Jun
7
La Denudación y otros fenómenos naturales
por Emilio Silvera ~
Clasificado en La Naturaleza...El Universo ~
Comments (0)
Hablemos de la Denudación y de otros fenómenos naturales:
Las poderosas fuerzas geomorfológicas pueden actuar suavemente. La acción de la gravedad puede mover, en cuestión de segundos, enormes volúmenes de tierra y piedras en devastadores deslizamientos y desprendimientos. Con lluvias intensas, la erosión en barrancos y cauces puede transformar los campos y las riberas, e inundar las llanuras durante horas o incluso días. Los vientos huracanados pueden, igualmente, modificar la fisonomía de las costas, y algunas superficies pueden ser remodeladas casi instantáneamente por erupciones volcánicas y terremotos. Pero la denudación de los continentes – el proceso debido a la acción de las inclemencias del tiempo, erosión meteórica y el posterior arrastre de los materiales erosionados – es un cambio gradual con tasas habitualmente bajas, que las alteraciones no se perciben durante el transcurso de una vida.
El Bubnoff (B) – la denudación de 1 mm en mil años (o 1 μm/año) – es una unidad conveniente para medir este cambio. Las precipitaciones, por disolución, reducen las duras rocas ígneas o metamórficas con una tasa comprendida entre 0’5 y 5 B, y las calizas hasta 100 B. La denudación en terrenos generalmente secos se produce a ritmos no mayores de 10 – 15 B, y en los trópicos húmedos llega a los 20 – 30 B. Los cambios en terrenos montañosos pueden ser mucho más importantes, llegando hasta 800 B en zonas de glaciares rápidos (sudeste de Alaska) y hasta los casi 10 KB en las zonas más recientes en continua elevación (la región de Nanga Parbat en el Himalaya). Pero incluso estas altas tasas de denudación son resultado de fuerzas modestas.
Un ejemplo de importancia medioambiental y económica ilustra este lento proceso geomorfológico de baja potencia. Si no hubiera erosión, la profundidad del suelo en los campos de cultivo sería mayor, pero su capa superior se empobrecería en nutrientes, ya que la erosión meteórica, si no es demasiado intensa, es la que repone los minerales en esta capa en la que crecen las raíces, ayudando a mantener la fertilidad del terreno.
La máxima pérdida de suelo compatible con el cultivo sostenido de cosechas es aproximadamente de 11 toneladas por hectárea en la mayor parte del terreno agrícola norteamericano. Cerca de dos quintas partes de los campos de ese país se están erosionando a tasas superiores, y la tasa media nacional de erosión, solamente por agua, es de casi diez toneladas por hectárea, equivalente a 550 B (suponiendo que la densidad del suelo es de 1’8 tn/m3).
El papel dominante de las lluvias en el proceso de la denudación se hace evidente cuando se compara la energía cinética de las gotas de lluvia con la energía de la escorrentía superficial. Las mayores gotas de lluvia, con diámetro comprendido entre 5 y 6 mm, alcanzan velocidades finales de 9 m/s, lo que implica que su energía cinética durante el impacto equivale aproximadamente a 40 veces su masa. Aunque la mitad de la precipitación corriera por la superficie a un velocidad media de un metro por segundo, la energía cinética sería una cuarta parte de la masa en movimiento. Consecuentemente, la erosión resultante de la caída de la lluvia sería dos órdenes de magnitud más potente que la corriente superficial.
La energía total de la denudación global del planeta se puede calcular suponiendo que afecta al menos a 50 B de material, con una densidad media de 2’5 g/cm3 (125 tn/m3) y que la altura media continental es de 850 m. Así, la energía de los campos de la Tierra se reduciría anualmente en 135 PJ. Este flujo, 4’3 GW, es muy pequeño comparado con otros flujos energéticos del planeta, representando el 0’05 por ciento de la energía potencial perdida por las corrientes superficiales de agua, el 0’01 por ciento del calor terrestre e igual a menos de 2×10-7 veces la radiación solar absorbida por las superficies continentales. Claramente, en la denudación de los continentes se invierte una parte insignificante de la radiación solar tanto directamente, a través de la luz solar, como indirectamente, con las corrientes de agua y el viento.
