lunes, 24 de febrero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Charla entre dos Quarks

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el Blog Taringa, me encuentro este trabajo que tenía olvidado.

 

Como no sabemos a ciencia cierta, la verdadera naturaleza de muchas de las cosas que creemos conocer, se podría dar el caso de que, en el centro del núcleo atómico y dentro de un protón y un neutrón, dos Quarks, estuvieran entablando la conversación siguiente:

 

 

Charla  entre dos Quarks

_ Oye, amigo up, ¿no te cansas de estar aquí confinado? ¿no te gustaría conocer qué mundo puede haber fuera de éste nuestro tan reducido en el que vivimos?

_ Pues, si te digo la verdad, estimado down, si que estoy un poco frustrado de que, los persistentes Gluones, no me dejen alejarme mucho de la demarcación estipulada por la libertad sintótica. Y, si te he de ser sincero, preferiría mirar el mundo que, según indicios que me han llegado, es mucho mayor de lo que nosotros podemos contemplar.

_ Llevas toda la razón, a veces me desespera este mar de gluones que nos agarra impidiéndonos salir al exterior misterioso. ¿Qué cosas podríamos contemplar ahí fuera?

_ ¡Os queréis callar! (Dijo un protón) Con vuestra charla me estáis distrayendo y no puedo solucionar el problema que me he planteado de sí, en realidad, uno de ustedes puede ser más masivo que yo. Teniendo en cuenta que estoy conformado de tres de ustedes, ¿cómo es posible que uno sólo pueda ser más masivo si estuviera en estado libre?

 

        Nuestro amigo el protón

_ Que pregunta más tonta, amigo protón, a estas alturas deberías saber que, nadie sabe cuál es la masa de los quarks, ya que ningún quark puede ser observado de forma libre. Solo conocemos de forma precisa la masa del quark top (cima), ya que su gran masa hace que el error relativo en la medida permita un error absoluto pequeño. Sin embargo, muchos proclaman el descubrimiento de fórmulas matemáticas que permiten calcular la masa de todas (o casi todas) las partículas elementales (leptones y quarks). Pero, centrándonos en la pregunta que te atormenta, sí te puedo decir que, al menos en teoría, la masa del Quarks es mayor que la del Protón, toda vez que la energía potencial que se le atribuye si estuviera en estado libre, sería mayor que la tuya.

 

Charla

 

_ Sí, eso me temía. Hemos podido constatar que, ahí fuera, hay seres que se interesan por nosotros y últimamente, nos meten en máquinas enormes para hacernos chocar los unos contra los otros buscando qué puede haber dentro de nosotros. ¿Por qué lo harán? ¿Qué pueden conseguir con destruirnos?

_ Nuestra familia que está compuesta por tres generaciones, sabe que, esos extraños seres han llegado a conseguir, en sus estudios sobre nosotros que, los quarks, somos partículas elementales y que os formamos a vosotros los protones y neutrones, hasta ahora habíamos sido notablemente difíciles de detectar, y aún más de pesar. Un grupo de investigación ha calculado, con un pequeño margen de error, la masa (expresada en su valor energético) de tres de nosotros, los quarks más ligeros, y por tanto más escurridizos: Up, Down y Strange.

Quarks

_ Según parece, el resultado obtenido por estos experimentos, es que, el quark up pesa aproximadamente 2 Megaelectronvoltios (MeV), el quark down pesa alrededor de 4,8 MeV, y el quark strange pesa cerca de 92 MeV.

_ Bueno, lo cierto es que, junto con los que ellos llaman electrones conformamos toda la materia conocida (según les he podido oír comentar) y, al parecer, carecen de las herramientas necesarias que les permita llegar más lejos de nosotros, y, por tal motivo, desconocen a las pequeñas briznas luminosas de las que, nosotros losquarks, estamos hechos, no tienen, en sus máquinas, la energía necesaria para llegar hasta ellas. Así que, están dando palos de ciego y teorizando no sin desbarrar en más de una ocasión pero, son tan persistentes que, terminarán conociendo la verdadera estructura del átomo y, en definitiva de la materia. ¡Qué gente tan extraña! Parece como si sólo supieran hacer preguntas.

Los físicos estudian las partículas subatómicas

_ Sí, eso parecen esos extraños seres que llaman humanos, ellos nos estudian a nosotros y no son conscientes de que nosotros, de la misma manera, podemos estudiarlos a través de las ondas electromagnéticas que emiten sus cerebros pensantes que4, están determinados a llegar hasta el fondo de los Quarks. Bueno, también de los protones y Neutrones lo quieren saber todo y, de hecho, han llegado a saber muchas de sus peculiaridades y de los parámetros que los conforman, los llaman bariones y lo clasifican en la familia de los hadrones, y, al mismo tiempo, dicen que son fermiones con unas características determinadas distintas a la de los mesones, y, además, como forman parte del núcleo del átomo, lo llaman también nucleones.

_ Sí, pero estos bariones, en realidad están supeditados a nosotros los Quarks. Según nos combinamos será un protón o un neutrón. Existe otra diferencia entre elprotón y el neutrón: dependiendo de qué combinación de quarks forma un hadrón, éste puede ser más o menos estable. Por ejemplo, ya dijimos que un protón libre podría no ser estable, pero de ser inestable su vida media probablemente es mucho mayor que la edad actual del Universo.

