miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Todo es Universo… ¡También nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (17)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Sobrevuelos a Venus, la Tierra y Júpiter

La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.

¿Que es el núcleo atómico?

El propio Rutherford empezó a vislumbrar la respuesta a la pregunta que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. Algunas de aquellas partículas no aparecían por ninguna parte, parecían que chocaban con algo sólido… ¿Qué sería?

Pero centrémonos en el trabajo que aquí se expone que se anuncia arriba como: Todo es Universo… ¡También nosotros!

El Universo lo es todo. El Espacio y el Tiempo, la Materia y las fuerzas que con ella interaccionan, las Constantes de la Naturaleza y todo ello, implica una serie de cuestiones de una complejidad inmensa que aún, no hemos podido resolver. La cantidad de teorías, de modelos, de experimentos y de posibilidades que están en marcha en los distintos campos del saber, son enormes, y, finalmente, todas deberán ser unidas en un solo y complementado conocimiento que nos lleve a ese entendimiento profundo de nuestro Universo como un todo que es, lo que podremos ver, trás unir las piuezas del rompecabezas con el que ahora estamos trabajando al dilucidar parcelas de esa inmensidad que no podemos abarcar con la vista y menos con el conocimiento, sólo la imaginación se acerca a ese todo que pretendemos construir.

 

No podemos tener una imagen del Universo completo, es demasiado grande para que eso sea posible y sólo, pequeñas regiones del mismo podemos captar con nuestros telescopios que nos enseñan regiones más o menos lejanas del inmenso Cosmos. En cualquir parte que podamos mirar y observar, nos daremos cuenta de que las cosas que allí puedan pasar, son las mismas que pasan en otros lugares, toda vez que, el Universo se rige por leyes que actúan en todas partes de la misma manera. Muchos, desde hace mucho tiempo, pensaron en todas esas cuestiones.

Tales nació en la ciudad de Mileto en el año 639 a. de C. Fue el primero de los 7 sabios de Grecia y era matemático, geógrafo, pensador, astrónomo y astrólogo. Hijo de Examio e Cleóbula. Se marchó a Egipto para formarse con los sacerdotes del faraón en Geometría, astrología y física, allí aprendió cosas tan útiles como medir las pirámides por la longitud de la sombra. Era experto en astrosofía (algo que unía astronomía con filosofía) y que le daba el título de rudito en el más alto nivel. Se cuenta de él que, un día caminaba, de noche, observando las estrellas y cayó en un socabon que había en el suelo. Él fue el primero en dar al Agua la importancia que tiene para la vida.

Hoy trataré de dejar aquí una insignificante brizna de toda esa búsqueda, desesperada, por ese saber incansablemente perseguido por la especie humana que,deseosa de conocer todos aquellos misterios encerrados dentro de esa burbuja que llamamos Universo, no ha dejado, desde que Tales de Mileto desterró la mitología para emplear la lógica, de buscar el por qué del mundo, de los cielos y, en fin, de la Naturaleza. Claro que, desde aquel entonces hasta ahora, mucho es lo que nuestra curiosidad nos ha podido dar de ese saber que buscamos y del que no todos, hanestado siempre seguros de lograr.

Por ejemplo:

No olvidemos que, en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y, que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del cosmos.Sin embargo, podemos decir hoy, recien cumplida la primera década del siglo XXI, , que no solo podemos saber la composición de las estrellas, sino también como nacen, “viven” y mueren, las distancias que las separan de nosotros y un sin fin de datos más que el estudio y la investigación nos ha posibilitado descubrir.

http://chandra.harvard.edu/photo/2007/a3627/a3627.jpg

Las estrellas del cielo, ¡tan lejanas! ¡tan misteriosas! que en las noches oscuras nos envían guiños de complicidad, como si trataran de decirnos alguna cosa, como si nos estuvieran llamando. Fue tanto el misterio que en nuestras mentes sembraron las estrellas que, no hemos parado ni un momento por saber, no sólo de qué estaban hechas, sino como surgen a la vida, como se desarrollan sus mecanismos, como mueren y en qué se convierten después. Sabemos que las estrellas son importantes en nuestras vidas hasta el punto de que, sin ellas, no podríamos estar aquí. Una de ellas, a la que llamamos Sol, nos envía su luz y su calor haciendo posible la vida en el planeta Tierra, otra antes que el Sol, hace seguramente muchos miles de millones de años, regó el espacio con su materia estelar y, pasado el tiempo, se condenso (ayudada por la Fuerza de Gravedad) en lo que hoy conocemos como el Sistema Solar.

Archivo:Buenos Aires-Plaza Congreso-Pensador de Rodin.jpg

Nada más cierto que lo que quiere simbolizar esa enorme imagen del Pensador. Es un fiel reflejo de lo que, a través de los tiempos, ha sido el SER Humano. Nunca hemos dejado ni dejaremos de pensar, en ello está nuestro futuro. A las pruebas de la Historia me remito.

Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos limites racionales.Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida.Podremos colonizar otros planetas (terraformarlos) y explotar recurso mineros en las lunas de nuestro sistema solar (las grandes compañias petroleras estarían encantadas en Titán), los turistas irán al planeta Marte o a las lunas Ganímedes o Europa.Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediantes sistemas de transportes aéreos más limpios, rápidos y exentos de colisiones, sus modernos censores lo impedirán.Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, y así en todos los campos del saber humano.