Además, hay fuerzas opuestas que anulan este lento cambio. Si no fuera por el continuo levantamiento tectónico, la cordillera alpina, con sus 4.000 metros de altura, sometida a una denudación de 1 – 5 B se nivelaría en menos de cinco millones de años, y sin embargo, la edad de la cordillera es actualmente un orden de magnitud superior.
Tasas de levantamiento comprendidas entre 5 – 10 B son bastantes frecuentes, y muchas regiones están elevándose con tasas superiores a 20 KB, es decir, una tasa hasta 10 veces superior a la tasa de denudación. No obstante, parece ser que en las zonas montañosas cuyas cumbres sobrepasan la cota de nieve, con grandes precipitaciones y gran actividad glacial, la altura está más limitada por una denudación rápida que por la elevación tectónica del terreno. El noroeste del Himalaya, incluyendo la zona del famoso Nanga Parbat, es un claro ejemplo, donde muchos de sus picos sobrepasan los 7.000 m y solamente el 1 por ciento del terreno los 6.000 m.
Encuentros espaciales
Siendo temibles localmente, son sucesos de relativa poca importancia globalmente habland0
La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas -, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.
La caída sobre la Tierra de un Gran asteroide sí que es temible
La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.
Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.
El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.
La frecuencia de impactos sobre la Tierra disminuye exponencialmente con el tamaño del objeto.
Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.
Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son setales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.
La radiación cósmica incompatible con la vida
Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales. En realidad, somo frágiles dotados de una fortaleza descomunal.
Sí, la Naturaleza nos muestra constantemente su poder. Fenómenos que no podemos evitar y que nos hablan de unos mecanismos que no siempre comprendemos. Nuestro planeta por ejemplo, se comporta como si de un ser vivo se tratara, la llaman Gaia y realiza procesos de reciclaje y renovación por medio de terremotos y erupciones volcánicas, tsunamis y tornados debastadores que cambian el paisaje y nosotros, lo único podemos hacer es acatar el destino, ya que, ignoramos lo que está por venir.
El mundo nos parece un lugar complicado. Sin embargo, existen algunas verdades sencillas que nos parecen eternas, no varían con el paso del tiempo (los objetos caen hacia el suelo y no hacia el cielo, el Sol se levanta por el Este, nunca por el Oeste, nuestras vidas, a pesar de las modernas tecnologías, están todavía con demasiada frecuencia a merced de complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico es más un arte que una ciencia, los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatoria, los cambios en las Sociedades fluctuan a merced de sucesos que sus componentes no pueden soportar y exigen el cambio.
La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llamamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender. Me hace gracia cuando alguna vez escucho decir a alguien: “Sólo utilizamos un diez por ciento de nuestro cerebro”. Lo cierto es que lo utilizamos al cien por ciento y, lo que en realidad quieren decir es que, se supone que el cerebro humano tiene un potencial tan grande que, de momento, sólo ha evolucionado hasta el diez por ciento de su capacidad futura. ¿Hasta dónde llegaremos?
emilio silvera
Jun
7
De nuevo el ciclo se cumple y, el Verano está llegando
por Emilio Silvera ~
Clasificado en Rememorando el pasado ~
Comments (0)
Cuando el Verano se acerca, todo cambia. En los salientes de las fachadas se pueden ver los nidos de golondrinas y, en cuanto el día despunta, es una aténtica algarabía de sonidos que no precisamente trinos. A España las primeras golondrinas llegan desde África a mediados de febrero, atravesando el Estrecho de Gibraltar. En marzo ya pueden verse muchas golondrinas y en los primeros quince días de abril es cuando pasan el mayor número de golondrinas. Durante todo el verano están por otdas partes y son el despertador de muchos pueblos y ciudades. En otoño la migración la hacen en sentido inverso, volviendo a África en los meses de septiembre y octubre.