 

 

Charla  entre dos Quarks

_ Sin embargo, debido a la combinación de quarks que forman el neutrón, un neutrón libre (no asociado al núcleo de un átomo) tiene una vida mucho más corta: unos 15 minutos. Ésa es la razón de que puedas encontrar muchos protones libres en el Universo (núcleos de hidrógeno sin el electrón), pero es muy difícil verneutrones libres más de unos minutos. Cuando un neutrón se desintegra, lo hace en un protón, un electrón y un antineutrino.

_ Debido a que un neutrón libre sólo permanece como tal durante un cuarto de hora, es difícil disponer de ellos (a diferencia de otras partículas): hay que generarlos según se necesitan. La mayor parte de ellos se obtienen de reacciones nucleares espontáneas de elementos radiactivos, que sufren la fisión de forma natural (como el polonio o el radio), emitiendo neutrones en el proceso.

_ ¡Y los neutrones libres son muy peligrosos! De hecho, es uno de los productos de la desintegración radiactiva más peligrosos que hay. Piensa que otras partículas emitidas en las reacciones nucleares, como los electrones, aunque son peligrosas, son fáciles de parar. Las partículas cargadas, en cuanto entran en contacto con un medio material más o menos denso, empiezan a desviarse (debido a la fuerza eléctrica), a ionizar átomos arrancando electrones que se llevan parte de la energía y se mueven en otra dirección. Es decir, la energía de esas partículas se disipa relativamente rápido.

 

 

experimento

_ Por eso, si vas a estar en un lugar en el que puede haber emisión de protones o electrones, un recubrimiento de plomo es una protección muy buena. De hecho, al ser un metal también absorbe muy bien los fotones, de modo que protege contra muchas clases de emisiones radiactivas (alfa, beta y gamma). Pero, ¿y los neutrones?

Al ser neutros, la única manera de que pierdan su energía es que choquen de cabeza con el núcleo de otro átomo. Por lo tanto, la protección contra neutrones requiere un espesor relativamente grande: y además, la masa atómica del núcleo de los átomos no influye mucho en su capacidad para pararlos, pues los núcleos son tan minúsculos comparados con el espacio entre ellos que un aumento de tamaño (por ejemplo, plomo en vez de hidrógeno) apenas influye. La mayor parte de los escudos contra neutrones son paredes espesas de cemento o parafina.

 

_ Por supuesto, la mayor parte de los neutrones que puedan llegar a tu cuerpo te atraviesan, pero tú también actúas de “escudo”: y cuando un neutrón golpea el núcleo de un átomo de una base nitrogenada de tu ADN…bueno, las consecuencias pueden ser muy desagradables, salvo que la dosis no sea muy intensa y sea breve, y además tengas suerte.

_ Es decir, que los neutrones son partículas algo anodinas cuando están en el núcleo de un átomo, pero si están libres tienen una vida relativamente corta y que puede ser peligrosa…y todo por tener un quark down en vez de uno up.

– Ellos, esos seres, hablan de los misterios de lo que llaman Mecánica Cuántica en la que nos tienen inmersos para comprender nuestros comportamientos e interacciones, así como nos desenvolvemos en situaciones distintas. Alguno de estos seres se ha llegado a preguntar por los misterios de la Mecánica Cuántica y se han preguntado si serán capaces de desvelarlos alguna vez.

_ La verdad es que está hechos un verdadero lío, y, no saben que la materia se construye sobre fundamentos frágiles. Sus grupos de los que ellos llaman los físicos, acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.

_ Hasta hace poco, los cálculos en lo que ellos llaman el enrejado QCD se concentraban en los gluones virtuales, e ignoraban otros componentes importantes del vacío como los pares de quarks y antiquarks virtuales.

 

 

¿Perdido pero interesado? Los quarks forman hadrones, que pueden ser bariones o mesones. Los bariones son partículas formadas por tres quarks de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Los mesones están formados por un quark y un antiquark de valencia rodeados de un océano de pares quark-antiquark y gluones virtuales. Salvo el quark top (cuya vida media es demasiado corta para hadronizarse), todos los quarks pueden formar parte de los hadrones. LHCb es el detector de partículas del LHC especializado en los hadrones formados por quarks b (bottom o beauty) de valencia.

_ Los pares quark-antiquark pueden emerger y transformar momentáneamente un protón en una partícula diferente y más exótica. De hecho, el verdadero protón es la suma de todas estas posibilidades sucediendo al mismo tiempo.

_ Nuestros parientes del vacío, los quarks virtuales hacen mucho más complicados los cálculos, implicando la utilización de una matriz de más de 10.000 billones de números, comenta el Quark up.

_ Down le responde: “No existe ninguna computadora en la Tierra que pueda almacenar una matriz numérica tan enorme en su memoria”. Así que han tenido que hacer algunos trucos para evaluar la masa de un protón”. No, si ingenio no se les puede negar.
La verdad es que ese ingenio al que te refieres (dice Up), es lo que los ha llevado a los experimentos, que tratan de suplir su falta de energía para llegar más lejos y para ello tratan de aproximarse a los experimentos que no pueden realizar mediante simulaciones informáticas que, bien planteadas, pueden ser muy reveladoras de lo que pudiera ser.