En el nombre “Internet del Futuro” se asocian una serie de conceptos y tecnologías que abarcan desde la infraestructura de red, dispositivos e interfaces, software y aplicaciones que compondrán el que en unos años conformará el panorama de las Tecnologías de Información y Comunicaciones.

Entre estos temas, aparece la red de redes de gran velocidad y llegando a todas partes, mediante nuevos dispositivos, con nuevas formas de interaccionar con el mundo digital, acceso fácil e inteligente los diferentes tipos de contenidos con mención especial a 3D, y todo ello soportado por innovadores modelos de negocio adaptados a este nuevo panorama.

A los jóvenes no hay que convencerles de que Internet es imprescindible. El futuro para ellos es ya hoy. Una reciente encuesta pone de relieve la enorme vocación juvenil de tomar la red como bandera generacional. De hecho ellos, los jóvenes lo van a construir y modelar a su gusto y, probablemente, el Internet del futuro poco se parecerá al Internet que conocemos hoy. Alguien ha dicho: “Hoy, Internet está en su Prehistoria”. Lleva toda la razón

Estamos inmersos en un avance exponencial, imparable.

http://cuchyx.files.wordpress.com/2010/10/tecnologia1.jpg

Se podría decir que, gracias a los Aceleradores de Partículas, podemos jugar con los átomos para mirar en su interior y saber, de qué está hecha la Materia que nos confroma a nosotros, a las estrellas y a los mundos de las galaxias del Universo.

Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo.En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termodinámica.Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisemberg, aunque ahora existen métodos indirectos.En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.

Ejemplo en el que se observa la variación de los valores de la dimensión de masa y de la dimensión del contorno calculada por el método del compás en los siguientes DLA.

Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente. Se puede observar en la siguiente figura como cuando una formación sobresale, las de sus lados dejan de crecer. Esto es debido a que las más grandes absorben los recursos de las más pequeñas e impiden su crecimiento, fenómenoque se da en la naturaleza cuando un árbol grande impide que crezcan los que están a su alrededor quitándoles los recursos de luz, agua…

Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto.En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.

                    Bueno, con la imagen de la sombra podemos tener una idea, bastante acertada de la imagen original, el movimiento lo delata

También la existencia de los neutrinos, propuestos por Wolfgang Pauli en 1.930, para dar cuenta de la energía perdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía, también digo, era inverificable (en aquel momento).Pauli comprendió que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente muy raramente con la materia.La materia, toda la materia, si profundizamos en ella a niveles microscópicos, podremos comprobar el hecho de que, en un 99% está constituida de espacios vacíos y, siendo así, los neutrinos pueden atravesarla sin rozar siquiera sus átomos, de hecho, pueden atravesar la Tierra como si ni siquiera existiera y, al mismo tiempo, también nosotros somos atravesados continuamente por billones de neutrinos emitidos por el sol, incluso por la noche.

 

                    Unos quieren pesar planetas y otros neutrinos pero, todos quieren saber sobre los misterios del Universo

Hablando de neutrinos recuerdo cuando el experimento Opera de los neutrinos pusiera en tela de juicio la teoría de Einstein, la medición de la luz proveniente de las galaxias confirmaron por primera vez a escala cósmica la teoría de la relatividad del genio físico.Sin embargo, no en una, sino en varias ocasiones han querido quitarle al bueno de Einstein el honor de haber marcado el límite de velocidad en nuestro Universo

Pauli admitió:  ”He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada”. Él predijo la existencia del neutrino para explicar “la masa perdida” en procesos de desintegración.

Pero incluso Pauli, con todos sus enormes conocimientos, se equivocaba, y el neutrino ha sido comprobado mediante distintos métodos que no dejan dudas de su existencia. Incluso producimos regularmente haces de neutrinos en colisionadores de átomos, realizamos experimentos con los neutrinos emitidos por reactores nucleares y, detectamos su presencia en enormes depósitos de agua pesada colocados en profundas minas abandonadas en las entrañas de la Tierra. Cuando una espectacular supernova de iluminó en el cielo del hemisferio sur en 1.987, los físicos registraron una ráfaga de neutrinos que atravesaron sus detectores situados, precisamente, en profundas minas.

                                          El Enorme recipiente lleno de agua pesada (SNOLSB), delatará a los neutrinos que lo atraviesen.

Dentro de una antigua mina de Sudbury (Ontario, Canadá) está ubicado el complejo de investigación astrofísica SNOLAB. Una de sus instalaciones es el Observatorio de Neutrinos (ONS, en la imagen). Los neutrinos son partículas subatómicas con una masa tan ínfima —se ha calculado que menos de una milmillonésima parte de la masa de un átomo de hidrógeno— que pueden atravesar la materia ordinaria sin apenas perturbarla. La materia está “compuesta” en su mayor parte de vacío aunque nuestros ojos y nuestro cerebro (en primera instancia) no lo interpreten así.