Hace ahora un año, para contaros algo de por aquí, de mi tierra, os dejaba esta entrada en la que os enseñaba algunas de las playas de Huelva. Para recordarlo, aquí os lo dejo de nuevo, aunque algún comentario se quedara viejo.
“Ayer por la tarde, como suelo hacer casi todos los días menos los sabados y domingos que las playas están saturadas, con mi esposa, nos sentamos en la Terraza de un Chiringuito a orillas de la Playa, las olas finalizan su recorrido en la orilla dejando oir su rumor al romperse contra la afina arena blanca de Punta Umbria, a orillas del Atlántico.
Si decides dar un paseo por el litoral, andando sobre la fina arena, éstos son los paisajes que vas dejando atrás a medida que avanzas. En la parte terrestre abundantes retamas en las que, con cierta facilidad puedes ver (si prestar antención, a los camaleones protegidos) y, en la parte del mar, las olas, si vas cerca de la playa, mojarán tus pies con sus idas y venidas. Es una sensación inigualable, el aire límpio y puro, exento de contaminaciones químicas, la Naturaleza en estado puro.
Nunca podría estar en ese lugar que arriba podemos contemplar, el gentío me agobia y, aunque me encuentro bien conmigo mismo, una buena compañía nunca está nada mal. Alguien con quien poder conversar, intercambiar ideas y pareceres, poder expresar tus pensamientos y escuchar los ajenos de los que siempre, podremos aprender alguna cosa.
Aquí, seguramente, si me podréis encontrar en cualquier momento, tranquilamente sentado mirando al horizonte y pensando en la grandiosidad de la que formamos parte y en las muchas implicaciones que todo eso conlleva, nuestra complejidad que junto con la que nos rodea es ese conjunto de cosas que no hemos podido llegar a comprender y que, en conjunto, conforma la estructura de un vasto Universo lleno de secretos que tendremos que desvelar, más tarde o más temprano, de ello, dependerá lo que pueda ser de nuestra especie.
Esta vista de Punta Umbría, la Playa de Huelva, nos muestra desde el aire, un pueblecito de pescadores que se ha llenado de Hoteles y apartamentos, aquello parece una invasión de las masas que acuden en tropell y, sus vehículos, no dejan un hueco libre en plazas y calles. Parte del encanto que allí se podía disfrutar se fue, y, ahora, en contadas horas, puedes disfrutar de lugares tranquilos y de la belleza natural que la zona ofrece.
Aunque tenemos un Apartamento con garaje y trastero, al estar los dos chicos mayores en sus obligaciones: Uno en Madrid en una multinacional como Abogado Administrador de Empresas, encargado de la Tesorería de la central y filiales en Perú y México, y, la chica, en Sevilla de Sub-directora en una Escuela de Música, a la vez que da algún que otro concierto y participa en el Coro de la Ciudad, y, por último, los dos pequeños estudian en casa y no son muy playeros. Por nuestra parte, mi mujer prefiere un ratito de playa y volver a casa. Mientras tanto ella toma su baño mixto de agua y Sol, yo me sitúo cómodamente sentado en una silla con una mesa sobre la que coloco la libreta de turno o el libro (si ha tocado leer). Allí, en la tranquilidad y con el fondo del murmullo de las olas, escribo cada día durante algo más de una hora.
Así, desde mi privilegiada atalaya cercana al océano, puedo ver como mi esposa toma el Sol y se da un baño, mientras escribo mis pensamientos de cada día en estas libretas que llevo siempre a cuestas en el coche, en cuqluqier rincón de la casa, en la oficina, en cualquier lugar en el que, de pronto, se me puedan ocurrir ideas que merezcan la pena llevar al papel en blanco de sus hojas.
