza (electromagnético o gravitatorio) que son debidas a un “tira y afloja” en el que pequeñas regiones del espacio toman prestada, momentáneamente, energía de regiones adyacentes y luego las devuelven. Pero…
– ¿Qué regiones adyacentes?
Acaso universos paralelos, acaso defomraciones del espacio-tiempo a escalas microscópicas, micros agujeros negros que pasan a ser agujeros blancos salidos de estas regiones o campos de fuerza que no podemos ver pero sí sentir, y, en última instancia, ¿por qué se forman esas partículas virtuales que de inmediato se aniquilan y desaparecen antes de que puedan ser capturadas? ¿Qué sentido tiene todo eso?
Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado campo de punto cero.
Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.
Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del , y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.
De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.
Son muchas las preguntas que no tienen respuestas
Parece que las fluctiuaciones ocurren en cualquier lugar, pero que, son tan minúsculas que ningún observador o experimentador las ha detectado de una manera franca hasta la fecha y, se sabe que están ahí por experimentos que lo han confirmado. Estas fluctuaciones son más poderosas cuanto menos escala se considera en el espacio y, por debajo de la longitud de Planck-Wheeler las fluctuaciones de vacío son tan enormes que el espacio tal como lo conocemos “pareciera estar hirviendo” para convertirse en una especie de espuma cuántica que parece que en realidad, cubre todo el espacio “vacío cuántico” que sabemos que está ahí y es el campo del que surgen esas partículas virtuales que antes menccionaba.
¿Espuma cuántica? Si profundizamos mucho en la materia… Podríamos ver otro universo distinto al nuestro. Las cosas miles de millones de veces más pequeñas que en nuestro mundo cotidiano, no parecen las mismas cosas.
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro. ¡Qué locura!
Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.
Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.
En física como en todas las demás disciplinas científicas, los conocimientos avanzan y las teorías que sostuvieron los cimientos de nuestros conocimientos se van haciendo viejas y van teniendo que ser reforzadas con las nuevas y más poderosas “vigas” de las nuevas ideas y los nuevos hallazgos científicos que hacen posible ir perfeccionando lo que ya teníamos.
Recientemente se han alzado algunas voces contra el Principio de Incertidumbre de Heisenberg. He podido leer en un artíoculo de la prestigiosa Revista Nature, un artículo del premio Nobel de Física Gerald ´t Hoofft, en el que propone que la naturaleza probabilistica de la mecánica cuántica, desaparecería a la escala de Planck, en la que el comportamiento de la materia sería determinista; a longitudes mayores, energías más pequeñas.
El mundo de lo muy pequeño (el micro espacio), a nivel atómico y subatómico, es el dominio de la física cuántica, así nunca podríamos saber, de acuerdo m con el principio de incertidumbre, y, en un momento determinado, la posición y el estado de una partícula. Este estado podría ser una función de la escala espacio-temporal. A esta escala tamaños todo sucede demasiado deprisa para nosotros.
El “universo cuántico” nada es lo que parece a primera vista, allí entramos en otro mundo que en nada, se parece al nuestro
Cuando hablamos de la mecánica cuántica, tenemos mirar un poco hacia atrás en el tiempo y podremos darnos del gran impacto que tuvo en el devenir del mundo desde que, en nuestras vidas, apareció el átomo y, más tarde, sus contenidos. Los nombres de Planck, Einstein, Bohr, Heisenberg, Schrödinger, Pauli, Bardeen, Roentgen, Dirac y muchos otros, se pudieron a la cabeza de la lista de las personas más famosas. Aquel primer premio Nobel de Física otorgado en 1900 a Roentgen por descubrir los rayos X, en el mismo año llegaría el ¡cuanto! De Planck que inspiró a Einstein para su trabajo sobre el Efecto fotoeléctrico que también, le valdría el Nobel, y, a partir de ese momento, se desencadenó una especie de alucinante por saber sobre el átomo, sus contenidos, y, de qué estaba hecha la materia.
La conocida como Paradoja EPR y los conceptos de Tiempo y , presente, pasado y futuro.
“Nadie ha resuelto la paradoja del gato de Schroedinger, ni la paradoja de Einstein-Podolsky-Rosen. El principio de incertidumbre no se ha explicado y se asume como un dogma, lo mismo pasa con el spin. El spin no es un giro pero es un giro. Aquí hay un desafío al pensamiento humano. ¡Aquí hay una aventura del pensamiento!”
Fueron muchas las polémicas desatadas a cuenta de las aparentes incongruencias de la moderna Mecánica Cuántica. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.
A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas.
Por otro lado, en un entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene paralaje en el mundo de nuestras experiencias cotidianas. Cabe enfatizar pues que cuando se mide el estado de una partícula, enseguida sabemos el estado de la otra, lo cual aparentemente es instantáneo, es decir, sin importar las distancias a las que se encuentren las partículas, una de la otra, ambas saben instantáneamente el estado de la otra.
El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.
Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental. Las nubes de color representan los orbitales atómicos. Los orbitales 2s y 2p de cada átomo se combinan para formar los orbitales σ y π de la molécula, que la mantienen unida. Los orbitales 1s, más interiores, no se combinan y permiten distinguir a cada núcleo. Lo que ocurre a escalas tan pequeñas es fascienante.
Si nos pudiéramos convertir en electrones, por ejemplo, sabríamos dónde y cómo estamos en cada momento y podríamos ver asombrados, todo lo que estaba ocurriendo a nuestro alrededor que, entonces sí, veríamos transcurrir a un ritmo más lento del que podemos detectar en los electrones desde nuestro macroestado espacio temporal. El electrón, bajo nuestro punto de vista se mueve alrededor del núcleo atómico a una velocidad de 7 millones de km/h.