Para evitar la interferencia de otras partículas cósmicas este peculiar observatorio no está situado en la superfície, sino nada menos que a dos kilómetros de profundidad en el interior de la corteza terrestre. La instalación ONS es básicamente un “cazador de neutrinos” capaz de detectar estas partículas producidas por las reacciones de fusión en el interior Sol y así poder analizar la composición del núcleo de nuestra estrella. La cubierta acrílica del ONS contiene un kilotón (1.000 toneladas) de agua pesada (D2O) que al reaccionar con los neutrinos hacen que se produzcan unos azulados destellos de radiación o luz Cherenkov, llamada así en honor del destacado miembro de la Academia de Ciencias de la Unión Soviética Pável Alekséyevich Cherenkov (1904-1990), Premio Nobel de Física de 1958 por el descubrimiento e interpretación de este fenómeno. El primer detector orbital de partículas de estas características —Detector Cherenkov— fue uno de los equipos científicos instalados en el satélite Sputnik-3, lanzado por la URSS el mismo año en que Cherenkov recibiera el Nobel.

Si hablamos de la masa de Planck, lo hacemos de la masa de una partícula cuya longitud de onda Compton es igual a la Longitud de Planck, está dada por la ecuación de arriba, donde tenemos la constante de Planck racionalizada (la h cortada con ese palito arriba), c que es la velocidad de la luz y G la constante gravitacional, la descripción de una partícula elemental de esta masa.o partículas que interacionan con energías por partículas equivalentes a ellas a través de E = mc2, requiere una teoría cuántica de la Gravedad. Como la masa de Planck es del orden de 10-8 kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del ordende 10-27 Kg y las mayores energías alcanzables en nuestros aceleradores de partículas actuales son de un orden (aún pequeño) los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Sin embargo, en el universo primitivo se cree quen las partículas tenían ejnergías del orden de la energía de Planck (representada en la ecuación de abajo) que sería la energía necesaria para llegar hasta las cuerdas.

[energia_de_Planck.png]

Echando una larga mirada a la historia de la ciencia, creo que existen motivos para un moderado optimismo. Witten está convencido de que la ciencia sería algún día capaz de sondear hasta las energías de Planck.

E. Witten, padre de la versión más avanzada de la teoría de supercuerdas, la teoría M, dice:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.En el S.XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.Si usted hubiera dicho a un físico del siglo XIX que hacia elS. XX sería capaz de calcularlo, le habría parecido un cuento de hadas…. La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

 

 

Lo mismo que otros muchos, no creo que tengamos que esperar un siglo antes de que nuestro ingenio y nuestras máquinas puedan sondear de manera indirecta la décima dimensión, alguien sabrá, durante ese periodo de tiempo, resolver esa teoría de campos de cuerdas o alguna otra formula no perturbativa.El problema es teórico, no experimental.Necesitamos alguien con el ingenio y la inteligencia necesaria (además de un enorme índice de observación), para saber “ver” lo que probablemente tenemos ante nuestras narices, utilizando para ello todos los datos e indicios existentes de gente como Einstein, Kaluza y Klein, Veneziano y Suzuki, el cuarteto de cuerdas de Princeton, Michio Kaku, Witten…, y tantos otros.

Suponiendo que algún físico brillante resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro Universo, sigue existiendo el problema practico de cuándo seríamos capaces de aprovechar el poder de la teoría del hiperespacio.Existen dos posibilidades:

  1. Esperar que nuestra civilización alcance la capacidad para dominar energías millones de veces mayores que las de hoy.
  2. Encontrar civilizaciones extraterrestres que, más avanzadas, hayan dominado el arte de manipular el Hiperespacio.

 

                         Pero, si no son como esta…¡Mejor!

Antes de que Edison (robara las ideas de Tesla) y con sus otros colaboradores aprovecharan los descubrimientos de Faraday y las ecuaciones de Maxwell, sobre la electricidad y el magnetismo, para explotarlos de manera práctica, pasaron unos setenta años.

La civilización moderna depende crucialmente del aprovechamiento de esta fuerza.La fuerza nuclear fue descubierta casi con el cambio de siglo, pasó todo el siglo XX y estamos en la primera década del XXI, han pasado 100 años, y, sin embargo, todavía no tenemos medios de aprovecharla con éxito en reactores de fusión, la energía limpia que produce el Sol.

El próximo paso, el aprovechar la potencia de la teoría de campo unificado, requiere un salto mucho mayor en nuestra tecnología, aunque sea un salto que probablemente tendrá implicaciones muchísimo más importantes.

El problema reside en que obligamos a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck.Energía que sólo fue liberada en el propio instante de la creación.Es decir, la teoría de supercuerdas es una teoría de la propia creación, así nos puede explicar todas las partículas y la materia, las fuerzas fundamentales y el espacio-tiempo, es decir, es la teoría del propio Universo.

http://2.bp.blogspot.com/-DMfdwHfKrQI/TcGvQe-jUMI/AAAAAAAAAHE/RaQZiXk2GN4/s1600/worm3.jpg

El dolor de cabezas que nos causa pensar en el espacio-tiempo y en el cómo podemos desplazarnos por él a grandes distancias de tiempo y también de espacio. ¿Se conseguirá alguna vez? ¿Será cierto que existen los Agujeros de Gusano? ¿Podremos alguna vez construir naves que surquen el Hiperespacio hacia otras galaxias y otros mundos?