_ Eso permitirá a los físicos someter a prueba a la QCD y buscar sus efectos más allá de la física conocida. Por ahora, sus cálculos demuestran que la QCD describe partículas basadas en nosotros los quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.

_ Me parece casi imposible que, estemos aprendiendo tanto de nosotros a través de los estudios que hacen unos seres que están tan alejados de nosotros, hasta el punto de no poderlos ver y que, gracias a las señales electromagnéticas que nos envían, hemos podido contactar, es una maravilla.

_ Si, así es, y, además, creen que eso que ellos denominan el campo de Higgs hace también su pequeña contribución, dándonos masa a nosotros los quarks individuales, así como a los electrones y a otras varias partículas. Ese campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el mostruo que han creado, al que llaman el LHC confirma la existencia del bosón de Higgs (que tan familiar nos resulta a nosotros), eso significará que toda la realidad es virtual.

_ Cuándo descubran la realidad del mundo en el que están inmersos, ¿crees amigo up que lo podrán soportar?

_ Bueno, estimado down, estos seres han demostrado que, pocas son las cosas que les arredran, su osadía no tiene límites y, desde luego, desde el llamado Demócrito, han podido avanzar en muy poco tiempo lo que nunca podríamos haber esperado.

_ En cualquier caso es muy difícil determinar el valor de nuestras masas (dice up), ya que a los quarks no se nos pueden tener aislados. Por otro lado, nuestra carga eléctrica es fraccionaria de la unidad fundamental de carga. Así, por ejemplo, yo tengo una carga igual a 2/3 de la unidad elemental, aunque no se pueden observar tampoco cargas fraccionadas aisladas, ya que los quarks siempre están combinados. Es decir, nosotros formamos partículas compuestas llamadas que denominan hadrones, una palabra (según dicen) derivada de la griega hadrys (fuerte); de modo que la suma de las cargas eléctricas de los quarks que constituyen un hadrón es siempre un número entero.

 

 

 

_ Los diversos quarks se pueden combinar entre sí para dar lugar a todas las partículas conocidas, salvo los leptones y los bosones, y con este modelo se puede llegar a una buena aproximación en el conocimiento de las partículas elementales. Sin embargo, esta concepción, basada principalmente en la carga eléctrica, deja sin explicar numerosas cuestiones. Por ejemplo, que no existan partículas formadas sólo por dos quarks ni tampoco quarks aislados. Para abordar éstas y otras cuestiones relativas a la estructura más íntima de la materia fue necesaria la introducción de un nuevo número cuántico, el color, cuyos tres valores caracterizan las partículas con mayor precisión.

_ Oye, amigo Down, la charla me está agotando y siento la necesidad estirarme y tratar de burlar la vigilancia de los 8 gluones que nos acechan y, aunque sé que mi paseo será muy limitado, lo intentaré. Hasta luego amigo.

_ Está bien, por mi parte haré lo mismo y me daré un paseo por la región contraria a la tuya, de esa manera trataré de dividir la fuerza atractiva que nos tiene confinado.

Claro que, el paseo de Up y Down fue de muy corto trayecto, ya que, la fuerza nuclear fuerte que intermedian los Gluones, trabaja de manera distinta a las otras fuerzas y, cuando más se alejan los Quarks los unos de los otros, más fuerte es la fuerza que los atrae.

Dejaremos aquí está simpática charla que han tenido estos dos minúsculos “personajillos” y, como alguien que sabía mucho más que yo, dijo alguna vez que: “todas las cosas son” y elevó la categoría de la materia (por muy pequeña que fuese) a la de SER, he confeccionado esta reunión de Up y Down con la breve intromisión de Protón, para que, dejaran aquí sus “pensamientos”.

El responsable de Taringa finalizaba así:

Hace un par de dias me encontré esta joya, al menos para mi, es una bonita forma de explicar cosas que son difíciles de entender. A mi me gustó espero que a alguno de vosotros también.

Por Emilio Silvera.

El Universo y la Vida… ¡Nuestra imaginación!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida. Así es como ocurren las cosas en este universo nuestro que no hemos llegado a conocer. De hecho, ni sabemos a ciencia cierta si su “nacimiento” fue debido, realmente, al Big Bang.

No, no es un cuadro salido de la mano de un pintor, es un paisaje que ha fabricado la mano de la Naturaleza. El sitio está a menos de 25 Km de mi casa y, con frecuencia, me acerco a contemplarlo y maravillarme de lo mucho que se nos ofrece y que no siempre, sabemos apreciar. De estas pequeñas cosas está hecha la felicidad.

No pocas veces nos tenemos que maravillar ante las obras de la Naturaleza, en ocasiones, con pinceladas de las propias obras que nosotros mismos hemos sido capaces de crear. Así, no es extraño que algunos piensen que la Naturaleza nos creó para conseguir sus fines, que el universo nos trajo aquí para poder contemplarse así mismo.

