Ago
20
La Masa y la Energía ¿Qué son en realidad?
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Patrón de un kilogramo.
Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. , por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto ; no se trata sólo del muón. Proporciona, por lo menos, una fuente común todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas la matería?
La variación de la masa con el de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen dicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrinseca la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.
¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.
La interacción débil, recordareis, fue inventada por E. Fermin describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.
Fabiola Gianotti, portavoz del experimento ATLAS, ofreció algunos avances:
“En nuestros observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”
El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.
El 4 de julio de 2012 se anunció el descubrimiento de un bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el ? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.
¿Por qué, a pesar de todas las noticias surgidas el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado? Al menos a mí me faltan expliaciones sobre el verdadero mecanismo mediante el cual las partículas adquieren masa.
Hay que responder montones de preguntas. ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.
El campo de Higgs, tal y como se lo concibe , se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así por ejemplo, de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.
El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W–, Z0, y por otra una interacción electromagnética, llevada por los fotones. Es como si algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es el agua, y para otras, los fotones y quizá los neutrinos, es invisible.
cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios
De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.
¡Ya veremos en que termina todo esto! Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011—.
Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft. También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta. Además, ¿Cuántos teóricos hacen falta para encender una bombilla?
La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.
Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no teníamos la menor prueba experimental que parece que va asomando la cabeza en el LHC.
Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.
Después de todo esto, tal como lo están planteando los del CERN, se llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs. Y , por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.
¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.
¿Pasará igual con las cuerdas?
Pero volviendo al principal tema aquí tratado, ya todo eso quedó sobrepasado y el Bosón de Higgs (según nos dijeron los del CERN), ha sido descubierto para que le concedieran el Nobel de Física a Peter Ware Higgs —el primero en predecir la existencia del bosón— junto al físico François Englert. Desgraciadamente, el belga Robert Brout -también merecedor al premio- no pudo estar presente, se marchó antes de tiempo para hacerlo posible.
emilio silvera
Fuente principal: León Lederman
Ago
20
¿La magia? ¡Está por todas partes!
por Emilio Silvera ~ Clasificado en La mágica Naturaleza ~ Comments (0)
Finalizo con paisajes de luz y agua, los precursores de la vida
Sí, amigos míos, la Belleza puede estar en todas partes y, a cualquier lugar que podamos mirar nos podemos encontrar con esa maravillosa imagen que nos deje sin respiración. También una nirada o una bella canción… Nos pueden transportar a otro mundo sin salir de este.
emilio silvera
Ago
19
¡La Entropía no descansa!
por Emilio Silvera ~ Clasificado en La Entropía lo destruye todo ~ Comments (5)
El objetivo de los investigadores es obtener un mapa de la producción de Energía a lo largo de toda la Historia del Universo. Está claro que a medida que el Tiempo transcurre, esa energía también decae, es la Entropía que hace que, el Universo, como Sistema Cerrado, cada vez tenga menor energía para realizar trabajo. Parece que nuestro Universo está abocado a una muerte Térmica. Cuando la Temperatura llegue al cero absoluto -273 ºC, ni los átomos tendrán el menos movimiento.
Un equipo de astrónomos ha confirmado que el Universo muere lentamente tras estudiar más de 200.000 galaxias y comprobar que la energía producida hoy en una sección del universo es sólo la mitad de lo que era hace 2.000 millones de años, un descenso que se registra en todas las longitudes de onda.
Según informó en un comunicado el Observatorio Europeo Austral (ESO), el grupo presentó en la asamblea general de la Unión Astronómica Internacional los resultados del sondeo GAMA (Galaxy and Mass Assembly Survey), una colaboración de casi 100 científicos de más de 30 universidades ubicadas en Australia, Europa y los Estados Unidos.
El hecho de que el Universo se esté apagando lentamente se conoce desde finales de los 90, pero su trabajo muestra que está ocurriendo en todas las longitudes de onda, desde el ultravioleta al infrarrojo, y supone la evaluación más completa de la emisión de energía del universo cercano.
El estudio se apoyó en muchos de los telescopios más potentes del mundo, entre ellos los que posee el ESO en el Observatorio Paranal (Chile), y en observaciones de soporte realizadas con dos telescopios espaciales en órbita operados por la NASA y con otro de la Agencia Espacial Europea (ESA).
“Utilizamos todas las instalaciones terrestres y espaciales a nuestro alcance para medir la emisión de energía de más de 200.000 galaxias en cuantas longitudes de onda nos fue posible”, explicó director del equipo GAMA, Simon Driver, de la Universidad de Australia Occidental.