Durante estos comentarios, frecuentemente he reseñado la palabra “espacio-tiempo” refiriéndome a una geometría que incluye las tres dimensiones espaciales y una cuarta dimensión temporal.En la física newtoniana, el espacio y el tiempo se consideraban como entidades separadas y el que los sucesos fueran simultáneos o no era una materia que se consideraba como obvia para cualquier observador capacitado.

En el concepto de Einstein del universo físico, basado en el sistema de geometría inventada por H. Minkowski (1864-1909), el espacio y el tiempo estaban considerados como enlazados, de manera que dos observadores en movimiento relativo podían estar en desacuerdo sobre la simultaneidad de sucesos distantes.En la Geometría de Minkowski (inspirada a partir de la teoría de la relatividad especial de Einstein), un suceso se consideraba como un punto de universo en un continuo de cuatro dimensiones.

Pero volvamos a las supercuerdas.El problema fundamental al que se enfrenta esta teoría es este: de los millones de universos posibles que pueden ser generados matemáticamente por la teoría de supercuerdas, ¿cuál es el correcto? Como ha dicho David Gross:

“Existen millones y millones de soluciones con tres dimensiones espaciales. Existe una enorme abundancia de soluciones clásicas posibles… Esta abundancia de riqueza era originalmente muy satisfactoria porque proporcionaba evidencia de que una teoría como la de la cuerda heterótica podía tener un aspecto muy parecido al mundo real. Estas soluciones, además de tener cuatro dimensiones espacio-temporales, tenían otras muchas propiedades que se asemejaban a nuestro mundo: el tipo correcto de partículas tales como quarks y Leptones, y el tiempo correcto de interacciones… Esto constituyó una fuente de excitación en su momento.”

 

 

 

Es difícil escenificar lo que las supercuerdas son, nunca nadie pudo ver ninguna.

 

Gross, sin embargo, advierte que aunque alguna de estas soluciones están muy próximas al modelo estándar, otras dan lugar a propiedades físicas muy embarazosas e indeseables, lo que finalmente se traduce en una auténtica incomodidad o problema, ya que tenemos muchas soluciones pero ninguna forma aceptable de escoger entre ellas.Además algunas tienen propiedades deseadas y otras potencialmente desastrosas.

Un profano, al oir esto por primera vez, puede quedar intrigado para preguntar: ¿por qué no calcular simplemente que solución se adapta o prefiere la cuerda? Puesto que la teoría de cuerdas es una teoría bien definida, parece enigmático que los físicos no puedan calcular la respuesta.

Lo único seguro es que los físicos seguirán trabajando a la búsqueda de la solución que, más pronto o más tarde, llegará.

Efecto túnel a través del espacio y del tiempo

               ¡Extraña mecánica cuántica!

Estaría bien poder saber como un electrón, cuando absorbe un fotón, desaparece del lugar que ocupa y, de manera instántanea, aparece en otro lugar más ener´getico sin haber recorrido la distancia que separa ambos lugares, es el efecto túnel o salto cuántico. ¿Cuánto podríamos ganar si aprendiéramos como se hacer eso?

En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919, escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general. ¿Dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto.Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica.Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.

El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera al parecer infranqueable hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas.El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica.El efecto es usado en el diodo túnel.La desintegración alfa es un ejemplo de proceso de efecto túnel.

Antes preguntábamos, en relación a la teoría de Kaluza – Klein, el destino o el lugar en el que se encontraba la quinta dimensión.

El profesor Teodor Kaluza nos hablaba de la Quinta Dimensión que unificaba la Relatividad de Einstein con la Teoría de Maxwell. Todo en cinco dimensiones…Ahí comenzó toda la historia que después, desembocaron enm las supersimetrías, supergravedad, cuerdas y supercuerdas, cuerda heteráotica y teoría M…¿Qué vendrá después?

La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el Universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en Lp=√(Għ/c3),cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10 con exponente -15 metro.

Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza – Klein, también están compactada en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez menor que un protón.

¿Cómo pueden estar enrolladas unas dimensiones?

Bueno, igual que para explicar de manera sencilla la gravedad mediante el ejemplo de una sábana estirada por los 4 extremos, en la que ponemos un enorme peso en su centro y se forma una especie de hondonada que distorsiona la superficie antes lisa de la sábana, al igual que un planeta distorsiona el espacio a su alrededor, de manera tal que cualquier objeto que se acerca a la masa del objeto pesado, se ve atraído hacia él.Pues bien, en las dimensiones de espacio enrolladas, utilizamos el símil de la sábana con bandas elásticas en las esquinas.

La sábana que tenemos es pequeña y la cama es grande.Con esfuerzo logramos encajar las cuatro esquinas, pero la tensión es demasiado grande; una de las bandas elásticas salta de una esquina, y la sábana se enrolla. Este proceso se llama ruptura de simetría.La sábana uniformemente estirada posee un alto grado de simetría.La sábana se enrolla.Se puede girar la cama 180º alrededor de cualquier eje y la sábana permanece igual.Este estado altamente simétrico se denomina falso vacío.Aunque el falso vacío aparece muy simétrico, no es estable. La sábana no quiere estar en esta condición estirada. Hay demasiada tensión y la energía es demasiado alta.Pero, la sábana elástica salta y se enrolla.La simetría se rompe, y la sábana pasa a un estado de energía más baja con menor simetría. Si notamos la sábana enrollada 180º alrededor de un eje ya no volvemos a tener la misma sábana.