Los pol´çiticos embusteros, prometen para recoger y, nunca dan lo prometido
Aunque los políticos lo prometieron, el Ave aún no llegó a Huelva, y, como siempre ha pasado, tenemos que desplazarnos hasta Sevilla para poder cogerlo hasta Madrid. Lugar al que, de vez en cuando, tengo que desplazarme por razones de reuniones y seminarios relacionados con la Fisica o la Astronomía. Ser miembro de los Grupos Especializados de Astrofísica y Física Teórica de la RSEF, conlleva algunas obligaciones. Por estas fechas, se celebra la Bienal de Física en Valencia y se dará cuenta de las últimas elecciones a la Presidencia. Espero poder estar allí y que salga elegido mi amigo y compañero el Catedrático de Física de la Universidad de Valencia, Señor Azcárraga.
Así que, dejando a un lado el Avión que, a la larga es más engorroso que el Tren, los viajes y desplazamientos largos los hago mediante este medio más seguro y, aunque pueda tardar algo más, su comodidad compensa. En los viajes más cortos de menos de 300 kilómetros, prefiero mi propio coche que me da (nos da) la oportunidad de parar en cualquier sitio que nos guste para tomar alguna cosa o decansar.
Es cierto, no sólo de Pan vive el Hombre y, necesita tener otras cosas, disfrutar de otras cuestiones para poder llegar a ser feliz, sentir que su Alma está llena de gozo a través de admirar la Naturaleza, una conversación, una mirada o una caricia, un paisaje o una buena lectura. También los pensamientos pueden, en ocasiones, transportarnos hacia esos lugares soñados, a esos mundos idílicos que nos puedan proporcional la felicidad que aquí no encontramos, toda vez que, cuando miramos a nuestro alrededor, no todo es bello ni admisible para nuestros sentidos.
Mientras tanto, yo continuaré escribiendo en mis libretas y en ellas, volcaré todos aquellos pensamientos que a mi mente acudan. Unas veces serán de Física y otras de Astronomía. No pocas veces me visita la filosófía y, cuando ésta no puede dilucidar mis preguntas, sigo adelante y llego hasta la metafísica en la que siempre me pierdo pero, en ella, puedo imaginar mundos que podrían ser, seres que posiblemente serán, y cuestiones que, sin ser de este mundo, en este mundo pueden ser pensadas.
¡La Imaginación! ¿Habrá algo más grande que eso en nuestro Universo?
emilio silvera
Jun
7
El Planeta enano y sus lunas en Noticias
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (2)
El Caótico Baile de las Lunas de Plutón
Dos de los satélites del planeta enano rotan de manera caótica, según un estudio elaborado por los datos obtenidos del telescopio Hubble

Dentro de cuarenta días, la nave New Horizons, de la NASA, efectuará su máxima aproximación a Plutón, el mundo que en 2006 perdió su categoría planetaria tras el descubrimiento, un año antes, de Eris, un 27% más grande y que obligó a la Unión Astronómica Internacional a cambiar la definición oficial de «planeta».
Mientras llega ese momento, un nuevo estudio elaborado con todos los datos disponibles del telescopio espacial Hubble ha permitido llevar a cabo la investigación más completa jamás hecha hasta ahora del misterioso sistema formado por el planeta enano y sus cuatro lunas principales. Y las observaciones muestran que por lo menos dos de esas lunas no están rotando sobre sus ejes, sino que lo hacen de una forma caótica al mismo tiempo que orbitan alrededor de Plutón y de su satélite principal, Caronte. El estudio, que se publica esta semana en Nature, revela también que una de las lunas tiene un sorprendente color negro azabache.
Todas las lunas del Sistema Solar, incluida la nuestra, rotan sobre su eje a la misma velocidad a la que orbitan a sus respectivos planetas. Y esa es la razón por la que, desde la Tierra, siempre vemos la misma cara de nuestro satélite. Pero los astrónomos acaban de descubrir que las lunas de Plutón, o por lo menos dos de ellas, no tienen una cara oculta.
El nuevo y sorprendente estudio, en efecto, ha revelado queNix e Hidra tienen una rotación caótica. Y eso significa que un observador que estuviera sobre la superficie de Plutón no vería la misma cara de estas lunas todas las noches. Pero para un observador que se situara en una de estas lunas, las cosas serían aún más extrañas, ya que para él, cada día tendría una duración diferente a la del día anterior.
