sábado, 05 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




A partir de hoy sabremos algo más sobre Plurón

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://www.elsistemasolar.info/wp-content/uploads/2013/05/8_outer_solar_system_kuiper_belt.jpg

 

Plutón está situado en el último lugar de los planetas del Sistema solar (hasta donde podemos saber), arriba en la primera imagen se muestra un esquema de su situación y en la segunda imagen podemos contemplar una composición del planeta enano compuesta desde imágens incompletas del Hubble. Desde que hace 9 años partíó desde la Tierra la misión New Horizons, que viajando a unos 50.000 km por hora no ha podido llegar hasta el día de hoy a las proximidades del pequeño planeta, ahora estaremos pendientes de los datos que envíe la sonda espacial para conocer mejor ese pequeño mundo y sus alrededores.

Ilustración de Plutón y su luna Caronte

Con un un diámetro de 2.300 Km., Plutón es más pequeño que nuestra Luna.La llegada de la sonda New Horizons, sobre las 11.49 GMT, a las cercanías del pequeño planeta, nos facilitará nuevos conocimientos sobre sus caracterísitcas menos conocidas del misterioso mundo helado situado a unos 6.000 millones de kilómetros del Sol.

null

 

Esta es la imagen más reciente obtenido del pequeño mundo. New Horizons ya ha detectado signos de una capa polar. Plutón es tan frío que el nitrógeno que respiramos en la Tierra allí existe en forma de hielo, pero es posible que una tenue atmósfera de nitrógeno rodee al planeta enano. Las fotos que logre sacar serán las primeras en revelar si hay elevaciones y depresiones profundas en su superficie o si la topografía es más ondulada.

La expedición también podrá revelar la presencia de otras sustancias químicas: aunque el neón es un gas en la Tierra, podría encontrarse de forma líquida en Plutón, quizá fluyendo en ríos sobre la superficie.

El nitrógeno en la atmósfera podría caer como si fuera nieve. Otra pregunta que se hacen los científicos es por qué cambia tanto el brillo de Plutón (mucho más que cualquier otro mundo observado desde la distancia). Una mirada cercana, dicen, puede revelar procesos planetarios nunca antes vistos.

Recreación de Plutón (izquierda) junto a 'Charon'...

Recreación de Plutón (izquierda) junto a Caronte (derecha). NASA | ESA | G. BACON

A pesar de la gran distancia que le separa del Sol -29 veces más que la existente entre el Astro Rey y la Tierra- telescopios de gran precisión han sido capaces de obtener datos de Plutón, el planeta enano que fue reclasificado como tal en 2006 y que, hasta entonces, se le consideraba el más pequeño y lejano del Sistema Solar.

Los estudios realizados por la NASA teorizan sobre la posibilidad de que en el pasado existió agua bajo las frías capas de una sus lunas, Caronte (Charon en inglés), considerada como la más grande que gira a su alrededor.

Y por último, ahora con la sonda New Horizons  esperan obtener más información sobre Caronte, la luna más grande de Plutón y sus otros cuatro satélites: Estigia, Nix, Cerberos e Hidra.

https://upload.wikimedia.org/wikipedia/commons/f/f2/Pluto_Charon_Moon_Earth_Comparison.png

                                   Aquí tenemos una comparación de la Tierra y la Luna con Plutón y Caronte

Se cree que Plutón y Caronte pudieron haber sido dos cuerpos que colisionaron antes de entrar en órbita mutua. La colisión habría sido lo suficientemente violenta como para llevar a punto de ebullición los hielos volátiles como el metano, pero no lo suficiente para ser interrumpida.

En un trabajo de simulación publicado en 2005, Robin Canup  sugiere que Caronte pudo haberse formado por un impacto gigantesco hace alrededor de 4.500 millones de años, de manera similar a la Tierra y la Luna. En este modelo un objeto grande del cinturón de Kuiper golpea Plutón a gran velocidad, destruyéndose a sí mismo y esparciendo gran parte del manto exterior del planeta. Luego Caronte se forma por la fusión de los restos. Sin embargo, un impacto de esas características resultaría en un Plutón más rocoso y un Caronte con más hielo del que los científicos han encontrado.