Reemplacemos ahora la sábana por el espacio-tiempo decadimensional, es espacio-tiempo de simetría definitiva.En el comienzo del tiempo, el universo era perfectamente simétrico.Si alguien hubiera estado allí en ese instante, podría moverse libremente y sin problemas por cualquiera de las diez dimensiones. En esa época la Gravedad y las fuerzas débiles y fuertes y electromagnéticas estaban todas ellas unificadas por la supercuerda.Sin embargo, esta simetría no podía durar.El Universo decadimensional, aunque perfectamente simétrico, era inestable, la energía existente muy alta, exactamente igual que la sábana, estaba en un falso vacío. Por lo tanto, el paso por efecto túnel hacia un estado de menor energía era inevitable. Cuando finalmente ocurrió el efecto túnel, tuvo lugar una transición de fase y se perdió la simetría.

                                                             La imaginación no tiene límites y, la Naturaleza tampoco

Puesto que el Universo empezó a dividirse en un Universo de cuatro y otro de seis dimensiones, el universo ya no era simétrico. Seis dimensiones se habían enrollado (como la sábana elástica).Pero nótese que la sábana puede enrollarse de cuatro maneras, dependiendo de qué esquina haya saltado.Para el universo decadimensional, sin embargo, existen aparentemente millones de modos de enrollarse.Para calcular que estado prefiere el Universo decadimensional, necesitamos resolver la teoría de campos de cuerdas utilizando la teoría de transiciones de fase, el problema más difícil en la teoría cuántica.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas.En un libro llamado PASAJES, el autor, Gail Sheehy destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo.Un conflicto fundamental caracteriza cada fase.Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior.Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño.Con un mes de edad, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión.Sin comprender que la pelota existe aunque no la vea.Al mes siguiente, esto resultará obvio para el niño.

http://1.bp.blogspot.com/-1Cu7_plq8Cg/TcMxjF7Hm7I/AAAAAAAAAgg/lQaeFfnR1AE/s1600/dejame%2Bser%2Bni%25C3%25B1o%2Buan%2Bvez%2Bm%25C3%25A1s.jpg

                                                                        ¡Siempre aprendiendo! Jugando comenzamos a conocer cómo es el mundo.

Esta es la esencia de la dialéctica.Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio Universo) pasan por una serie de estadios.Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas.La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio.Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado.Esta teoría se aplica también a las sociedades o culturas.Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII.Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas.Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a los cualitativo: los campesinos tomaron las armas, tomaron Paris y asaltaron la Bastilla.

 

            Parece que el “vacio” está bastante lleno de cosas…que no llegamos a comprender.

Las transiciones de fases pueden ser también asuntos bastante explosivos.Por ejemplo, pensemos en un río que ha sido represado.Tras la presa se forma rápidamente un embalse con agua a enorme presión Puesto que es inestable, el embalse está en el falso vacío.El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía.Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente.Esto se denomina desintegración radiactiva.Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E=mc2, por supuesto, dicha liberación, es una explosión atómica ¡menuda transición de fase!

http://4.bp.blogspot.com/_Fu_Yym_Znbg/TTx0v6fodHI/AAAAAAAAAHY/3HiSooefiN0/s1600/COSMOS.jpg

Una transición de fase que perseguimos, es dominar la Galaxia, poder moldearla con nuestras manos, y, si eso llega a ser posible alguna vez, seremos los señores del Hiperespacio.Para entonces, los misteriosos agujeros negros no tendrán secretos para nosotros, las energías perdidas tampoco y…los viajes en el tiempo, serán cosa cotidiana. ¿Será realidad algún día ese pensamiento?

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría.Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado.Aquí existe simetría.Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría.Supongamos ahora que el primer comensal toma la copa que hay a su derecha.Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha.Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.Cada comensal ha tomado la copa izquierda.De este modo, la simetría izquierda-derecha se ha roto.

Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones.Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

 

Al principio, cuando el Universo era simétrico, solo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo.Más tarde, cuando el Universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y Galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol.Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar Hidrógeno en Helio, de los elementos más ligeros a los más pesados.Avanza creando en el Horno termonuclear, cada vez, metales y elementos más pesados.Cuando llega al hierro y explosiona en la forma explosiva deuna super nova.Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienzo de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kripton, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E=mc2.Esta es la fuente de energía que subyace en la bomba atómica.

                                           Restos de Hipernova que produce cambios hacia el futuro del Universo

Así pues, la curva de energía de enlace no solo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años – luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del Universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.

 

                          El Sol que nos da la vida con su luz y su calor

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que, en el último Congreso Internacional, han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de km=UA), con un diámetro de 1.392.530 km, tiene una edad de 4.500 millones de años.

Es tal su densidad, es tal su enormidad que, como se explicó en otro ensayo anterior de este mismo trabajo, cada segundo, transforma por medio de fusión nuclear, 4.654.000 Toneladas de Hidrógeno en 4.650.000 Toneladas de Helio, las 4.000 toneladas restantes, son lanzadas al espacio exterior en forma de luz y calor de la que, una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años.Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, eyectará sus materiales exteriores al espacioy se transformará finalmente en una estrella enana blanca.Para entonces, ya no podremos estar aquí.