A las otras dos lunas estudiadas, Cerbero y Estigia, probablemente les sucede lo mismo, aunque serán necesarios nuevos datos para confirmarlo. «Antes de las observaciones del Hubble -explica Mark Showalte, investigador del Instituto SETI en California y autor principal del estudio- nadie se había dado cuenta de la intrincada dinámica del sistema plutoniano».
Esta caótica «danza» de las lunas de Plutón se debe a la influencia de los dos cuerpos centrales del sistema, Plutón y Caronte (que tiene un tamaño superior a la mitad que el del planeta enano). «Estos dos cuerpos -explica el astrónomo Doug Hamilton, coautor del estudio- giran muy rápidamente uno alrededor del otro, haciendo que las fuerzas gravitacionales que ejercen sobre las pequeñas lunas cercanas cambien constantemente. Y el estar sujetas a estas fuerzas gravitatorias tan variables es lo que hace que la rotación de las lunas de Plutón sea tan impredecible. El caos gravitatorio, además, se acentúa por el hecho de que estas lunas no son redondas, sino que tienen la forma de un balón de rugby».
El movimiento de las lunas en el sistema Plutón-Caronte ofrece pistas muy valiosas sobre cómo los planetas se comportan al orbitar una estrella doble. «Estamos aprendiendo que el caos puede ser una característica común a todos los sistemas binarios -añade Hamilton-. Y eso podría tener consecuencias para la vida en los planetas que giran alrededor de estrellas dobles».
Las imágenes del Hubble revelan también que Cerbero tiene un color negro azabache que contrasta con el blanco brillante de las otras lunas. Y por ahora esa negrura absoluta constituye un misterio para los investigadores.
Además, los científicos se han dado cuenta de otro hecho extraordinario: existe una conexión entre las órbitas de tres de las lunas, Nix, Estigia e Hidra. «Sus movimientos -explica Hamilton- están ligados de una forma similar a como lo están los de las tres lunas mayores de Júpiter. Si te sentaras en Nix, podrías ver cómo Estigia gira alrededor de Plutón dos veces mientras que Hidra lo hace tres».
Para el investigador, «Plutón seguirá sorprendiéndonos cuando la New Horizons llegue en Julio. Nuestro trabajo con el Hubble no es más que un aperitivo de lo que nos espera».
Jun
6
La vida de las partículas
por Emilio Silvera ~
Clasificado en La Vida de las Partículas ~
Comments (1)
La Mente: Ese misterio

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere. Un paisaje puede ser descrito de muy distintas maneras según quién lo pueda contar.
Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.
Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Una colisión entre un prtón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.
Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro, se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.
emilio silvera
Jun
6
¡La curiosidad humana! Siempre queriéndo saber
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
Fuerzas y Constantes…¡El Universo!
Sagitario A es una poderosa fuente de ondas de radio situada en el corazón mismo de la Vía Láctea, nuestra Galaxia, y ubicada en la Constelación de …
Hubo que descubrir la historia y tratar de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros. El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar. Todavía, en algunos rincones antiguos de nuestras ciudades se pueden encontrar vestigios del pasado.
Calles y edificios del casco antiguo de Avilés (uno de los más importantes del norte de España) están declarados Conjunto Histórico Artístico por el Estado Español – La ciudad conserva importantes vestigios del pasado, algunos de ellos realmente notables. Lo mismo ocurre en otras muchas ciudades repartidas por todo el mundo y que nos recuerda lo que se fue.
Algunos mensajes que todavía podemos leer en algunos perdidos lugares de la geografía española, ¡son tan inocentes! que nos remontan a otros tiempos, a otro mundo que, aunque nos parezca mentira, es el mundo nuestro, el mismo que habitamos y la diferencia está marcada por el paso del tiempo y la evolución. Es fácil pasar de lo cotidiano y entrañable al átomo invisible que está, sin estar, presente en todo y en todos. En relación al átomo se podría decir, sin temor a equivocarnos que, es lo invisible siempre presente.
Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un y cambiante escenarios de descubrimientos. Muy atrás quedaron aquellos tiempos en que la vida que pululaba por el planeta era rudimentaria, sin consciencia. El nacimiento de la Humanidad, lleno el mundo de pensamientos.
Cuando en el Neolítico se descubrió la rueda y el arado, ¿qué salto hacia el futuro no daría la Humanidad?
Aquí, como sería imposible hacer un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber (eso nos aconseja Wheeler).
Como decía Einstein: “El eterno misterio del mundo es su comprensibilidad.”
Es curioso, cuando hablamos del átomo de una manera general y cotidiana, la mayoría de las veces no pensamos en lo que en realidad es. Por ejemplo, el nucleo del átomo sopne sólo el 1/100.000 de dicho átomo. Sin embargo, en ese diminuto núcleo, se encuentra todo lo importante del conjunto atómico, ya que, el resto (99%), simplemente son espacios vacíos estructurado por el electromagnetismo.
Así, en ese pequeñi núcleo, que etá formado por protones y neutrones, se encuentra la masa del átomo. Claro que, habría que explicar que los protones y neutrones no son partículas elementales, sino que están conformadas, de manera compleja, por otras partículas más pequeñas que se llaman Quarks. De hecho, un protón está hecho por un triplete de Quarks, 2 quarks up y 1 quark dowm, mientras que un neutrón, está hecho por 2 quarks dowm y 1 quark up.
Pero no termina ahí la complejidad del núcleo atómico, sino que, hay que explicar que estos Quarks que gforman protones y neutrones, están ahí dentro de ellos confinados por la fuarza nuclear guerte, de tal manera que, si están juntos (libertad asintótica), no tienen problema alguna para moverse. Sin embargo, si tratán de separarse, se ven literalmente sujetos por una especie de pegamento constituodo por 8 Gluones, las partículas intermediarias de la fuerza nuclerar fuerte, estás partículas, al contrario de los protones y neutrones que son Fermiones, pertenecen a la familia de los Bosones, como el Fotón que, transmite la fuerza electromagnética, las partículas W+, W- y Zº que son las intermediarias en la Fuerza electrodébil, y, finalmente, otro Bosón es el Gravitón (aún no encontrado) que, intermedia en la Fuerza de Gravedad.
Los protones y neutrones, al conformar el núcleo atómico, son conocidos también como nucleones. En realidad, ambas partículas, protones y neutrones, son de la familia de los Hadrones y, pertenecen a la rama de los Bariones, es decir, las partículas que conforman la materia luminosa, la que emite radiación y forman los mundos, las estrellas y galaxias y, también, a nosotros los seres vivos.
“Ha supuesto un gran avance en el campo de la Física. Científicos de la Universidad de Otago, en Nueva Zelanda, desarrollaron una técnica para aislar sistemáticamente y capturar un átomo en rápido movimiento neutral, y también han conseguido en primicia ver y fotografiar este átomo por primera vez, lo que han denominado la universidad como el “sueño de los científicos.
La captura del átomo de rubidio 85 es el resultado de un proyecto de investigación de tres años de duración financiado por la Fundación para la Investigación, Ciencia y Tecnología, y ha suscitado el interés en la comunidad científica internacional por las nuevas investigaciones que podrán surgir de este hito.”
¡Hay tántos mundos dentro de este nuestro! Sí, dentro de cada Mente existe un mundo… ¡Tan diferentes!
De lo Grande a lo Pequeño
El 6 de Agosto de 1945 el mundo recibió estupefacto desde Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.
Leucipo (c. 450-370 a.C.), filósofo griego. Es reconocido como creador de la teoría atómica de la materia, más tarde desarrollada por su discípulo, el filósofo griego Demócrito. Según teoría, toda materia está formada por partículas idénticas e indivisibles llamadas átomos.