Siempre hemos tratado de saber lo que el Universo es, lo que la Naturaleza esconde para conocer los mecanismos de que ésta se vale para poder hacer las maravcillas que podemos contemplar tanto en la Tierra como en el Espacio Interestelar donde moran las galaxias. En nuestro mundo, los Valles, ríos y montañas, hermosos bosques de lujuriante belleza , océanos inmensos llenos de formas de vida y criaturas conscientes de todo eso que, aunque algunas veces temerosas ante tanto poder, no por ello dejan de querer saber el origen de todo.

¿Es posible que nos creámos más de lo que somos y menos de lo que podemos llegar a ser? Queremos jugar con fuerzas que no hemos llegado a comprender y, desde las estrellas y las inmensas galaxias, hasta los mundos y las fuerzas que todo lo rigen en el Universo, hemos querido conocer para poder, con esos conocimientos, recrear la misma creación. En el LHC hemos buscado el origen de la materia y, ahora, de nuevo se pondrá en marcha con doble capacidad energética para hurgar en las entrañas del misterio que esconde la materia. Los científicos han dado ya el primer paso para la creación de la vida sintética, han sido capaces de crear un cromosoma completo a partir de una célula de levadura. El logro es considerado un gran hallazgo dentro de la biología sintética, que busca diseñar organismos desde sus principios más básicos.

¿Hasta dónde queremos llegar?

Sí, la Naturaleza es sabia y, a cada cosa, le tiene reservado su lugar

A veces, viendo como se desarrollan las cosas y cómo se desenvuelven los hechos a medida que el Tiempo transcurre, no tenemos más remedio que pensar que parece como sí la Naturaleza supiera que estamos aquí y, desde luego, nos tiene impuesto límites que no podemos traspasar hasta que “ella” no considera que estamos preparado para ello. Un amigo asiduo a éste lugar nos decía que la Naturaleza nos preserva de nosotros mismos. Nosotros, los humanos, no conocemos ninguna regla que nos prohíba intentar todo aquello que podamos imaginar y, de esa manera, a veces, jugamos a ser dioses.

Lo cierto es que, los límites, los impone nuestra ignorancia y, a medida que vamos avanzando en el saber del mundo, de la Naturaleza y del Universo en fin, alcanzamos cotas de realización que años antes eran impensables. Tecnologías inimaginables que ya están con nosotros y nos posibilitan para realizar “milagros” en una gran variedad de campos del saber humano.

Desde la noche de los tiempos, cuando éramos seres sin conocimiento alguno y asustados mirábamos los truenos, o asombrados contemplabamos las estrellas del cielo, cuando no sabíamos explicar todas aquellas maravillas que ahora nos son cotidianas como la noche y el día, las estaciones, las erupciones volcánicas y los terremotos, fenómenos naturales que tienen una sencilla explicación, desde entonces digo, el misterio ha caminado con nosotros y, nuestras débiles espaldas ha tenido que cargar con la pesada ignorancia que ha lastrado nuestro caminar hacia el futuro. Después de miles de años de mirar hacia el firmamento y hacernos múltiples preguntas, con la unión de muchas mentes, hemos podido llegar a un aceptable modelo de lo que puede ser el Universo, de las fuerzas que lo rigen, de cómo son los mundos y del por qué en algunos puede existir la vida y en otros no.

Nunca dejaremos de mirar hacia nuestros orígienes… ¡En las estrellas!

Pero, ¿acaso no somos, nosotros mismos universo? Dicen que genio es aquel que puede plasmar en realidad sus pensamientos y, aunque nos queda mucho camino por recorrer, lo cierto es que, hasta el momento presente, mucho de eso se ha plasmado ya. Es decir, hemos sabido de qué están hechas las estrellas, conocemos la existencias de las grandes estructuras del Universo constituidas por cúmulos y supercúmulos de galaxias, sabemos de mundos en los que, con mucha probabilidad puedan existir criaturas diversas que, conscientes o no, piensen, como nosotros, en todos los secretos que el Universo esconde.

Las estrellas brillan en el cielo y tal hecho, hizo posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.

hombre universo

Sinceramente creo que, dentro de nosotros, están todas las respuestas a las preguntas que podamos plantear, toda vez que, como parte del Universo que somos, en nuestros genes, en lo más profundo de nuestras mentes están grabados todos los recuerdos y, siendo así, solo se trata de recordar para saber lo que pasó, para comprender los orígenes y, finalmente saber, el por qué estamos aquí y para qué. Nos hemos olvidado de que somos “polvo de estrellas”, los materiales que nos conforman se forjaron en los “hornos” nucleares de los astros que brillan en el firmamento lejano. A temperaturas de millones de grados se pudieron fusionar los elementos que hoy están en nosotros. Una Supernova, hace miles de millones de años, hizo brillar el cielo con un resplandor cegador, una enorme región quedó sembrada de materiales en forma de Nebulosa que, con el paso de los eones, conformó un sistema planetario con un Sol central que le daba luz y calor a un pequeño planeta que, mucho después, llamaron Tierra. Los seres que allí surgieron y evolucionaron, eran el producto de grandes transiciones de fase y cambios que, desde el Caos hizo todo el recorrido necesario hasta la creación de la Vida consciente.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Pero está claro, como digo, que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares y mundos, la Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.