Cuándo mentalmente me sumerjo en las profundidades inmensas del Universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

salamanca ciudad patrimonio de la humanidad Salamanca, Ciudad Patrimonio de la Humanidad

                                                           Sólo somos importantes a nivel local, pretendemos serlo a otros niveles pero, ¿será posible eso?

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados.Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante.

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana dentro de la nave sin estar flotando todo el tiempo, y, desde luego, buscar un combustible que procure velocidades relativistas, cercanas a c, ya que, de otra manera, el traslado por los mundos cercanos se haría interminable.Finalmente, y para escapar del sistema solar, habría que buscar la manera de romper la barrera de la velocidad de la luz.

¿Viajar en el tiempo?

Nuestra imaginación sólo es comparable a la inmensidad del Universo. Ahí radica nuestra verdadera riqueza. La curiosidad del SER humano le empuja de manera irremediable hacia su destino en las estrellas.

emilio silvera

Todo el Universo… ¡Es una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La remanente de supernova Cassiopeia A que se encuentra a 11.000 años luz de distancia. La luz de la supernova Cass A, que es la muerte explosiva de una estrella masiva, alcanzó la Tierra por primera vez hace sólo 330 años. de desechos en expansión ocupa ahora unos 15 años luz en esta composición de rayos X y luz visible, mientras que la brillante fuente cerca del centro es una estrella de neutrones, los restos colapsados increíblemente densos del núcleo estelar. Aunque está suficientemente caliente emitir rayos X, la estrella de neutrones de Cass A se está enfriando. De hecho, los 10 de observación del observatorio de rayos X Chandra averiguó que la estrella de neutrones se enfrió tan rápido que los investigadores sospechan que gran del núcleo de dicha estrella está formando un superfluido de neutrones sin fricción. Los resultados del Chandra representan la primera evidencia observacional para este extraño estado de la materia. ( : X-ray: NASA/CXC /UNAM / Ioffe /.

20110219005420-tempel1-stardust-900.jpg

                                                                               El Cometa Tempel 1 desde la Sonda Stardust-NeXT

Ningún cometa se ha visitado antes dos veces. Por tanto, el paso sin precedente de la sonda Stardust-NeXT  cerca del Cometa Tempel 1 hace algún tiempo ya,  nos proporcionó a los humanos una oportunidad única de ver cómo cambia el núcleo de un cometa a lo largo del tiempo. Los cambios en el núcleo del Cometa Tempel 1 eran de particular interés porque el cometa fue golpeado por un objeto cuando pasaba la sonda Deep Impact  en 2005.  La fotografía superior es una imagen digitalmente ensalzada del Cometa Tempel 1 cerca de su máxima aproximación a la Stardust-NeXT.  Se pueden ver muchas características retratadas en 2005, como cráteres, grietas, y también áreas muy suaves. Sólo se pueden sacar unas pocas conclusiones,  pero en los próximos años los astrónomos especializados  en cometas y en el entendimiento del Sistema Solar se servirán de estas imágenes para buscar nuevas pistas de la composición del Cometa Tempel 1, como se encuentra el lugar del impacto del 2005, y como han evolucionado los principales accidentes del mismo.

Créditos: NASA, JPL-Caltech, Cornell

Se trata de estrellas contra montañas de gas en NGC 2174, y las estrellas van ganando. Más en concreto, la luz energética y los vientos las estrellas masivas de formación reciente están evaporando y dispersando las oscuras guarderías estelares en que se formaron. Las estructuras de NGC 2174  son en realidad mucho menos densas que el aire, y sólo aparecen como montañas debido a cantidades relativamente pequeñas de polvo opaco interestelar. NGC 2174 es una vista poco conocida en la constelación de Orión, que puede encontrarse con binoculares cerca de la cabeza del cazador celestial. Está a unos 6.400 años luz de distancia, y la brillante nube cósmica entera cubre una zona más grande que la de la Luna llena, además de rodear diversos cúmulos abiertos de estrellas jóvenes. La imagen superior tomada desde el Telescopio Espacial Hubble,  muestra una densa región interior que extiende apenas unos tres años luz adoptando una gasma de colores que muestra las emisiones de otra rojas del hidrógeno en tonos verdosos y resalta la emisión del azufre en rojo y el oxígeno en azul. En unos pocos millones de años, las estrellas probablemente ganarán de forma definitiva y toda la montaña de polvo será dispersada.

Créditos: ESA, Hubble, NASA

Como un barco surcando los mares cósmicos, la estrella fugitiva Zeta Ophiuchi produce el arco de onda o choque interestelar que se ve en este impresionante retrato infrarrojo la nave espacial WISE. En la vista en falso color, la azulada Zeta Oph, una estrella unas 20 veces más masiva que el sol, aparece cerca del centro de la imagen, moviéndose hacia la parte superior a 24 kilómetros por segundo. Su fuerte viento estelar la precede, comprimiento y calentando el polvoriento material interestelar y formando el frente de choque curvado. Alrededor hay nubes de material relativamente no afectado. ¿Qué mantiene a esta estrella en movimiento? Seguramente, Zeta Oph fue una vez miembro de un sistema estelar y su estrella compañera sería más masiva y por tanto de vida más corta. Cuando la compañera explotó como supernova catastróficamente, perdiendo masa, Zeta Oph fue arrjada fuera del sistema. Situada a unos 460 años luz de distancia, Zeta Oph es unas 65.000 veces más luminosa que el sol y podría ser una de las estrellas más brillantes del cielo si no estuviese rodeada de polvo oscuro. La imagen de la WISE abarca sobre 1,5 grados o 12 años luz a la distancia estimada de Zeta Ophiuchi.