A medida que se asciende en la escala de tamaños, hasta el tiempo se va ajustando a esta escala, los objetos, a medida que se hacen mayores se mueven más despacio y, además, tienen más duración que los pequeños objetos infinitesimales del micro mundo cuántico. La vida media de un neutron es de unos 15 minutos, por ejemplo, mientras que la vida media de una estrellas se puede contar en miles de millones de años.
En nuestra macroescala, los acontecimientos y ,los objetos se mueven a velocidades que a nosotros nos parecen normales. Si se mueven con demasiada lentitud nos parece que no se mueven. Así hablamos de escala de tiempo geológico, para referirnos al tiempo y velocidad de la mayor parte de los acontecimientos geológicos que afectan a la Tierra, el tiempo transcurre aquí en millones de años y nosotros ni lo apreciamos; nos parece que todo está inmóvil. Nosotros, los humanos, funcionamos en la escala de años (tiempo biológico).
El Tiempo Cosmológico es aún mucho más dilatado y los objetos cósmicos (mundos, estrellas y galaxias), tienen una mayor duración aunque su movimiento puede ser muy rápido debido a la inmensidad del espacio universal en el que se mueven. La Tierra, por ejemplo, orbita alrededor del Sol a una velocidad media de 30 Km/s., y, el Sol, se desplaza por la Galaxia a una velocidad de 270 km/s. Y, además, se puede incrementar el tiempo y el espacio en su andadura al estar inmersos y ligados en una misma maya elñástica.
Así, el espacio dentro de un átomo, es muy pequeño; dentro de una célula, es algo mayor; dentro de un animal, mayor aún y así sucesivamente… hasta llegar a los enormes espaciosa que separan las estrellas y las galaxias en el Universo.
Distancias astronómicas separan a las estrellas entre sí, a las galaxias dentro del cúmulo, y a los cúmulos en los supercúmulos.
Las distancias que separan a los objetos del Cosmos se tienen que medir con unidades espaciales, tal es su inmensa magnitud que, nuestras mentes, aunque podamos hablar de ellas de manera cotidiana, en realidad, no han llegado a asimilarlas.Y, a todo ésto, los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.
Una cosa nos ha podido quedar clara: Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.
Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.
Y después de todo ésto, sólo una caso me queda clara: ¡Lo poco que sabemos! A pesar de la mucha imaginación que ponemos en las cosas que creemos conocer.
emilio silvera
Jun
14
Lyell y Darwin ¡El caprichoso destino!
por Emilio Silvera ~ Clasificado en El Destino... Esa variable ~ Comments (0)
Lo cierto es que, miremos hacia donde miremos y por muy lejos que esté el lugar que podamos observar, por lo general y exceptuando regiones locales en las que puedan hallarse objetos singulares, en todas partes existen las mismas cosas, funcionan las mismas leyes, podemos medir las mismas constantes y, Nebulosas, mundos, estrellas y galaxias con inmensos espacios vacíos entre ellas, es la tónica de un Universo en expansión que tratamos de conocer.
Encontraron microbios a dos kilómetros bajo tierra en un cráter en EEUU
Parece que los primeros organismos terrestres vivían en el subsuelo profundo al calor de la joven Tierra, enterrados en rocas calentadas geotérmicamente en condiciones similares a las que podríamos encontrar en una olla a presión. Sólo posteriormente migraron estos organismos a la superficie. Sorprendentemente, los descendientes de esos microbios primordiales aún están allí, a kilómetros de profundidad bajo nuestros pies.
Hace algunos años nadie podía sospechar que la vida pudiera estar presente en un ambiente tan inhóspito escondidos en las rocas bajo la superficie de la Tierra y… ¿Pasará lo mismo en el planeta Marte?.
Srinivasa Ramanujan
Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el número 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del Este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro Universo actual.
El misterio de las Funciones Modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él trabajó en total aislamiento, en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que, los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Es mucho lo que algunos físicos han especulado con la posibilidad de que las Constantes de la naturaleza no sean tan constantes como suponemos. De las Constantes Fundamentales las que más conocemos y oímos mencionar, son: La carga del electrón (e), la velocidad de la luz (c), la Constante de Planck (h), la Constante Gravitacional (G), otras, como la constante magnética (μo), la masa en reposo del electrón (me), o, la Constante de estructura Fina (1/137) denotada como α = 2π e2 / hc y cuyo resultado es 137…El número puro y adimensional.
La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas.
Comencemos con el trabajo titulado: Lyell y Darwin ¡El caprichoso destino!
Permanecen en silencio y quietos en las estanterías, a la espera de que le preguntemos alguna cosa, deseosos de ayudar y responder a todas nuestras preguntas. Son nuestros “mejores amigos”, siempre dispuestos a dar a cambio de nada. En ellos, encontramos la sabiduría que no tenemos, nos abren las puertas de mundos que ni podíamos imaginar, nos transportan a regiones del saber que nos asombran y maravillan y, todo eso, está al alcance de cualquiera, simplemente se exige un ingrediente: ¡Ganas de saber y mucha curiosidad!
Aquel día, durante toda la tarde, estuve repasando libros y leyendo pasajes de unos y otros. Astronomía, Física, Biología, y, algo de poesía que estaba enpolvada en el fondo de la Biblioteca de casa. De pronto, me dí de bruces con la obra “La Aventura del Universo ” de Timoty Ferris, y, distraído me puse a repasar los capítulos comenzándolos a leer y, al recordarlos, pasaba al siguiente:
El capítulo XIII que tiene por Titulo La edad de la Tierra, que comienza con los pensamientos, el primero de Francis Bacon: “La antigüedad del Tiempo es la juventud del Mundo”, el segundo de Denis Diderot: “Lo que tomamos por historia de la naturaleza sólo es la muy incompleta historia de un instante.”
Comienzo a leer y el autor nos dice:
Charles Lyell (1797-1875)
“El libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.”