De esa manera, sin lugar a ninguna duda, podemos hablar de un Universo viviente en el que, la materia evoluciona hasta la vida y los pensamientos. En el que en un carrusel sin fin surgen nuevas estrellas y nuevos mundos en los que, como en la Tierra, pasando el tiempo, también surgirá la vida que, podrá ser… ¡de tántas maneras! Una galaxia como la Vía Láctea puede tener más de cien mil millones de estrellas, en el universo pueden estar presentes más de cien mil millones de galaxias, los mundos que existen en una sola galaxia son cientos de miles de millones y, sabiendo todo eso, ¿Cómo poder pensar que la vida sea única en la Tierra?

“La vida se abre paso… ¡imparable!” No me puedo resistir a reproducir aquellas frases de Darwin:


“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza. Hemos podido constatar la persistencia con la que la vida, se abre paso en este mundo, la hemos podido hallar en lugares tan insólitos como fumarolas marinas a más de 100 ºC, o en aguas con una salinidad extrema, o, a varios kilómetros de profundidad bajo tierra, o, nutriendose de metales, o metanógenas y alófilas y tantas otras infinitesimales criaturas que nos han causado asombro y maravilla.

 

 

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

Si, amigos míos, en lo que a la vida se refiere, ésta se abre paso en los lugares más extremos e inesperados por muy malas condiciones que allí puedan estar presentes.De la misma manera, podrían estar situadas en mundos lejanos que, con unas condiciones distintas a las de la Tierra, se puedan haber creado criaturas que ni nuestra desbordante imaginación pueda configurar en la mente.

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

 

 

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

Es cierto que en todo el Universo rigen las mismas leyes y están presentes las mismas constantes universales que, ni con el paso del tiempo pueden variar, así la luz siempre irá a 300.000 Km/s, la carga del electrón será siempre la misma como la masa del protón y, gracias a que eso es así, podemos estar nosotros aquí para contarlo. Sin embargo, el Universo, no es uniforme y en el inmenso espacio interestelar impera la diversidad. ¡Y pensar que toda esta grandeza comienza a partir de unas infinitesimales partíoculas que conforman el núcleo de los átomos!

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

http://www.eso.org/public/archives/images/screen/eso1208a.jpg

Existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos -composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

Aquí se crea entropía negativa. También nosotros, tenemos una manera de vencer a la inexorable Entropía que siempre acompaña al Tiempo, su transcurrir deja sentir sus efectos sobre las cosas que se hacen más viejas. Sin embargo, sabemos, como las galaxias, generar energía reproductora y, mientras que las galaxias crean estrellas nuevas y mundos, nosotros, recreamos la vida a partir de la unión entr hombre y mujer, y, de esa unión surgen otros seres que, perpetúan nuestra especie. Es la entropía negativa que lucha contra la extinción.

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

El hombre furente a una enorme galaxia en el espacio ilustra el sermón 'El origen del ser humano, su dignidad y su lugar en el universo'.

Sí, puede parecer que existen cosas muy grandes para nosotros pero…, ¡están hechas de las mismas cosas! Quarks y Leptones.

Puede que podamos ser más de lo que parece y que, seamos menos de lo que nosotros mismos nos podamos creer. No parece muy aconsejable que estemos situados en un plano de superioridad en el cual podamos mirarlo todo por encima del hombro. Precisamente por ser Naturaleza nosotros mismos, estamos supeditados a sus cambios y, por lo tanto, a merced de ellos.

El dilema está, como dijo aquel hombre sabio:  “¡Somos parte del problema que tratamos de resolver!”

emilio silvera

Puedes hacer las cosas más amenas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Imágenes en el Blog de emilio silvera vazquez

 

Ya que, cuando no es así, parece que estoy sólo, predicando en el desierto.

¡Animate y expresa tus ideas!

emilio silvera

¡Qué cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Qué cosas!    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Si al menos pudiera hablar

 

Your legs are longer than your arms for a reason.

¡Que poco rigen algunas  cabezas!

 

 

Getting ready for the party

 

¡Algunos comportamientos…! Lo que hace la soledad

 

Gotta go fast!

 

Cada cual tendrá sus motivos para hacer lo que hace

 

 

¡Qué dolor!

 

 

Todos poemos ser felices, cada cual, a su manera

logo

Los Sistemas Complejos

Autor por Emilio Silvera    ~    Archivo Clasificado en La Complejidad    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

 

Si miramos en cualquier sitio información sobre la fotosíntesis, nos dirán cosas como éstas:

“La fotosíntesis (del griego antiguo φῶς-φωτός [fos-fotós], ‘luz’, y σύνθεσις [sýnthesis], ‘composición’, ’síntesis’) es la conversión de materia inorgánica en materia orgánica gracias a la energía que aporta la luz. En este proceso la energía lumínica se transforma en energía química estable, siendo el adenosín trifosfato (ATP) la primera molécula en la que queda almacenada esta energía química. Con posterioridad, el ATP se usa para sintetizar moléculas orgánicas de mayor estabilidad. Además, se debe de tener en cuenta que la vida en nuestro planeta se mantiene fundamentalmente gracias a la fotosíntesis que realizan las algas, en el medio acuático, y las plantas, en el medio terrestre, que tienen la capacidad de sintetizar materia orgánica (imprescindible para la constitución de los seres vivos) partiendo de la luz y la materia inorgánica. De hecho, cada año los organismos fotosintetizadores fijan en forma de materia orgánica en torno a 100 000 millones de toneladas de carbono“.