Todas esas conjeturas pueden ser confirmadas o negadas a partir de los nuevos datos que la sonda New Horizons nos enviará a partir de hoy.

emilio silvera

En las cercanías de Plutón

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El hombre conquista el último mundo con la llegada del «New Horizons» a Plutón

 

gonzalo lópez / madrid
Día 14/07/2015 – 04.09h

Después de más de nueve años de viaje, el próximo 14 de julio, la sonda «New Horizons» alcanzará las proximidades de Plutón

 

 

Cuando emprendas tu viaje a Ítaca pide que el camino sea largo, lleno de aventuras, lleno de experiencias, no temas a los lestrigones ni a los cíclopes, ni al colérico Poseidón», decía Cavafis en su poema «Viaje a Ítaca». Quizás para recordar que es imposible comenzar una importante empresa si no se está dispuesto a experimentar la incertidumbre de lo desconocido, que no se puede llegar a ningún destino sin caminar y tropezar con piedras.

Cuando la pequeña sonda «New Horizons» partió en enero de 2006 con dirección a Plutón, los científicos de la NASA estaban dispuestos a sumergirse en un largo e incierto viaje, repleto de aventuras. El objetivo era lanzar la nave más veloz hasta la fecha para llegar a los horizontes de lo conocido, en los confines del Sistema Solar, y ampliarlos un poco más.

Después de más de nueve años de viaje, cuando este 14 de julio la sonda llegue a las proximidades de Plutón, la «New Horizons» será la primera nave en llegar a este planeta enano y después en la primera exploradora del Cinturón de Kuiper, una vasta región del espacio más allá de Neptuno, repleta de rocas, cometas y pequeños mundos helados.

«La primera visita a Plutón es un hecho crucial en la historia de la ciencia y la exploración. El vuelo de la «New Horizons» es especialmente importante porque revelará con detalle la naturaleza del planeta doble formado por Plutón y Caronte (se habla de un planeta doble, porque ambos giran en torno a un centro común, y no uno alrededor del otro, como en el caso de la Tierra y la Luna), lo que ayudará a entender cómo se formaron. Además, permitirá observar de cerca los cuerpos que forman el Cinturón de Kuiper», explica a ABC Henry Throop, integrante de la misión y miembro del Instituto de Ciencia Planetaria, en Arizona, EE.UU.

Primera toma de contacto con Plutón

Para esta exploración, la «New Horizons» cuenta con siete instrumentos principales, entre ellos una potente cámara de fotos acoplada a un telescopio, otra cámara para trazar mapas en alta resolución de la superficie y un detector de partículas que analizará el polvo presente en las proximidades del planeta. Además, lleva otras herramientas para analizar la composición de la superficie y la atmósfera. Todo ello confinado en una pequeña nave con forma de piano que no llega a los 500 kilos.

Para los científicos, lo más emocionante es no saber qué se van a encontrar: «Lo realmente fascinante acerca de Plutón es que apenas sabemos nada de él. Incluso las cosas más básicas, como su origen, su tamaño o la edad de su superficie, son realmente desconocidas», explica Henry Throop, que añade: «Mientras que hemos estado en Marte una docena de veces, en Plutón aún tenemos que hacer el primer reconocimiento».

Por ello, la NASA tiene puestas grandes esperanzas en este histórico primer vistazo a Plutón. Creen que podrían encontrar una geología inédita, una extraña atmósfera o alguna nueva luna que sumar a las cinco que ya se conocen. «Pero una cosa que hemos aprendido al estudiar el Sistema Solar es que cuando exploramos nuevos mundos, acabamos encontrando algo más sorprendente de lo que podíamos imaginar», avisa Throop.

Sorpresas aparte, con la llegada a Plutón y al Cinturón de Kuiper, el hombre habrá explorado las partes más significativas del Sistema Solar al menos una vez. Además, podrá explorar una región que es como un «vertedero» donde quedan restos de las materias primas con que se construyó el sistema planetario. Por ello, el miembro de la misión explica que «ahora vamos a poder estudiar la formación del Sistema Solar».

Viaje al origen del Sistema Solar

Para hacerlo, la sonda va provista con el «Student Dust Counter» (contador de polvo de los estudiantes), realizado por alumnos de la universidad de Colorado en Boulder para analizar las partículas microscópicas que encuentre a su paso y que, a juicio de Throop, «es como una máquina del tiempo que nos puede mostrar el estado del Sistema Solar, tal como era hace 4.500 millones de años».