Construir una teoría de base empírica como explicación de Darwin de la evolución requiere, no sólo datos de observación, sino también una hipótesis organizadora. Darwin tomó su hipótesis, que el mundo es viejo y sigue cambiando hoy tanto como en el pasado, principalmente de Lyell. “El gran momento de los Principios -escribió- era que le cambiaba a uno todo el carácter de la propia mente, y cuando veía algo nunca visto por Lyell, uno seguía viendo en parte con sus ojos .” Más tarde Darwin admitió que “me siento como si mis libros proviniesen a medias del cerebro de sir Charles Lyell.”
El viaje del Beagle.
Tras graduarse en Cambridge en 1831, el joven Darwin se enroló a los 22 años en el barco de reconocimiento HMS Beagle como naturalista sin paga, gracias en gran medida a la recomendación de Henslow, para emprender una expedición científica alrededor del mundo. La expedición duró cinco años y recogió datos hidrográficos, geológicos y meteorológicos en Sudamérica y otros muchos lugares. Las observaciones de Darwin le llevaron a desarrollar la teoría de la selección natural.
Durante la expedición del Beagle, Darwin vio el mundo como pocos lo han visto, en toda su rica diversidad de detalles, a caballo, a lomos de mula, a pie, en exploraciones a cuevas y escursiones a través de bancos de hielo y arenas ardientes, desde Patagonia hasta Australia y las Islas Keeling del Océano Índico. Observó, absorbió todo y reunió tantas muestras de plantas y animales que sus compañeros del barco se preguntaban en voz alta si se había propuesto hundir el Beagle.
Foto de Maqueta Del Barco Beagle De Charles Darwin 60 Cm Esc 1/75
En Chile Darwin halló fósiles marinos en cimas montañosas de 4.000 metrtos de altura y presenció un terremoto que levantó el suelo casi un metro en unos minutos, prueba a favor de Lyell de que la acción más o menos uniforme de procesos geológicos pueden producir cambios tan dramáticos como los atribuidos por los geólogos a las antiguas catástrofes; al informar de sus hallazgos en una carta a su maestro Henslow, escribió: “Me temo que usted me dirá que aprenda el ABC -a distinguir el cuarzo del feldespato-, antes de permitirme tales especulaciones.” Pero por el tiempo en que el Beagle llegó al Pacífico Sur, Darwin ya tenía cuatro años de riguroso trabajo de campo, y había empezado a sentirse más seguro de su capaciodad para interpretar observaciones en términos de hipótesis.
El joven Darwin.
Darwin, además, estuvo influenciado por el geólogo Adam Sedgwick y el naturalista John Henslow en el desarrollo de su teoría de la selección natural, que habría de convertirse en el concepto básico de la teoría de la evolución. Lo cierto es que, aunque muchos se opusieron a estas ideas evolutivas, con el paso del tiempo y observando el comportamiento de la Naturaleza, la mayoría de la gente racional, no dudan hoy que el mundo de dentro de mil años será un mundo diferente a este nuestro de hoy.
Vista de satélite del archipiélago (marzo, 2002)
En el Pacífico Sur, Darwin se aventuró a elaborar una teoría propia sobre el origen de los atolones de coral. Un caluroso día de otoño de 1834, m ientras el Beagle se dirigía de las Islas Galápagos a Tahití, trepó al palo mayor y vio los atolones de color blanco mate del archipiélago Tuamotú dispersos por el mar como aros de encajes. Le impresionó su apariencia de fragilidad: “Estas bajas islas de coral huecas no guardan ninguna proporción con el vasto océano del que surgen bruscamente -escribió- y parece extraordinario que estos débiles invasores no sean arrasados por las toda poderosas e incansables olas de ese gran mar que es mal llamado Pacífico”.
Mapa de las Islas
Darwin concibió la teoría de que los atolones marcaban los sitios de volcanes desaparecidos. Un nuevo volcan puede irrumpir a través del suelo marino y, en sucesivas erupciones, convertirse en una isla montañosa que se eleva sobre la superficie del mar. Cuando la lava deja de fluir y la actividqad se apaga, puede formarse en arrecife de coral vivo en las laderas del volcán, debajo del nivel del mar. Y aquí empieza la contribución de Darwin: luego, el volcan inactivo puede empezar a hubdirse, por la erosión o por el lento hundimiento del suelo oceánico. A medida que la vieja isla se sumerje, el coral vivo sigue formandose encima del coral muerto o moribundo que hay debajo. Con el tiempo, la isla original desaparece debajo de las olas, dejando detrás un anillo de coral. “Los corales constructores de arrecifes -escribió Darwin- han creado y conservado maravillosos monuntos de las oscilaciones subterráneas del nivel; vemos en cada banco de coral una prueba de que la tierra se ha hundido, y en cada atolón un monumento sobre una isla ahora, perdida.”
Porción de una franja del Pacífico, mostrando dos islotes en el anillo o arrecife coralino separados por un profundo paso entre el océano y la laguna.
Darwin sentó las bases de la moderna teoría evolutiva, al plantear el concepto de que todas las formas de vida se han desarrollado a través de un lento proceso de selección natural. Su trabajo tuvo una influencia decisiva sobre las diferentes disciplinas científicas, y sobre el pensamiento moderno en general, toda vez que, con los pensamientos de Lyell y de otros profesores de su juventud, pudo llegar, con la inestimable ayuda de la experiencia de observación del mundo, cuál era el camino que tomaba la Naturaleza para que, sus criaturas, evolucionaran en un mundo complejo hecho de la sustancia creada por transiciones de fase que sucedieron en el universo muchos millones de años antes.
El H.M.S. Beagle. El HMS Beagle se hizo a la mar en 1832 con el fin de cartografiar con mayor detalle las costas sudamericanas. Estaba al mando el capitán Robert Fitzroy y entre sus tripulantes figuraba el joven naturalista Charles Darwin. Durante el viaje del Beagle, que duró cinco años, Darwin sufrió mucho de mareo. Aunque disfrutó de dos largos periodos en tierra, pasó muchos días enfermo, tendido en su litera y alimentándose sólo de uvas.