Leucipo fue un griego legendario. Sin embargo, fue su discípulo Demócrito el que dio al atomismo su clásica como filosofía: “la parte invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido como “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.
Lo cierto es que, nuestro futuro es un libro en blanco y, lo que se pueda leer en él, aún no está escrito … ¿dependerá de nosotros?
Lucrecio (c. 95 a.C. -c. 55 a.C.) perpetuó en De rerum natura (De la naturaleza de lascosas) uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón temer a la muerte o a los poderes sobrenaturales.
Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecio y fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecio fue, una de las figuras más influyentes del Renacimiento.
Así pues, en un principio el atomismo vino al mundo sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico hechizo a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al menos aplicable con excelentes resultados al análisis de la Naturaleza”.
Descartes
Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos -tierra, aire, fuego y agua- no eran en absoluto elementales.
Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión entre la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.
John Dalton
El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, cuando definió un “elemento” como una sustancia que no ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.
Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego.
Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un meteorológico diario, que continuó hasta el día de su muerte.
Cuando los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.
Al final del túnel oscuro de la ignorancia, siempre nos aguarda la luz del saber pero, hay que recorrer la distancia alcanzar el resplandor el saber.
Dalton observó la aurora boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.
Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. , ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas hasta desconocidas, se impulsan mutuamente unas hacia otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”
Dalton se lanzó a la búsqueda de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.
“¿Por qué el agua no admite un volumen similar de gas?, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el número de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”
Teoría cinética de los Gases: La termodinámica se ocupa solo de variables microscópicas, como la presión, la temperatura y el volumen. Sus leyes básicas, expresadas en términos de dichas cantidades, no se ocupan para nada de que la materia formada por átomos. Sin embargo, la mecánica estadística, que estudia las mismas áreas de la ciencia que la termodinámica, presupone la existencia de los átomos. Sus leyes básicas son las leyes de la mecánica, las que se aplican en los átomos que forman el sistema.
Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).
En las reacciones químicas, los átomos no se crean ni se destruyen, solamente cambian de distribución.
Mucho hemos avanzado desde aquellos primeros elementos que, según Empédocles, lo conformaban todo mezclados en la debida proporción. Él decía que la tierra, el agua, el aire y el fuego eran todos los elemetos del mundo físico y que todo estaba hecho de a partir de ellos. No hay que quitarle mérito a la idea germinal que nos trajo muy lejos, hasta la Tabla periódica con sus 92 elementos naturales.
Finalmente trazará un programa de investigación que él mismo resume así: Es objetivo principal de este trabajo mostrar las ventajas que reporta la determinación precisa de los pesos relativos de las partículas últimas, tanto de los cuerpos simples como de los compuestos, determinar el de partículas simples elementales que constituyen una partícula compuesta y el número mínimo de partículas compuestas que entran en la formación de una nueva partícula compuesta.
Tomando al Hidrógeno como número uno, Dalton detalló en esta obra sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en contacto con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.
Dalton inventó unas “señales arbitrarias como signos elegidos para representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).
Habiendo cumplido más de 350 años, la Institución que presidiera Newton “Real Sociedad de Londres para el Avance de la Ciencia Natural” más conocida como “Royal Society”, sigue en plena y ostenta el respetado título de Sociedad más Antigua. ¡Si nos pudiera contar todo lo que allí se vivió”.
La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor parte de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia hasta el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “ variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.
Las verdaderas investigaciones sobre el átomo comenzaron en el siglo XVII, cuando los experimentos de Robert Boyle dieron impulso a la investigación de las intimidades de la materia. En 1803, el científico inglés John Dalton propuso por primera vez, la teoría de que cada elemento tiene un tipo particular de átomo y que cualquier cantidad de un mismo elemento está formada por átomos idénticos. Lo que distingue a un elemento de otro es la naturaleza de sus átomos.
El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón para suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.
Gay-Lussac
Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y cuando lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo de moléculas. Un químico ruso Dmitri Mendeléiev, nos trajo la Tabla Periódica de los elementos, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.