Créditos: NASA, JPL-Caltech,WISE Team

Aunque la fase de esta luna podría parecernos familiar, la luna como tal no lo es. De hecho, esta fase gibosa muestra parte de la luna de Júpiter llamada Europa.  La sonda robótica Galileo capturó  esta Imagen en mosaico durante su misión orbital en Júpiter entre 1995 y 2003. Se pueden ver planicies de hielo brillante, grietas  que llegan hasta el horizonte, y oscuros boquetes que probablemente contentan tanto hielo como suciedad. El terreno elevado es casi un hecho cerca del terminador, donde empieza la sombra. Europa  es casi del mismo tamaño que nuestra luna,  pero mucho menos abrupta, mostrando muy pocas altiplanicies o cráteres de impacto. Pruebas e imágenes de la sonda Galileo indican que pueden existir océanos océanos líquidos debajo de su helada superficie. Para poder especular de que estos mares pudieran contener alguna de vida, la ESA ha empezado ya el desarrollo de la Jovian Europa Orbitert,  una sonda que orbitará Europa. Si la capa helada es suficientemente delgada, una misión en el futuro podría soltar hidro robots en los océanos para buscar vida.

Créditos: Galileo Project,JPL,NASA;reprocessed by Ted Stryk

M78 no se está escondiendo realmente en el cielo nocturno del planeta Tierra. Situada a unos 1.600 años luz de distancia y ubicada en la rica en nebulosas constelación de Orión, la grande y brillante nebulosa de reflexión, es bien conocida para los observadores del cielo con telescopio. Pero esta espléndida imagen de M78 fue seleccionada como ganadora de la competición de astrofotografía Tesoros ocultos 2010.  Celebrada por el European Southern Observatory (ESO), la competición retó a astrónomos aficionados a procesar del archivo astronómico del ESO para buscar gemas cósmicas ocultas. La Imagen ganadora muestra increíbles detalles dentro de la azulada  M78 (centro) abrazada por nubes de polvo oscuras, junto con otra nebulosa de reflexión más pequeña de la región, NGC 2071 (arriba). La recientemente descubierta Nebulosa McNeil,  amarillenta e incluso más compacta, llama la atención en la parte inferior a la derecha del centro. Basada en datos de la cámara WFI del ESO y el telescopio de 2,2 metros de La Silla en  Chile, esta imagen se extiende alrededor de apenas 0,5 grados en el cielo. Eso se corresponde con 15 años luz a la distancia estimada de M78.

Créditos: ESO /Igor Chekalin

¿Qué está causando las pintorescas ondas del remanente de supernova SNR 0509-67.5? Las ondas, así la más grande nebulosa, fueron captadas con un detalle sin precedentes por el Telescopio Espacial Hubble en 2006 y otra vez a finales del año pasado. El color rojo fue recodificado por un un filtro del Hubble que dejó solamente la luz emitida por hidrógeno energético. La razón específica de las ondas sigue siendo desconocida, con dos hipótesis consideradas para su origen que las relacionan con porciones relativamente densas de gas expulsado o impactado. La razón del anillo brillante rojo más ancho está más clara, su velocidad de expansión y ecos de luz lo relacionan con una clásica explosión de supernova del Ia que ha debido ocurrir hace unos 400 años. SNR 0509 se extiende actualmente unos 23  años luz y se encuentra a unos 160.000 años luz de distancia hacia la constelación del Dorado-delfin (Dorado) en la Gran Nube de Magallanes.  Sin embargo, el anillo en expansión tiene también otro gran misterio: ¿Por qué su supernova no fue vista hace 400 años, cuando la luz del estallido inicial debió alcanzar la Tierra?

Créditos: NASA,ESA, y theHubble Heritage Team(STScI/AURA); Acknowledgment: J. Hughes(Rutgers U.

Alnitak, Alnilam y Mintaka son las brillantes estrellas azuladas desde el este al oeste (izquierda a derecha) a lo largo de la diagonal de esta maravillosa vista cósmica. Conocidas también como el Cinturón de Orión,  estas tres estrellas supergigantes azules son más calientes y mucho más masivas que el Sol. Se encuentran a alrededor de 1.500 años luz de distancia, nacidas de las bien estudiadas nubles interestelares de Orión. De hecho, las nubes de gas y polvo a la deriva en esta región tienen curiosas y algo sorprendentemente familiares apariencias, como la oscura nebulosa Cabeza de Caballoy la nebulosa de la Llama,  cerca de Alnitak en la parte inferior izquierda. La propia famosa nebulosa de Orión se sitúa fuera de la parte inferior de este colorido campo estelar. Grabado el pasado Diciembre con una cámara digital SLR modificada y un pequeño telescopio, el bien planeado mosaico de dos fotogramas  se extiende alrededor de 4 en el cielo.
Créditos.