Pero, sigamos con la teoría de Darwin de la formación del coral que nos cuenta Timoty Ferris, en su Aventura del Universo.
La Belleza de esta teoría, desde un punto de vista uniformista, residía en que el proceso debía ser gradual. El coral vivo requiere la luz solar; como señaló Darwin, “no puede vivir a una profundidad mayor de veinte o treinta brazas”, o sea de 40 a 60 metros aproximadamente. Si las islas se hubiesen hundido rápidamente, como sostenía el catastrofísmo, el coral se habría sumergido en las profundidades oscuras del mar antes de que el nuevo coral hubiese tenido tiempo de crecer encima de él, y no hubiese formado ningún atolón.
Un atolón es una isla coralina oceánica, por lo general con forma de anillo más o menos circular, o también se entiende como el conjunto de varias islas pequeñas que forman parte de un arrecife de coral, con una laguna interior que comunica con el mar. Los atolones se forman cuando un arrecife de coral crece alrededor de una isla volcánica, a medida que la isla se va hundiendo en el océano.
Animación que muestra el proceso dinámico de formación de un atolón coralino. Los corales (representados en púrpura) crecen alrededor de una isla volcánica oceánica, formando un arrecife anular. Cuando las condiciones son las adecuadas, el arrecife crece, y la isla interior se hunde. Finalmente la isla desaparece debajo del nivel del agua, dejando un anillo de coral con una laguna en su interior. Este proceso de formación de un atolón puede insumir unos 30.000.000 de años.
En otro orden de cosas, sería injusto dejar de decir aquí que Darwin estaba familiarizado también con las ideas evolucionistas del biólogo francés Jean-Baptiste Lamarck, quien sostenía que los caracteres adquiridos por los individuos mediante la experiencia se podían transmitir a su descendencia. En un mundo lamarkiano, los caballos que se hiciesen fuertes mediante las carreras legaban su rapidez a su cria, y las jirafas, al estirar su cuello para llegar a las hojas de los árboles, hacían que la siguiente generación de jirafas tuviesen los cuellos más largos. El lamarckismo estaba lleno de resonancias morales gratificantes para los victorianos, ya que implicaba que los padres que trabajaban duramente y evitaban el vicio tendrían hijosm genéticamente dispuestos a trabajar duro y llevar una vida sana.
Pero se derrumbaba en la cuestión e cómo habían surgido las nuevas especies, es decir, nos decía como obtener mejores caballos y jirafas pero, nos dejaba a ciegas en cuanto al origen de las especies, y por lo tanto dejaba sin respuesta la pregunta de por qué en el registro fósil se encuentran especies diferentes de las que viven hoy.
El viejo Darwin
La teoría de Darwin mantiene que los efectos ambientales conducen al éxito reproductivo diferencial en individuos y grupos de organismos. La selección natural tiende a promover la supervivencia de los más aptos. Esta teoría revolucionaria se publicó en 1859 en el famoso tratado El origen de las especies por medio de la selección natural.
La contribución de Darwin no fue argüir simplemente que la vida había evolucionado – ni siquiera le gustaba usar la palabra “evolución”-, sino también identificar el mecanismo evolutivo por el cual surgen nuevas especies. Por eso tituló su libro El origen de las especies.”
Su teoría tiene mucho más que explicar de lo poco que aquí se ha resumido que es sólo un detalle de la ingente obra del popular personaje. Sin embargo, en un lugar limitado como este para exponer cuestiones de todo índole científico, el objetivo es dejar una semblanza del tema que se esté tratando y, con esta pincelada que nos hace Ferris de Darwin, es más que suficiente para que nos hagamos una idea del personaje y del ingente trabajo que realizó.
La Historia se lo ha reconocido bien.
No siempre, grandes hombres que hicieron una labor encomiable por el progreso de la Humanidad, finalmente no vieron reconocidos sus méritos y, por una u otra razón, quedaron sumidos en el olvido siendo cometida un agran injusticia, habiendo realizado una gran labor que nunca le fue adjudicada, y, a veces, fueron otros que llegaron después los que, se apropiaron de sus ideas como propias. Hiparco y Copérnico podrían ser un buen ejemplo de ello.
Por todos ellos, quede aquí el recuerdo y homenaje de aquel reconocimiento robado.
emilio silvera
Jun
13
¡El Universo! ¡Esa Maravilla!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
El Cúmulo Copo de Nieve en la Nebulosa del Cono, es como tántas otras Nebulosas, el resultado de la explosión de una estrella al final de sus días. Las estrellas nunca quieren morir del todo y, cuando lo hacen al finalizar sus ciclos de fusión, se convierten en otros objetos distintos y, sus materiales sobrantes son dejados esparcidos por grandes regiones del espacio interestelar, en forma de bellas nebulosas de las que surgen nuevas estrellas, nuevos mundos y… -seguramente- nuevas formas de vida.
Ahora sabemos que el Universo está constituito de innumerables galaxias que forman cúmulos que, a su vez, se juntan en supercúmulos. Estas galaxias están abarrotadas de estrellas y las estrellas, no pocas veces, están acompañadas de planetas que forman sistemas planetarios. Nosotros, los humanos, hemos realizado profundas observaciones que, con nuestros modernos ingenios, nos han podido llevar hasta el espacio profundo, allí donde habitan galaxias que nacieron hace ahora doce mil millones de años.
Arriba podemos contemplar una especie de incubadora estelar que todos conocemos como la Gran Nebulosa de Orión, una familiar imagen que está cerca de “nuestro barrio” dentro de la Galaxia Vía Láctea y también conocida como M42 con sus resplandecientes nubes y sus jóvenes y masivas estrellas nuevas que radian en el ultravioleta ionizando la región que toma ese familiar tono azulado.