 

 

Los Sistemas complejos están referidos a muchas cosas, y, tanto el Sistema de las Sociedades Avanzadas como la nuestra, o, nosotros mismos como Sistemas, podemos ser considerados complejos y, para comprender éstos Sistemas, hay que ir por parte, no se puede abarcar un conocimiento tal de una primera mirada y, tendremos que conocer las partes para saber sobre el todo. Lo mismo pasa con el Universo.

Todos hemos oído hablar, con más o menos frecuencia, de “Sistemas Complejos”, aquí mismo en estas páginas, la palabra sale a relucir con cierta frecuencia y, no me extraña que “la palabreja” cree una barrera, dado que, para muchas personas, “complejo” significa “complicado” y suponen automáticamente que, si un sistema es complicado, será difícil de comprender. La naturaleza posee una fuerte tendencia a estructurarse en forma de entes discretos excitables que interactúan y que se organizan en niveles jerárquicos de creciente complejidad, por ello, los sistemas complejos no son de ninguna manera casos raros ni curiosidades sino que dominan la estructura y función del universo.

Claro que, no siempre ese temor a lo difícil y complicado, está justificado y, tal suposición no es, necesariamente correcta. En realidad, un sistema complejo es tan solo un sistema que está formado por varios componentes más sencillos que ejercen entre sí una interacción mutua que, naturalmente, tiene sus consecuencias. Si miramos la imagen de arriba, vemos una inmensa y hermosa Nebulosa que está formada por una serie de “cosas” sencillas como lo son el gas hidrógeno y el polvo interestelar entre otros y, en presencia de energías, la gravedad y otros parámetros, ahí ocurren cosas tales como, el nacimiento de estrellas y la aparición de mundos…entre otras.

Los grandes triunfos de la Ciencia se han logrado, en gran medida, descomponiendo los sistemas complejos en sus componentes simples, es decir, estudiar por partes lo que allí está presente (en caso necesario, como primera aproximación, dando el paso suplementario de pretender que todos los componentes son más sencillos de lo que son en realidad) para llegar a comprender el todo.

En el ejemplo clásico del éxito que ha logrado este planteamiento para conocer el mundo que nos rodea, buena parte de la química puede entenderse mediante un modelo en el que los componentes simples son átomos, y para eso importa poco de qué están formados los núcleos. Ascendiendo un nivel, las leyes que describen el comportamiento del dióxido de Carbono encerrado en una caja pueden entenderse pensando en unas moléculas más o menos esféricas que rebotan unas contra otras y contra las paredes de su contenerdor, y poco importa que cada una de estas moléculas esté formada por un átomo de Carbono y dos de Oxígeno unidos entre sí. Ambos sistemas son complejos, en sentido científico, pero fáciles de entender.

 NASA/JHUAPL

          Simplemente conocer nuestro planeta y todas sus peculiaridades, ya resulta bastante complejo

Fijémonos, por ejemplo, en el Campo Magnético Terrestre. En esencia, los planetas generan un campo magnético por efecto dinámo. Para ello se requiere que el planeta rote; debe contener una región con un fluido conductor de la electricidad y debe existir convección en dicho fluido. No se puede asegurar pero parece ser que si en la Tierra no hubiese tectónica de placas el transporte convectivo hacia la superficie podría no tener lugar, la dinamo no funcionaría y el campo magnético terrestre sería prácticamente nulo o, al menos, mucho menor que el actual. Sin la protección que nos brinda el campo magnético, la atmósfera podría desaparecer a causa del continuo bombardeo de las partículas de alta energía procedentes del viento solar. Todos estos componentes son estudiados por separado y, más tarde, los juntamos en un todo que nos lleva a la comprensión de este Sistema Complejo.

Claro que la clave para poder llegar al conocimiento del “sistema complejo” consiste en saber elegir los componentes adecuados sencillos que conforman el todo para poder realizar el análisis necesario que nos lleve hasta las respuestas que buscamos. En muchas ocasiones hemos explicado aquí, lo que hay en  las  Nebulosas como la de arriba y lo que ocurre en ellas para que, finalmente, nazcan estrellas nuevas.

            Hermann Minkowski

Hay cuestiones, a un nivel más abstracto del que hemos oído hablar también con cierta frecuencia. Acordaos de que, poco después de que Einstein publicara sus trabajos sobre relatividad especial, el matemático alemán que arriba podeis ver se dio cuenta de que, en cierto modo, el tiempo debía ser considerado como la cuarta coordenada complementaria de las tres coordenadas del espacio. En su discurso de inauguración de la 80 reunión de la Asamblea general alemana de científicos naturales y físicos el 21 de septiembre de 1908 pronunció una célebre frase:

“Las ideas sobre el espacio y el tiempo que deseo mostrarles hoy descansan en el suelo firme de la física experimental, en la cual yace su fuerza. Son ideas radicales. Por lo tanto, el espacio y el tiempo por separado están destinados a desvanecerse entre las sombras y tan sólo una unión de ambos puede representar la realidad”.