Además, los descubrimientos que haga la «New Horizons» quizás devuelvan a Plutón la categoría de planeta. O, como opina Throop, consigan que «la Unión Astronómica Internacional (IAU, en inglés) elabore una buena definición de planeta». Mientras eso ocurre, muchos científicos siguen sin estar de acuerdo con la «degradación» de Plutón y recuerdan que la definición de planeta –cuerpo que orbita alrededor del Sol, que tiene suficiente gravedad como para tener forma esférica y una órbita despejada de restos– deja fuera de la categoría de planeta a la Tierra, si se interpreta literalmente, puesto que nuestro planeta tiene un satélite y que su esfera está achatada.

Al margen de este debate, en los próximos años la NASA intentará recoger un pedazo de asteroide y lanzará una sonda para explorar Europa, el satélite de Júpiter. En opinión de Henry Throop, «ambas misiones complementarán a la «New Horizons», porque recogerán muestras de los «ladrillos» primitivos con los que se construyeron los planetas». Por ello, parece que el viaje hacia lo desconocido continúa.

Fuente: ABC

Fusión de Galaxias

Autor por Emilio Silvera    ~    Archivo Clasificado en Fusión de galaxias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
Si dos galaxias chocan, pierde la pequeña. Eso es lo que nos dice el último estudio realizado de este suceso.

 

 Dentro de 4.000 millones de años, Andrómeda y la Vía Láctea

Cuando dos galaxias de diferentes tamaños colisionan, la galaxia más grande detiene la fabricación de nuevas estrellas por parte de la más pequeña, según un estudio de más de 20.000 galaxias fusionadas. La investigación también encontró que cuando dos galaxias del mismo tamaño chocan, ambas galaxias producen estrellas a un ritmo mucho más rápido, informa Europa Press.

El astrofísico Lucas Davies, desde el nodo del Centro Internacional de Investigación en Radioastronomía (ICRAR, por sus siglas en inglés) en la Universidad de Western, Australia, explica que nuestro vecino galáctico más cercano, Andrómeda, se precipita en una trayectoria de colisión con la Vía Láctea a unos 400.000 kilómetros por hora.

 

 

Desde hace tiempo se sospechaba la posibilidad de una gran colisión cósmica entre nuestra galaxia y la vecina Andrómeda en el futuro. Ahora la NASA aseguró que está en condiciones de “predecir con certeza” que esto ocurrirá en unos 4.000 millones de años.

 

“La Vía Láctea está destinada a una gran remodelación durante el encuentro”, señaló la agencia, indicando que “es probable que el Sol sea lanzado a otra región de nuestra galaxia, pero la Tierra y el Sistema Solar no están en peligro de ser destruidos“.

 

Con simulaciones por computadora derivadas de los datos del Hubble, se muestra que se necesitarán 2.000 millones de años adicionales para completar la fusión entre ambas galaxias, bajo la fuerza de gravedad, y reformarse en una sola galaxia elíptica como las que se ven normalmente en el universo.

La predicción se realizó gracias a mediciones tomadas con el Hubble sobre el movimiento de Andrómeda. La galaxia está a 2,5 millones de años luz de nosotros ahora, pero está “cayendo” hacia la Vía Láctea gracias a las mutuas fuerzas de gravedad y la materia oscura que las rodea.

 

 

«Sin embargo, no hay que entrar en pánico. Los dos no se aplastarán entre sí hasta dentro de otros 4.000 millones de años», tranquiliza. «Pero la investigación de estas colisiones cósmicas nos permite comprender mejor cómo las galaxias crecen y evolucionan», agrega.

Anteriormente, los astrónomos pensaban que cuando dos galaxias chocaban entre sí sus nubes de gas –donde nacen estrellas_ conseguían agitarse y sembrar el nacimiento de nuevas estrellas mucho más rápido que si se quedaban separadas. Sin embargo la investigación del doctor Davies sugiere que esta idea es demasiado simplista.

Este experto dice que si una galaxia forma estrellas más rápidamente en caso de colisión o no forma nuevas estrellas, depende de si es del tipo grande o pequeño en este accidente de coche galáctico. «Cuando dos galaxias de masa similar chocan, ambas aumentan su tasa de natalidad estelar», afirma Davies.

 

 

 

«Sin embargo, cuando una galaxia es significativamente mayor que la otro, hemos encontrado que las tasas de formación de estrellas se ven afectadas, sólo que en diferentes maneras. La galaxia más masiva comienza a formar rápidamente nuevas estrellas, mientras que la galaxia más pequeña de repente se esfuerza por no hacer ninguna en absoluto», revela.