Situada en el borde de un complejo de nubes moleculares gigantes, esta cautivadora nebulosa -laboratorio espacial- es solo una pequeña fracción de la inmensa cantidad de material interestelar en nuestra vecindad galáctica.El campo de la imagen se extiende cerca de 75 años-luz a la distancia estimada a la Nebulosa de Orión de 1.500 años-luz. Es una de las Nebulosas más estudiada por los Astrónomos y astrofísicos debido a su enorme capacidad de crear nuevas estrellas y estar en ella presentes procesos de transmutación de elementos y una vertiginosa actividad que es la mejor muestra del comportamiento de la materia en estos lugares.
Sin salir de nuestra región, nos valos al barrio vecino que conocemos como Cinturón de Orón donde destacan las estrellas azuladas Alnitak, Alnilam y Mintaka, estrellas supermasivas y muy calientes que forman el Cinturón del Cazador. Ahí podemos ver, abajo a la izquierda la famosa Nebulosa oscura Cabeza de Caballo.
Alrededor de figuras como la que arriba podemos contemplar, los humanos siempre hemos sido propensos a creer en predicciones fantásticas y fantasías y, para darle ese tinte de enigma y misterio, algunas veces, no hemos dudado en retorcer los hechos para que parezcan lo que no son. Con lo que los mayas creían, ha pasado algo parecido y, los catastróficos, aprovechan para crear una corriente de opinión en la que, mucha gente ignorante de los hechos suelen caer.
“Según creían los sacerdotes mayas, estos acontecimientos celestes marcaban el amanecer de una nueva era, que se contabilizó usando la “cuenta larga”, un registro lineal de los días que comienza con la cuarta creación maya del año 3114 a.C. y predice que el final del universo actual tendría lugar el 23 de diciembre del año 2012 d.C. Durante este intervalo de vida del universo, que es de unos cinco mil años, numerosos ciclos de tiempo menores marcaban las duraciones de los ritmos astronómicos, naturales y políticos intercalados.”
Curiosamente, las fechas de la cuarta y última creación maya encajan bastante bien con las del cuarto y último ciclo hindú: 13 de agosto del año 3114 a. C. y 5 de febrero de 3112 a.C. para los mayas, según Linda Schele, y 17-18 de febrero del año 3102 a.C. para los hindúes, según Aveni. En la India estas fechas concuerdan con una conjunción planetaria en Aries. En la mitología maya estas fechas representan dos actuaciones de los dioses para crear el universo. El 13 de agosto de 3114 establecieron el corazón cósmico llevando las tres estrellas del cinturón de Orión al centro del cielo; dos años más tarde, el 5 de febrero, levantaron el árbol cósmico, que es la Vía Láctea. Como en la India, ambos días correspondían a acontecimientos astronómicos. Schele, una epigrafista y profesora de historia del arte de la Universidad de Texas, que ve los mitos mayas como “mapas estelares”, afirma que el 13 de agosto del año 3114 a.C. las estrellas de Orión se situaron en el centro del cielo al amanecer. La Gran Nebulosa (M42), desconocida para los europeos hasta 1610, puede verse entre estas estrellas y los mayas la llamaron el humo de la cocina cósmica. Un año más tarde, los dioses plantaron el árbol cósmico, representado por la Vía Láctea, que conectaba las trece capas del cielo con las siete capas del submundo. Según Schele, “ En el año 3112 a.C. la mañana del 5 de febrero, la totalidad de la Vía Láctea ascendió por la parte oriental del horizonte, hasta que al amanecer se extendió de norte a sur por el cielo”. Aveni está de acuerdo con la primera interpretación, pero tiene dudas con respecto a las afirmaciones que hablan de la Vía Láctea del 5 de febrero.
¡Otra vez me ha pasado, aparece un recuerdo en mi mente y lo sigo, lo sigo, lo sigo… dejando de lado lo que estaba haciendo.
Sigamos con el trabajo de hoy.
Del Brazo de Orión, la región que nos acoge y en la que se encuentra situado nuestro Sistema solar, al no poderlo tomar desde fuera y tenerlo tan cerca (de hecho estamos en él inmersos), no podemos tener una imagen como las que hemos captado de otros lugares y regiones más alejadas. También conocido como “brazo local” que es alternativo al Brazo de Orión de nuestra Galaxia, así se define algunas veces al Brazo espiral que contiene a nuestro Sol.
Cuando hablamos de brazo espiral nos estamos refiriendo a una estructura curvada en el disco de las galaxias espirales (y de algunas irregulares) donde se concentran las estrellas jóvenes, las nebulosas (regiones H II) y el polvo. Algunas galaxias tienen un patrón bien definido de dos brazos espirales, mientras que otras pueden tener tres o cuatro brazos, estando en ocasiones fragmentados. Los brazos son visibles por la reciente formación de estrellas brillantes, masivas y de corta vida en ellos. Esta actividad de formación de estrellas es periódica, correspondiendo al movimiento a través del disco de una onda de densidad gravitatoria y de fuertes vientos estelares.
Nuestra curiosidad nos ha llevado, mediante la observación y estudio del cielo, desde tiempos inmemoriales, a saber de las estrellas, de cómo se forman, viven y mueren y, de las formas que adoptan al final de sus vidas, en qué se convierten cuando llega ese momento final y a dónde va a parar la masa de las capas exteriores que eyectan con violencia al espacio interestelar para formar nuevas nebulosas. De la estrella original, según sus masas, nos quedará una enana blanca, una estrella de neutrones y, un agujero negro. También, en encuentros atípicos o sucesos inesperados, pueden crearse estrellas por fusión que las transforman en otras diferentes de lo que en su origen fueron.
Lo podemos explicar de diferentes maneras
Uno de los acontecimientos más increíbles que podríamos contemplar en el Universo sería, cómo se forma un Agujero negro que, lo mismo es el resultado de la muerte de una estrella masiva que implosiona y se contrae más y más hasta que desaparece de nuestra vista, o, también, se podría formar en otros sucesos como, por ejemplo, la fusión de dos estrellas de neutrones.