Desde entonces el espacio-tiempo cuatridimensional pasó a llamarse espacio de Minkowski. Si empleamos x,y y z para las tres coordenadas del espacio, tomaremos ct para la cuarta coordenada de tiempo, siendo c la velocidad de la luz. Sin embargo debemos multiplicar ct por otro factor que, sin destrozar la armonía del sistema tetradimensional de las coordenadas haga a la coordenada de tiempo físicamente diferente de las tres coordenadas espaciales. La matemática nos suministra precisamente este factor conocido como una “unidad imaginaria” que se designa con el símbolo i (i= raíz cuadrada de -1).

Cono de luz en el espacio-tiempo de <a href=

      Es un hecho notorio que los procesos que ocurren en el universo observable son irreversibles, mientras que las ecuaciones que expresan las leyes fundamentales de la física son invariantes bajo inversión temporal. La emergencia de la irreversibilidad a partir de la física fundamental ha sido un tema que ha preocupado a físicos, astrónomos y filósofos desde que Boltzmann formulara su famoso teorema “H”.

 ¿Es un sistema complejo un fotón? La propiedad del fotón de la luz, es que es algo que oscila tan rápidamente que en realidad es como si estuviera en dos sitios a la vez, o sea algo que está pero que no está ¿Cómo se entiende algo así?

 

        “¿Tengo que reconocer que está ha sido la incógnita que más me ha costado despejar, todo un desafío a la lógica, a la matemática. Aunque en realidad era sencillo, porque lo cierto es que lo tenía en las narices. ¡Claro! esa es la esencia de nuestra mágica ecuación, e =m.c2, ¡”

masa en movimiento

        Es decir, más de lo mismo. Digamos que la mecánica cuántica en realidad no es más que la Vida llevada a su mínima expresión.

Los números complejos, con una parte real y otra imaginaria, también juegan un papel esencial en los formulismos de la mecánica cuántica. La propia probabilidad de los sucesos cuánticos llega a expresarse en función de números complejos llamados amplitudes de probabilidad. La probabilidad real se halla a partir de estos números, sumando el cuadrado de su parte real y el cuadrado de su parte imaginaria.

Esto nos da una idea de la importancia de los estos números, tanto en la teoria de la relatividad como en la mecánica cuántica y nos ayuda a introducirnos en la teoría de Hartle-Hawking sobre los comienzos del universo, que supone un universo sin límites y con un tiempo imaginario, como se entiende la parte no real de un número complejo.

En cierta forma los ceros y los infinitos que aparecen en la física clásica son suavizados por la mecánica cuántica: La energía más baja en el vacío no es nunca cero, como tampoco es nunca cero la extensión de un punto físico . La existencia del cuanto de acción impide una energía cero del vacío, como impide la medida exacta, a la vez, de una variación de energía y del tiempo asociado a dicha variación.El punto físico menor sería la llamada longitud de Planck, del orden de 10-35 metros, lo que también elimina el infinito que resultaría de considerar las partículas subatómicas como puntuales: su densidad sería infinita y resultarían microscópicos agujeros negros.

Según alguna teoría que circula por ahí, si comenzamos en el momento presente y vamos hacia atrás en el tiempo, lo que aparentemente sería el punto origen de la descripción del tiempo real convencional, la naturaleza del tiempo cambia: la componente imaginaria del tiempo se hace más y más prominente hasta que, en último término, lo que debería ser la singularidad de la teoría clásica se desvanece. El Universo existiría porque es una estructura matemática autoconsistente. Puede imaginarse el tiempo real como una línea que va del principio al final del Universo. Pero también puede considerarse otra dirección del tiempo en ángulo recto al tiempo real. Esta última se denomina la dirección imaginaria del tiempo. En el tiempo imaginario, no habría ninguna singularidad en la que dejaran de regir las leyes de la Ciencia, ni ninguna frontera del Universo tras la cual tuviera que apelarse a Dios. El Universo no sería creado ni destruído. Simplemente existiría. Quizás el tiempo imaginario sea el auténtico tiempo real y lo que llamamos tiempo real sea sólo un producto de nuestra imaginación. En el tiempo real, el Universo tiene un principio y un fin. En el tiempo imaginario no hay singularidades ni límites.

Hartle: “Tiempo imaginario no se refiere a la imaginación: hace referencia a los números complejos. Como demostraron Einstein y Minkowsky, el espacio-tiempo constituye una geometría cuatridimensional. Es posible ir aún más lejos de estos conceptos. Si se miden las direcciones del tiempo utilizando números complejos, se obtiene una simetría total entre espacio y tiempo, que es, matemáticamente, un concepto muy bello y natural”. Don N. Page: ” En la formulación de la ausencia de límites de Hartle-Hawking, el tiempo es imaginario, y en vez de tener un borde es como si se tratara de la superficie del planeta Tierra. Suponiendo tiempo imaginario, el Universo no tuvo comienzo, no tiene límite, es una totalidad en sí mismo”.