Alrededor de estas estrellas siempre surgieron muchas historias: “Todo comienza en la constelación de Orión que posee entre sus más importantes estrellas a Betelgeuse, Rigel, Bellatriz, Almitak, Almilan, Mintaka, Saiph, Meissa, Tabit, Atiza y Eta Orionis; siendo Betelgeuse el lugar de partida de la historia. Betelgeuse esta situada en lo que llamaríamos el hombro derecho de Orión. Posee un diámetro aproximado de 450 millones de kilómetros. Si la colocáramos en el centro de nuestro sol, su radio abarcaría a Mercurio, Venus y la Tierra. Se encuentra a 310 años luz de nuestro sistema y está en  vía de extinción  convirtiéndose poco a poco en una estrella súpergigante roja.  Ella posee 33 planetas de alta vibración y ellos se manejan muchos designios que ocurren en el orden de los pléyades. Sus habitantes son amorosos, bondadosos, pero igualmente guerreros y en uno de esos planetas habita el señor EO disfrutando de todo el amor de la creación compuesto por la luz, la energía, y la fuerza.

En esta hermosa naturaleza “muerta” celeste compuesta con un pincel cósmico, la nebulosa polvorienta NGC 2170 brilla en la parte superior izquierda. Reflejando la luz de las cercanas estrellas calientes, NGC 2170 está unida  a otras nebulosas de reflexión azuladas, una región compacta de emisión roja y serpentinas de polvo oscuro contra un telón de fondo de estrellas. Al igual que los pintores de naturalezas muertashabituales en el hogar a menudo escogen sus temas, las nubes de gas, el polvo y las estrellas calientes fotografiadas aquí son también comúnmente encontradas en este escenario; una masiva nubes moleculares de formación estelar en la constelación Monoceros. molecular gigante gigante, Mon R2, está impresionantemente cercana, estimándose  en solo 2 400 años luz de distancia más o menos. A esa distancia, este lienzo tendría 15 años luz de diámetro.

En lo único que difiero de la traducción que han hecho es, en la calificación de “naturaleza muerta”, ya que, nunca podríamos contemplar nada más “vivo” que lo que arriba se nos muestra. Siempre cambiante y en actividad lograr los elementos complejos de la vida.

                          Amigo Kike, ¿cuántos mundos con presencia de vida podrían estar ahí presentes?

Una de las galaxias más brillantes en el cielo del planeta Tierra y de un tamaño semejante a la Vía Láctea,  la espiral M81,  grande y hermosa, se encuentra a 11,8 millones de años luz de distancia en la constelación meridional de Ursa Major (Osa Mayor). Esta imagen intensa  de la zona revela detalles del brillante núcleo amarillo, pero al mismo tiempo sigue características más tenues a lo largo de los espléndidos brazos espirales azules y los corredores que barren el polvo. También sigue el detalle en arco, de gran extensión, denominado bucle de Arp, que parece elevarse el disco galáctico, a la derecha. Estudiado en los 60 del siglo pasado, se ha pensado que el bucle de Arp era una cola de marea material retirado de M81 por la interacción gravitacional con su gran galaxia vecina M82. Pero una investigación reciente demuestra que gran parte del bucle de Arp posiblemente se encuentra en nuestra propia galaxia. Los colores del bucle en luz visible e infrarroja coinciden con los colores de las nubes de polvo dominantes,  cirros galácticos relativamente inexplorados  solo unos pocos centenares de años luz por encima del plano de la Vía Láctea. Junto con las estrellas de la Vía Láctea, las nubes de polvo se localizan en el primer plano de esta destacada imagen. La galaxia enana compañera de M81, Holmberg IX,  puede ser vista justo por encima y a la izquierda de la gran espiral.

Objetos el que arriba podemos contemplar, galaxias espirales, son como entes vivos y generan entropía negativa que hace posible la regeneración del Universo a través de los sistemas dinámicos de destrucción-construcción, es decir, algo muere que algo surja a la vida. Esa es la Ley que impera en todo nuestro Universo.

¿Qué veríamos si fuésemos directo un Agujero Negro? Lo cierto es que, como nadie estuvo nunca en tal situación, lo único que podemos hacer es especular y hacer una y otra vez las ecuaciones de los distintos momentos que se podrían producir en un viaje de tal calibre en el que, a medida que nos acercamos al agujero y pasamos esa línea prohíbida del horizonte de suscesos, en algún momento tendríamos la sensación de que el tiempo se detendría, y, también sentiríamos que nuestros cuerpos sufrirían el efecto spaghetti, es decir, a medida que vamos hacia la singularidad, la masa de nuestros cuerpos se verán estiradas hacia ese lugar del que no se vuelve. Algunos ilusos, hablan de que, si la nave atravieda el agujero por el mismo centro, se saldría por otro “universo”, es decir, sería un viaje alucinante hacia lo desconocido.


La preguntita para finalizar el reportaje, tiene su guasa, y, desde luego, considerando que el agujero negro contiene el más denso estado de la materia que en el Universo pueda existir, la respuesta no resulta nada fácil, toda vez que, aunque nadie estuvo allí nunca para poder regresar y contarnos sus impresiones, lo cierto es que, según todos los indicios, la irresistible fuerza de Gravedad que emana del Agujero Negro, tiraría de nosotros con tal fuerza que nos espaguetizaría primero y pulverizaría después.

Mejor no pasarse por allí, por si acaso.

emilio silvera