La formación de un agujero negro es una de las manifestaciones más grandes de las que tenenmos constancia con la Gravedad. La estrella, en este caso gigante y muy masiva, llega a su final por haber agotado todo su combustible nuclear de fusión y, queda a merced de la fuerza de gravedad que genera su propia masa que, entonces, comienza a contraerse sobre sí misma más y más hasta llegar a convertirse en una singularidad, es decir, un punto matemático en el que ciertas cantidades físicas pueden alcanzar valores infinitos de temperatura y densidad. Por ejemplo, de acuerdo con la relatividad general, la curvatura del espacio-tiempo se hace infinita en un agujero negro en el que, el espacio y el tiempo…¡dejan de existir!
Es tan fuerte la Gravedad generada que nada la puede frenar. Muchas veces hemos hablado aquí de la estabilidad de una estrella que se debe a la igualdad de dos fuerzas antagómicas: por un lado, la fuerza de fusión y de radiación de una estrella que la impulsa a expandirse y que, sólo puede ser frenada por aquella otra fuerza que emite la misma masa estelar, la Gravedad. Las dos se ven compensadas y, de esa manera, la estrella vive miles de millones de años.
Las estrellas implosionan y se contraen sobre sí mismas cuando la fusión finaliza en sus núcleos por falta de combustible nuclear, tales como el hidrógeno, helio, berilio, Carbono, Oxígeno… Entonces, el proceso de contracción no es igual en todas ellas, sino que, está reglado en función de la masa que cada estrella pueda tener. En una estrella como nuestro Sol, cuando comienza a contraerse está obligando a la masa a que ocupe un espacio cada vez menor.
La masa, la materia, como sabemos está formada por partículas subatómicas que, cada una de ellas tienen sus propias singularidades, y, por ejemplo, el electrón, es una partícula que, siendo de la familia de los leptones es, además, un fermión que obedece a la estadística de Fermi-Dirac y está sometido al Principio de exclusión de Pauli que es un principio de la mecánica cuántica aplicable sólo a los fermiones y no a los bosones, y, en virtud del cual dos partículas idénticas en un sistema, como por ejemplo electrones en un átomo o quarks en un hadrón, no pueden poseer un conjunto idénticos de números cuánticos. (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado (El origen de este Principio se encuentra en el teorema de espín-estadística de la teoría relativista).
Toda la explicación anterior está encaminada a que, podáis comprender el por qué, se forman las estrellas enanas blancas y de neutrones debido al Principio de exclusión de Pauli. Sabemos que la materia, en su mayor parte son espacios vacíos pero, si la fuerza de Gravedad va comprimiendo la masa de una estrella más y más, lo que está haciendo es que va juntando, cada vez más, a las partículas que conforman esa materia. Así, los electrones se ven más juntos cada vez y, llega un momento, en el que sienten una especie de “claustrofobia”, su condición de fermiones, no les permite estar tan juntos y, entonces, se degeneran y comienzan a moverse a velocidades relativista. Tal suceso, es de tal magnitud que, la Gravedad que estaba comprimiendo la nasa de la estrella, se ve frenada y se alcanza una estabilidad que finaliza dejando una estrella enana blanca estable.
Pero, ¿qué pasaría si la estrella en vez de tener la masa de nuestro Sol, tiene varias veces su masa? Entonces, ni la degeneración de los electrones puede frenar la fuerza gravitatoria que sigue comprimiendo la masa de la estrella y fusiona electrones con protones para formar neutrones. Los neutrones, que también son fermiones, se ven comprimidos hasta tal punto que, también se degeneran y, ellos, sí son capaces de frenar la fuerza gravitatoria quedando esa masa estabilizada como estrella de Neutrones.
Como el niño que no deja de hacer preguntas, nosotros, llegados a este punto también, podríamos preguntar: ¿Qué ocurriría si la estrella es muy masiva? Entonces amigos míos, el Principio de Excliusión de Pauli haría mutis por el foro, impotente ante la descomunal fuerza gravitatoria desatada y, ni la degeneración de electrones y neutrones podría frenarla. La masa se vería comprimida más y más hasta convertirse en un agujero negro de donde, ni la luz puede escapar.
Pero los mecanismos del Universo son muchos y los sucesos que podemos contemplar son asombrosos. Por ejmplo, si una inocente estrella está situada cerca de una enana blanca de gran densidad, se vería atraída por ella y “vería” como, poco a poco, le robaría su masa hasta que, finalmente, la engulliría en su totalidad.
Si eso ocurre tal y como vemos en la imagen, ¿qué pasaría entonces? Sencillamente que, la estrella enana blanca pasaría a transformarse en una estrella de neutrones, ya que, la masa que a pasado a engrosar su entidad, es demasiado para poder quedar estable como enana blanca y, de nuevo la gravedad hace que electrones y protones se fundan para formar neutrones que, degenerados, estabilizan la nueva estrella.
Sí, hemos llegado a ser conscientes de nuestro entorno y hemos podido crear ingenios que nos hablan y muestran las lejanas regiones del Universo. Ahora podemos hablar de las tremendas energías presentes en el espacio cosmológico y sabemos por qué se generan y cuáles son sus consecuencias. Conocemos de la importancia del Sol para la vida en la Tierra, hemos observado el Sistema solar al que pertenecemos dentro una inmensa galaxia de estrellas y, sobre todo, hemos llegado a comprender que, la Vida en nuestro planeta, puede no ser un privilegio, sino cosa cotidiana repartida por todo el universo infinito.
El Telescopio Espacial Fermi, de Rayos Gamma de la NASA ha descubierto y nos enseña una estructura nunca antes vista en el centro de nuestra galaxía la Vía Láctea. La estructura se extiende a 50.000 años luz y puede ser el remanente de una erupción de un agujero negro de enorme tamaño en el centro de nuestra Galaxia.