He tenido la oportunidad de leer el Libro de Roger Penrose (uno de los físicos actuales más brillantes), titulado,  El camino a la realidad, y él nos comenta:  “… los números complejos componen una notable unidad con la naturaleza. Es como si la propia naturaleza estuviera tan impresionada por el alcance y consistencia del sistema de los números complejos como lo estamos nosotros, y hubiera confiado a estos números las operaciones detalladas de su mundo en sus escalas más minúsculas”. Se refiere a la mecánica cuántica, pero realmente su importancia se refleja en toda la naturaleza, porque la cosmología, en los primeros instantes del universo se confunde con el mundo microscópico de las partículas elementales.

Claro que, los “Sistemas Complejos” están por todas partes y, tanto ers así que, nosotros mismos somos un buen ejemplo y llevamos con nosotros, el “sistema” más complejo de todos: Nuestro cerebro es, sin dudarlo y hasta donde puede llegar nuestros conocimientos actuales, el más complejo de los sistemas.

Claro que, si hablamos de complejidad de sistemas, el universo sería el mejor de los ejemplos. Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck.  Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

[cerebro-artificial.jpg]

La vida que surgió en el planeta Tierra a partir del polvo de estrellas

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

 

En lugares como este se forman los elementos de la vida que comienzan a formarse en el núcleo de las estrellas por fusión de materiales sencillos en otros más complejos, más tarde, cuando la estrella “muere”, explota como Supernova y forma una gran Nebulosa que está hecha de gas y polvo interestelar y, en ella, están presentes todos esos elementos complejos que, forman nuevas estrellas y nuevos mundos. En algunos de esos mundos, si caen en el lugar adecuado, la vida surgirá.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

¿No es inmensamente complejo todo esto?

Resultado de imagen de Sistemas complejos

En realidad, los Sistemas complejos constituyen y se manifiestan en la inmensa mayoría de los fenómenos y objetos observables. Sin embargo, y aquí radica una de sus propiedades más interesantes, la abundancia y diversidad de los sistemas complejos (sean de tipo físicos, químicos, biológicos, sociales, etc.) no implica una innumerable e inclasificable diversidad de conductas dinámicas diferentes. Todo lo contrario, los sistemas complejos poseen propiedades genéricas, independientemente de los detalles específicos de cada sistema o de la base material del mismo. De esta manera, por ejemplo, una computadora construida con bulbos, otra con transistores y una más con relevadores electromagnéticos; serían capaces de realizar, en principio, las mismas tareas de procesamiento de datos. Podríamos incluso ir mas lejos con este ejemplo y agregar que el sistema nervioso humano posee propiedades tales como memoria difusa y reconocimiento de patrones que funcionan de la misma manera en como funciona una computadora de bulbos o de transistores. Lo que comparten, son una estructura interconectada y formada por elementos individuales (neuronas o circuitos electrónicos) que interactúan para intercambiar información y modificar sus estados internos. Ello hace posible la emergencia de fenómenos globales y colectivos semejantes, sin que los detalles materiales del sistema sean del todo relevantes. De esta manera, es posible identificar propiedades dinámicas similares entre una computadora, el sistema nervioso, el sistema inmunológico, la tectónica de placas, una sociedad de insectos, el crecimiento urbano, las economías de mercado, el tráfico vehicular, etc. a pesar de la aparente disparidad entre estos sistemas.

Resultado de imagen de La complejidad de explicar nuestra presencia en el Universo

Explicar la complejidad de nuestra presencia en el Universo, o, la existencia de α (Alfo), la constante de estructura fina, esa constante universal que esconde los misterios del electromagnetismo (e), de la relatividad y la velocidad de la luz (c), o, de la mecánica cuántica, con el cuanto de acción de Planck (h). El mismo cerebro humano y su presencia aquí para permitir la existencia de Conciencia… Es tan complejo todo ésto que, a veces, nos resulta inexplicable.

La aportación fundamental de la ciencia de los sistemas complejos en la tarea de conocer y transformar nuestra realidad, es identificar los principios y fundamentos generales de la operación de dichos sistemas sin importar los detalles particulares de su realización material. Así por ejemplo, podemos imaginar un biólogo del futuro que estudiaría el fenómenos llamado “vida” desde una perspectiva de principios (tal vez leyes?) generales. Tal biólogo tendría conciencia de que el fenómeno “vida” tal y como existe en la Tierra es tan sólo un caso particular de como “la vida” se ha manifestado bajo las condiciones particulares de la Tierra, expresándose bajo la forma de una realización material muy específica (una bioquímica de carbono dominantemente levógira). Sin embargo, este biólogo estaría preparado para identificar el fenómeno “vida” si acaso fuera detectado en otro planeta o parte del universo bajo otras realizaciones materiales especificas, de la misma manera que un físico hoy en día sabe que la ley de gravitación lo mismo es valida para la superficie de la Tierra que para la superficie de Marte o cualquier otra parte del universo. El ejemplo puede ir aún más lejos. Podemos imaginar un sociólogo del futuro que será capaz de identificar los principios generales del fenómeno “social” independientemente de que este ocurra en grupos humanos, animales, microbios, plantas, robots o incluso, si su colega biólogo tiene suerte, en grupos sociales fuera de nuestro planeta.

¿Estaremos capacitados alguna vez determinar las partes “sencillas” de los Sistemas Complejos para llegar a saber?

emilio silvera