Los datos del sondeo incluyen las medidas de la emisión de energía de cada galaxia en 21 longitudes de onda, desde el ultravioleta hasta el infrarrojo lejano y se espera que ayuden a los científicos a comprender mejor cómo se forman y evolucionan los diferentes tipos de galaxias.
Fuente: Agencia EFE
Ago
19
Las estructuras fundamentales de la Naturaleza
por Emilio Silvera ~ Clasificado en Las huellas del pasado ~ Comments (2)
Una molécula de Agua y otra de Amoníaco
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.
La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.
Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.
Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.
Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.
Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.
Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.
Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.
Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.
Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientpos.
Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.
Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.
Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.
Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.
Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.
En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.
Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.
emilio silvera
Ago
19
La persistencia de los enigmas
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (0)
Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede probar o refutar la hipótesis de la “fuga de dimensiones”.
¿Cómo sería el universo primitivo? En cosmología es aquel que se estudia en un tiempo muy poco después del big bang. En realidad, las teorías del Universo primitivo han dado lugar a interacciones muy beneficiosas entre la cosmología y la teoría de partículas elementales, especialmente las teorías de gran unificación.
Debido a que en el universo primitivo había temperaturas muy altas, muchas de las simetrías rotas en las teorías gauge se vuelven simetrías no rotas a esas temperaturas. A medida que el universo se enfrió después del big bang se piensa que hubo una secuencia de transiciones a estado de simetrías rotas.
Combinando la cosmología con las teorías de gran unificación se ayuda a explicar por qué el universo observado parece consistir de materia y no de antimateria. Esto significa que uno tiene un número bariónico no nulo para el universo. La solución se encuentra en el hecho de que hubo condiciones de no equilibrio en este universo primitivo debido a su rápida expansión después del big bang.
Una idea importante en la teoría del universo primitivo es la de inflación: la idea de que la naturaleza del estado de vacío dio lugar, después del big bang, a una expansión exponencial del universo. La hipótesis del universo inflacionario soluciona varios problemas muy antiguos de la cosmología, como la planitud y la homogeneidad del universo.
Nosotros, los habitantes de este mundo, hemos logrado armar un cuadro plausible de un universo (mucho) mayor. Hemos logrado entrar en lo que podríamos llamar la “edad adulta”, con lo que quiero significar que, a través de siglos de esporádicos esfuerzos, finalmente hemos empezado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más moderna pretensión de madurez cosmológica.
La Nebulosa del Capullo, catalogada como IC 5146, es una nebulosa particularmente hermosa situada a unos 4.000 años-luz de distancia hacia la constelación del Cisne (Cygnus). Un hermoso complejo de Luz y nebulosidad oscura que rodea a un cúmulo muy disperso que, a su derecha, está custodiado por estrellas masivas de intensa radiación UV.
Sabemos, por ejemplo, dónde estamos, que vivímos en un planeta que gira alrededor de una estrella situada en la parte interior de uno de los brazos de la Galaxia (el Brazo de Ortión). La Vía Láctea, una galaxia espiral, está a su vez situada cerca de las afueras de un supercúmulos de galaxias, cuya posición ha sido determinada con respecto a varios supercúmulos vecinos que, en conjunto albergan a unas cuarenta mil galaxias extendidas a través de un billón de de años-luz cúbicos de espacio.
Vivímos en la periferia de la Galaxia, a 30.000 años-luz del centro galáctico
En la parte interios del Brazo de Orión (señalada con la línea) está el Sistema Solar, a 30.000 años-luz del Centro Galáctico en una región bastante tranquila que nos permite contemplar (con nuestros ingenios) lo que que ocurre en otras regiones lejanas y las fuerzas desatadas que azotan aquellos lugares.
También sabemos (más o menos), cuando hemos entrado en escena, hace cinco mil millones de años que se formaron el Sol y sus planetas, en un universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determionado los mecanismos básicos de la evolución en la Tierra, hallado pruebas también de la evolución química a escala cósmica y aprendido suficiente física como para investigar la Naturaleza en una amplia gama de escalas, desde los saltarines quarks hasta el vals de las galaxias.
Hay realizaciones de las que la Humanidad puede, con justicia, sentirse orgullosa. Desde que los antiguos griegos pusieron el mundo occidental en el camino de la Ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil milloners de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia real de la Luna hasta el radio de más de doce mil millones de años-luz del universo observable. Tenemos razones para esperar que nuestra época sea recordada (si finalmente queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la sociedad, su concepto del Universo en su conjunto.