El desarrollo de la ciencia tiene su frontera superior en el desarrollo de tecnologías que hacen posible el conocimiento de nuestro universo. Satélites, telescopios, radio telescopios, sondas espaciales, naves, cohetes y transbordadores son el fruto de la investigación de muchos profesionales de diversas áreas del conocimiento que están llevando a toda la Humanidad hacia el futuro.
Con el radiotelescopio ALMA, ubicado en el desierto de Atacama (Chile), a 5.000 metros de altura, los científicos lograron captar moléculas de glicolaldehído en el gas que rodea la estrella binaria joven IRAS 16293-2422, con una masa similar a la del Sol y ubicada a 400 años luz de la Tierra.
El glicolaldehído ya se había divisado en el espacio interestelar anteriormente, pero esta es la primera vez que se localiza tan cerca de una estrella de este tipo, a distancias equivalentes a las que separan Urano del Sol en nuestro propio sistema solar.
“En el disco de gas y polvo que rodea a esta estrella de formación reciente encontramos glicolaldehído, un azúcar simple que no es muy distinto al que ponemos en el café”, señaló Jes Jørgensen, del Instituto Niels Bohr de Dinamarca y autor principal del estudio.
El observatorio espacial Kepler encontró en el sistema planetario Kepler-22, a 600 años luz, el primer planeta situado en la llamada “zona habitable”, un área en la que, por su distancia a su sol, puede haber agua líquida, según anunció este lunes la NASA en una rueda de prensa. Los científicos del Centro de Investigación Ames de la NASA anunciaron además que Kepler ha identificado 1.000 nuevos “candidatos” a planeta, diez de los cuales tienen un tamaño similar al de la Tierra y orbitan en la zona habitable de la estrella de su sistema solar, esto es, ni demasiado cerca ni demasiado lejos de una estrella.
El planeta, Kepler-22b, es el más pequeño hallado por la sonda espacial orbitando en la “zona habitable” -aquella donde las temperaturas permiten la vida- de una estrella similar a la de la Tierra. 55 planetas son aún más grandes que Júpiter, el más grande de nuestro sistema solar Es más grande que la Tierra y todavía no se ha determinado si es rocoso, gaseoso o líquido, pero, según dijo la subdirectora del equipo científico del Centro Ames, Natalie Batalha, “estamos cada vez más cerca de encontrar un planeta parecido a la Tierra”.
Esta escena es del día en que, en 1997, fue lanzada la Misión Cassini-Huygens hacia el vecino Saturno. ¿Qué podemos comentar de esa misión que nos llevó al más grande de los asombros, al podernos mostrar imñágenesa nunca antes vistas?
Imágenes tomadas por Cassini a su paso por Júpiter
La misión Cassini a Saturno y Huygens a Titán, es una de las misiones más ambiciosas hasta el momento jamás llevado a cabo. Todos sabemos ahora de su alta rentabilidad y de los muchos logros conseguidos. Gracias a esta misión sabemos de mucho más sobre el planeta hermano y de su gran satélite Titán del que hemos podido comprobar que es una “pequeña Tierra” con sus océanos de metano y su densa atmósfera inusual en cuerpos tan pequeños.
¡El ingenio humano!
La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.
¿Os dais cuenta de la asombrosa imaginación y los conocimientos que son necesarios para llevar a cabo todo este conglomerado de datos?
Fase de Crucero:
Cassini llevó a cabo un plan de vuelo de baja actividad durante el cuakl sólo se realizaron las actividades de navegación e ingenieria imprescindibles, como maniobras de chequeo o corrección de trayectoria. Los instrumentos científicos fueron desconectados permanentemente, salvo en el transcurso de unas pocas actividades de mantenimiento. Estas incluían sólo un chequeo de todo su instrumento cuando la sonda estaba cerca de la Tierra, así como la calibración del magnetómetro. Las comprobaciones sobre el estado de la sonda Huygens se llevaron a cabo cada seis meses, mientras que las observaciones científicas se realizaron cuando el vehículo se aproximó a Venus, la Tierra y Júpiter.
El sobrevuelo de Júpiter significó una buena oportunidad para las sondas Cassini y Galileo de cara a estudiar varios aspectos de este planeta y su medio circundante desde octubre de 2000 hasta marzo de 2001, es decir, antes, durante y después de la máxima aproximación a Júpiter, el 30 de diciembre de 2000. Las observaciones científicas contaron con la ventaja de disponer de dos sondas espaciales en las cercanías del planeta al mismo tiempo. Algunos de los objetivos llevados a cabo conjuntamente por la Cassini y la Galileo incluyeron el estudio de la magnetosfera y los efectos del viento solar en ésta, así como la obtención de datos sobre las auroras en Júpiter.
Durante este sobrevuelo, la mayor parte de los instrumentos del orbitador Cassini fueron conectados, calibrados y trabajaron recogiendo información. Este estudio conjunto sirvió como buena práctica para comprobar el funcionamiento del instrumental de la sonda tres años antes de su llegada a Saturno.
Llegada a Saturno
Después de un viaje de casi siete años y más de 3500 millones de kilómetros recorridos, la sonda Cassini llegará a Saturno el día 1 de julio de 2004.
La fase más crítica de la misión –además del lanzamiento– es la inserción orbital del vehículo en torno al planeta. Cuando el vehículo alcance el planeta, la sonda pondrá en marcha su motor principal durante 96 minutos a las 04:36 T.U., con la finalidad de reducir su velocidad y permitir que la gravedad de Saturno la capture como un satélite del planeta. Atravesando el hueco entre los anillos F y G, Cassini se aproximará al planeta para iniciar así la primera de sus 76 órbitas que completará durante su misión principal de cuatro años.
Todos hemos podido admirar las imágenes y sabido de los datos científicos que la Cassini ha podido enviar a la Tierra para que, todos podamos saber mucho más del planeta Saturno y de su entorno. Imágenes inolvidables y de increíble belleza forman parte ya de la historia de la misión.