Dmitri Mendeléiev
Más tarde se trasladó a Alemania, ampliar estudios en Heidelberg, donde conoció a los químicos más destacados de la época. A su regreso a Rusia fue nombrado profesor del Instituto Tecnológico de San Petersburgo (1864) y profesor de la universidad (1867), cargo que se vería forzado a abandonar en 1890 por motivos políticos, si bien se le concedió la dirección de la Oficina de Pesos y Medidas (1893).
Entre sus trabajos destacan los estudios acerca de la expansión térmica de los líquidos, el descubrimiento del punto crítico, el estudio de las desviaciones de los gases reales respecto de lo enunciado en la ley de Boyle-Mariotte y una formulación más exacta de la ecuación de . En el campo práctico destacan sus grandes contribuciones a las industrias de la sosa y el petróleo de Rusia.
Todos recordamos cuán difícil era memorizar la tabla periódica en el colegio. Más todavía que memorizar la tabla de multiplicar. Porque, además, la tabla periódica estaba compuesta por nombres y valores extraños, poco útiles la vida diaria. Sin embargo, algunos profesores de vocación, se valían de mil triquiñuelas para que, los niños la pudieran memorizar.
Con todo, su principal logro investigador fue el establecimiento del llamado sistema periódico de los elementos químicos, o tabla periódica, gracias al cual culminó una clasificación definitiva de los citados elementos (1869) y abrió el paso a los grandes avances experimentados por la química en el siglo XX.
Aunque su sistema de clasificación no era el primero que se basaba en propiedades de los elementos químicos, como su valencia, sí incorporaba notables mejoras, como la combinación de los pesos atómicos y las semejanzas entre elementos, o el hecho de reservar espacios en blanco correspondientes a elementos aún no descubiertos como el eka-aluminio o galio (descubierto por Boisbaudran, en 1875), el eka-boro o escandio (Nilson, 1879) y el eka-silicio o germanio (Winkler, 1886).
Mendeléiev demostró, en controversia con químicos de la talla de Chandcourtois, Newlands y L. Meyer, que las propiedades de los elementos químicos son funciones periódicas de sus pesos atómicos. Dio a conocer una primera versión de dicha clasificación en marzo de 1869 y publicó la que sería la definitiva a comienzos de 1871. Mediante la clasificación de los elementos químicos conocidos en su época en función de sus pesos atómicos crecientes, consiguió que aquellos elementos de comportamiento químico similar estuvieran situados en una misma columna vertical, formando un grupo. Además, en sistema periódico hay menos de diez elementos que ocupan una misma línea horizontal de la tabla. Tal como se evidenciaría más adelante, su tabla se basaba, en efecto, en las propiedades más profundas de la estructura atómica de la materia, ya que las propiedades químicas de los elementos vienen determinadas por los electrones de sus capas externas.
Tabla de elementos de Dalton, siglo XIX
Convencido de la validez de su clasificación, y a fin de lograr que algunos elementos encontrasen acomodo adecuado en la tabla, Mendeléiev «alteró» el valor de su peso atómico considerado correcto hasta entonces, modificaciones que la experimentación confirmó con posterioridad. A tenor de mismo patrón, predijo la existencia de una serie de elementos, desconocidos en su época, a los que asignó lugares concretos en la tabla.
Pocos después (1894), con el descubrimiento de ciertos gases nobles (neón, criptón, etc.) en la atmósfera, efectuado por el químico británico William Ramsay (1852-1816), la tabla de Mendeléiev experimentó la última ampliación en una columna, tras lo cual quedó definitivamente establecida.
La sustancia más caliente de todas se creó al colisionar átomos de oro entre sí a velocidades cercanas a las de la luz. Es llamada “sopa de quarks y gluones” y alcanza unos humildes 4 trillones grados centígrados, lo que equivale a una temperatura de 250 mil veces más caliente que el interior del sol.
La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino la relatividad, explicaciones y misterios nuevos.
Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay entre ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender para los legos en la materia
emilio silvera