Sin embargo, cuando más sabemos sobre el universo, tanto más claramente nos damos cuenta de cuan poco sabemos. Cuando se concebía el Cosmos como un pulcro jardín, con el cielo como techo y la Tierra como suelo y su historia coextensa con la del árbol genealógico humano, aún era posible imaginar que podíamos llegar algún día a comprenderlo en su estructura y sus detalles. Ya no puede abrigarse esa ilusión. Con el tiempo, podemos lograr una comprensión de la estructura cósmica, pero nunca comprenderemos el universo en detalle; resulta demasiado grande y variado para eso. Y, tal inmensidad, siempre tendrá secretos por desvelar.
Si poseyésemos un atlas de nuestra galaxia que dedicase una sola página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de diez mil millones de volúmenes de diez mil páginas cada uno. Se necesitaría una biblioteca del tamaño de la de Harvard para alojar el atlas, y solamente ojearlo al ritmo de una página por segundo requieriría más de diez mil años. Añádanse los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra galaxia solamente, y hay cien mil millones de galaxias más.
Bellos y extraños objetos que están presentes en el universo y tratamos de comprender
Ya nos lo dijo el físico Lewis Thomas: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando. Lo nuevo es nuestra conciencia de ella, nuestro despertar a sus abismales dimensiones, y es esto, más que cualquier otra cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final, pero la ventura del aprendizaje es interminable.
Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupan a los científicos al amenazar la hegemonía de su visión del mundo. El técnico en bata del laboratorio, en la película de bajo presupuesto, se da una palmada en la frente cuando se encuentra con algo nuevo, y exclama con voz entrecortada: “¡Pero…no hay explicación para esto!” En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son los grandes sistemas místicos de pensamiento, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se equivocan y no crecen.
Los grandes pensadores como Aristarco de Samos
La ciencia es intrínsecamente abierta y exploratoria, y comete errores todos los días. En verdad, éste será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema de Gödel demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marco de referencia más amplio, entonces la teoría, por definición, no lo explica todo. En resumen, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.
El Creador (si en verdad existe un “creador”) debe haber sido afecto a la incertidumbre, pues Él nos la ha legado para siempre. La cual, diría yo, es una conclusión saludable y debe de alegrarnos. Mirar esa imposibilidad de saberlo todo, esa incertidumbre cierta que llevamos con nosotros y que nos hace avanzar a la búsqueda incansable de nuevos conocimientos, es, en realidad, la fuente de la energía que nos mueve.
Busto de Alejandro Magno
Podemos recordar aquí lo que cuentan de Alejandro Magno: Él lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza. Ningún hombre o mujer, realmente reflexivos, deberían desear saberlo todo, pues cuando el conocimiento y el análisis son completos, el pensamiento se detiene y llega la decadencia.
René Magritte, en 1926, pintó un cuadro de una pipa y escribió debajo de él sobre la tela, con una cuidadosa letra de escolar, las palabras: “Ceci nést pas une pipe” (Esto no es una pipa). Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “universo” no es el universo; ni lo son las ecuaciones de la teoría de la supersimetría, ni la ley de Hubble ni la métrica de Friedman-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que es algo, y mucho menos lo que el Universo entero, realmente “es”. La Ciencia describe y predice sucesos.
¿Cuantos secretos se esconden en ese laberinto de conexiones sin fin?
Si la Ciencia tuviera que tener un símbolo, yo escogería éste de arriba que nos señala el lugar donde habita la Mente, dónde se fraguan las ideas. Una configuración de átomos de energía donde residen todos los secretos del Universo, toda vez que, la podríamos considerar la obra suprema del Universo
¿Por qué, pués, la ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio -por qué la mente humana…, puede comprender algo del vasto universo-. Como solía decir Einstein: “Lo más incomprensible del universo es que sea comprensible”. Quizá como nuestro cerebro evolucionó mediante la accion de las leyes naturales, éstas resuenan de algún modo en él. La Naturaleza presenta una serie de repeticiones -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de la conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre lo que ocurre dentro y fuera del cráneo humano. Pero el misterio, realmente, no es que coincidamos con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es así?
Habrá que seguir buscando respuestas. Desde tiempos inmemoriales, el hombre pregunta a las estrellas si el Universo es eterno e infinito y el cielo le responde cada noche. Pero, ¿sabemos oir la respuesta?
¡Es todo tan complejo! ¡Es todo tan hermoso!
emilio silvera