La misión de la sonda Huygens
La sonda Huygens viajó junto a la Cassini hacia Saturno. Anclada a ésta y alimentada eléctricamente por un cable umbilical, Huygens ha permanecido durante el viaje de siete años en modo inactivo, sólo puesta en marcha cada seis meses para realizar chequeos de tres horas de duración de su instrumental y de sus sistemas ingenieriles.
Unos 20 días antes de alcanzar la atmósfera alta de Titán, Huygens fue eyectada por Cassini. Esto ocurrió el 24 de diciembre de 2004. Tras cortar su cable umbilical y abrir sus anclajes, Huygens se separó de su nave madre y voló en solitario hacia Titán, con una trayectoria balística, girando a 7 revoluciones por minuto para estabilizarse. Varios temporizadores automáticos conectarán los sistemas de la sonda espacial antes de que ésta alcance la atmósfera superior de Titán.
Dos días después de la eyección de la sonda, Cassini realizará una maniobra de desviación, de manera que ésta puedo seguir a la Huygens cuando penetró en la atmósfera de Titán. Esta maniobra servió también para establecer la geometría requerida entre el orbitador con Huygens, así como las comunicaciones de radio durante el descenso.
Huygens porta dos transmisores de microondas en la banda S y dos antenas, las cuales enviarán simultáneamente la información recogida hacia el orbitador Cassini. Una de ellas emitirá con un retraso de seis segundos respecto a la otra, para evitar cualquier pérdida de información si tuviesen lugar problemas con las comunicaciones.
El descenso de Huygens tuvo lugar el 15 de enero de 2005. La sonda entró en la atmósfera de Titán a una velocidad de 20.000 Km/h. Este vehículo ha sido diseñado tanto para soportar el extremo frío del espacio (temperaturas de –200°C) como el intenso calor que se encontrará durante su entrada atmosférica (más de 12000°C).
Los paracaídas que transporta Huygens frenaron más la sonda, de tal modo que ésta puedo llevar a cabo un amplio programa de observaciones científicas al tiempo que desciende hacia la superficie de Titán. Cuando la velocidad de la sonda descendido hasta los 1400 Km/h, se desprendió su cubierta mediante un paracaídas piloto. Acto seguido se desplegó otro paracaídas de 8.3 metros de diámetro que frenó aún más el vehículo, permitiendo la eyección del decelerador y del escudo térmico.
Durante la primera parte del descenso, el trabajo de los instrumentos situados a bordo de la sonda Huygens será dirigido por un sistema temporizador, pero en los últimos 10 a 20 Km, será un altímetro radar quien medirá la altura a la que se encuentra el vehículo y controlará el instrumental científico.
Durante el descenso, el instrumento de estructura atmosférica de Huygens medió las propiedades físicas de la atmósfera. El cromatógrafo de gases y el espectrómetro de masas determinarán la composición química de la atmósfera en función de la altitud. El colector de aerosoles y el pirolizador capturarán partículas de aerosol –las finas partículas líquidas o sólidas suspendidas en la atmósfera–, las calentará y enviará el vapor resultante al espectrómetro y el cromatógrafo para su análisis.
El sistema de imagen de descenso y el radiómetro espectral trabajarán en la toma de imágenes de formaciones nubosas y de la superficie de Titán, determinando además la visibilidad en la atmósfera de este mundo. Según se vaya aproximando a la superficie, el instrumento encenderá un sistema de iluminación brillante que para medir la reflectividad superficial. Paralelamente a ello, la señal emitida por la sonda Huygens será recogida por el experimento Doppler de la Cassini, con lo cual se podrán determinar los vientos, ráfagas y turbulencias de la atmósfera. Cuando la sonda sea empujada por el viento, la frecuencia de su señal de radio variará ligeramente –en lo que se conoce como efecto Doppler, similar a la variación de la frecuencia del silbido de un tren que percibimos cuando éste pasa por delante de nosotros. Estos cambios en la frecuencia se emplearán para deducir la velocidad del viento que ha experimentado la sonda.
Pequeños mundos muy cercanos a nosotros y que nos podrían dar buenas sorpresas
La misión principal de la sonda Cassini tenía previsto que finalizaría el 30 de junio de 2008, cuatro años después de su llegada a Saturno y 33 días después de su último sobrevuelo a Titán, el cual tuvo lugar el 28 de mayo de 2008. Este sobrevuelo estaba diseñado para posicionar a la sonda de cara a un nuevo acercamiento a dicho satélite el 31 de julio de 2008, ofreciendo la oportunidad de proceder con más sobrevuelos durante la misión extendida, si es que los recursos disponibles la permiten. No hay ningún factor en la misión principal que impida una misión extendida. Lo cierto es que, Cassini sigue ahí y, como otros ingenios espaciales enviados al espacio, continúan más allá de la misión en principio previstas enviando datos e imagénes que nos acercan al saber del mundo que nos rodea y nos dice cómo y por qué funciona así la Naturaleza.
Me he extendido más de lo previsto en este trabajo y, no puedo seguir nombranbdo otras misiones que, como las enviadas a Marte, tan buenos réditos de conocimiento nos han suministrado. Ya habrá lugar más adelante para continuar profiundizando en todo lo que hicimos y, también, ¿cómo no? en lo mucho nos queda por hacer.
No podemos negar que, escenas como la que arriba contemplamos, no sea algo cotidiano en el devenir de la Humanidad. El futuro que nos aguarda puede ser algo maravilloso y de asombrosos descubrimientos que nos llevaran lejos, hacia otros mundos, otras estrellas… ¡otras amistades!
Pero todo eso amigo míos, sólo podrá ser posible gracias al conocimiento y al hecho de ser conscientes de nuestras limitaciones. No debemos nunca querer superar a la Naturaleza, simplemente debemos aprender de ella.
emilio silvera