«Esto podría deberse a que la galaxia más grande despoja de gas a su compañera más pequeña, dejándola sin combustible para la formación estelar o porque detiene la obtención por parte de la más pequeña de nuevo gas que se requiere para formar más estrellas», plantea el autor de este trabajo, que se publica en la revista ‘Monthly Notices’, de la Real Sociedad Astronómica.

Sobre qué sucederá en 4.000 millones de años con la Vía Láctea (Milky Way en inglés) y Andrómeda, Davies dice que la pareja son como «tanques cósmicos», ambos relativamente grandes y con masa similar. «A medida que se vayan juntando, comenzarán a afectar a la formación de estrellas del otro y continuarán haciéndolo hasta que finalmente se fundan para convertirse en una nueva galaxia, lo que algunos llaman ‘Milkdromeda’», dice.

Europa Press

Extraño comportamiwento de un A.N.

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Impresión artística de V404 Cyg

 

El Agujero Negro más brillante resucita después de 26 años. El V404 Xygni provoca un violento estallido de luz mientras devora a su estrella vecina, un suceso que “sólo se ve una vez en la vida”.

Uno de los agujeros negros más cercanos a la Tierra ha vuelto a la vida con una violencia inusitada tras más de 25 años de inactividad. Este monstruo de la Vía Láctea está produciendo potentes brotes de luz a medida que devora parte de la estrella que lo acompaña. El fenómeno es uno de los más extremos que se han podido observar nunca y está ocasionando un enorme revuelo entre astrónomos profesionales y aficionados.

Es algo “que sólo se ve una vez en la vida”, explicaba ayer a Materia Erik Kuulkers, científico jefe del telescopio espacial Integral de la Agencia Espacial Europea (ESA). La tarde del 15 de junio, minutos después de aterrizar en Madrid, donde trabaja, Kuulkers vio el correo electrónico con la alerta enviada por el telescopio espacial Swift de la NASA. Había un repentino brote de rayos gamma y rayos x en la constelación Cygnus, o del Cisne, donde se encuentra el agujero negro. Kuulkers dirigió rápidamente hacia ese punto del cielo los ojos de Integral, comprobó la existencia de la erupción justo en ese punto y envió nuevas alertas para la comunidad internacional. Unos pocos días después “no hay observatorio del hemisferio norte, el único desde el que puede observarse este agujero negro, que no esté apuntando hacia él”, explica Teo Muñoz-Darias, astrónomo del Instituto de Astrofísica de Canarias (IAC).

Monstruos del cosmos

 

 

 

 

 

“Este agujero se ha convertido ya en la fuente de rayos X más potente que se puede observar en el cielo y, si no fuera por la contaminación del polvo que hay entre nosotros, se podría observar desde la Tierra a simple vista”, resalta. Su luminosidad es unas 50 veces superior a la de la nebulosa del Cangrejo, que suele ser uno de los objetos más brillantes del cielo nocturno a altas energías, ha explicado la ESA. Basta un pequeño telescopio de aficionado para poder ver el potente destello, que durará “dos o tres meses”, según ambos expertos.

El V404 Cygni es un sistema binario compuesto por un agujero negro con unas 12 veces la masa del Sol y la estrella que orbita a su alrededor, ligeramente más pequeña que nuestro astro. Está a 8.000 años luz, lo que le convierte en uno de los dos agujeros negros más cercanos a la Tierra. Ahora que ha vuelto a la actividad, también es el más brillante de forma esporádica, según Kuulkers. Estas dos características lo convierten en un fenómeno “único, que aparecerá seguro en los libros de texto”, resalta Muñoz-Darias.

Tiene unas 12 masas solares y es uno de los dos agujeros negros más cercanos a la Tierra

 

Ambos expertos se encuentran en Tenerife para asistir a la Semana Europea de la Astronomía y las Ciencias del Espacio, que reúne a 1.200 científicos hasta el viernes. La repentina vuelta a la vida del V404 y su extraño comportamiento se ha convertido en uno de los protagonistas del encuentro, el más importante de este tipo en Europa, según ha destacado hoy la Sociedad Española de Astronomía. La web del Astronomers Telegram, el diario de avisos más popular entre los astrónomos, bulle con decenas de notificaciones en las que se describe este fenómeno en el espectro óptico, de rayos X, gamma, radio…

El Gran Telescopio de Canarias (GTC), el mayor observatorio óptico del mundo, ha sido uno de los instrumentos claves para captar el fenómeno en luz visible. “El miércoles 17 de junio, cinco horas después de recibir la alerta, ya estábamos observándolo”, recuerda Muñoz-Darias. Gracias a su espejo de 10,4 metros, el GTC está captando al detalle los cambios en luminosidad del agujero. Las observaciones indican que aumenta a trompicones, con altibajos que duran minutos u horas a lo sumo. Se trata de algo totalmente atípico, dicen los astrónomos, y muestra en directo, con una resolución sin precedentes, los dos comportamientos fundamentales de estos esquivos cuerpos que tragan todo a su alrededor, incluida la luz. El primero se llama acreción. Durante décadas, la fuerza gravitatoria del agujero negro ha ido arrancando las capas más superficiales de su estrella, que han formado un disco en torno suyo. Ahora ese material, acelerado hasta casi la velocidad de la luz, ha sido devorado tras cruzar el horizonte del agujero negro. Este proceso lleva emparejado un segundo en el que, tras el atracón, el sumidero escupe literalmente chorros de materia por sus dos ejes de rotación.

Viejo conocido

 

 

Publicado el 30 jun. 2015

On June 15, NASA’s Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward

 

 

“Cuando pase el tiempo podremos resolver cuestiones fundamentales, como cuál es el origen de los jets [los chorros de materia que escupe el agujero]”, comenta Jorge Casares. En 1992, cuando aún era un estudiante, este físico del IAC fue el primero en medir la masa del V404. El cuerpo se había descubierto tres años antes, precisamente durante el único episodio de violenta actividad que se había podido observar hasta ahora, obviamente sin el gran despliegue de telescopios espaciales y terrestres que están disponibles en la actualidad. Su violento comportamiento parece seguir patrones de actividad irregular que son un enorme misterio y que han podido estar sucediendo durante mucho tiempo. Antes de las primeras observaciones científicas de 1989, hay placas fotográficas tomadas en 1938 y en 1956 que ya mostraban un potente destello justo en el punto del cielo donde está el V404.

Desde el descubrimiento de esta nueva erupción se está siguiendo la evolución de este objeto las 24 horas, documentando al detalle su evolución. “Vamos a tener una cantidad de datos tan grande que nos llevará años entender qué está pasando”, reconoce Muñoz-Darias.

Ese fino equilibrio que permite la presencia de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Animación del Péndulo de Foucault oscilando en el hemisferio sur

 

Comencemos el trabajo de hoy.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barren las atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.  En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo, y, hasta donde podemos saber, la vida en su superficie, si alguna vez existió, ha tenido que emigrar al subsuelo.

                                           Hasta el momento sólo sabemos de la vida en la Tierra

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar.  Poco a poco hemos llegado a apreciar cuán precaria es.  Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas.  Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Resultado de imagen de El asteroide caído en el YucatánResultado de imagen de El asteroide caído en el Yucatán

               EL CRATER CHICXULUB, YUCATAN

Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron.  Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo.  Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos.  Se desarrollo la diversidad una vez desaparecidos los grandes depredadores.  Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros.  Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

Creo que la clave está en  los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.

Hasta rel momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que a su vez forman agregados moleculares y éstos los diversos organelos celulares. Los elementos constitutivos de las biomoléculas más importantes son:
  • C: Carbono
  • H: Hidrógeno
  • O: Oxígeno
  • N: Nitrógeno
También son importantes los siguientes:
  • P: Fósforo
  • Fe: Hierro
  • S: Azufre
  • Ca: Calcio
  • I: Yodo
  • Na: Sodio
  • K: Potasio
  • Cl: Cloro
  • Mg: Magnesio
  • F: Flúor
  • Cu: Cobre
  • Zn: Zinc

 

Las biomoléculas pertenecen a cuatro grupos principales denominados:
  1. Glúcidos o Hidratos de Carbono
  2. Lípidos
  3. Proteínas
  4. Ácidos Nucleicos

 

El el gráfico de arriba  están resumidas sus funciones.

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación?

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

¿Cuántos secretos están en esos números escondidos? La mecánica cuántica (h), la relatividad (c), el electromagnetismo (e). Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!

                                         Extraños mundos que pudieran ser

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”

 

Las constantes de la naturaleza… ¡Son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, que es aproximadamente igual a 1/1.836, y la constante de estructura fina (α), que es aproximadamente 1/137.  Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar.  Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (aF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  aF > 0,3 a½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos.Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros.  Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida

Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

Como podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.

emilio silvera