viernes, 08 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La simetría CP y otros aspectos de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los quarks al otro lado del espejo. Científicos del Laboratorio Nacional Jefferson Lab (EEUU) han verificado la rotura de la simetría de paridad (también llamada simetría del espejo) en los quarks mediante el bombardeo de núcleos de deuterio con electrones de alta energía. Los núcleos de deuterio están formados por un protón y un neutrón, es decir, por tres quarks arriba y tres quarks abajo. La dispersión inelástica entre un electrón y un quark, es decir, su colisión, está mediada por la interacción electrodébil, tanto por la fuerza electromagnética como por la fuerza débil. Esta última es la única interacción fundamental que viola la simetría de paridad.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

La Física nos lleva de vez en cuando a realizar viajes alucinantes. Se ha conseguido relacionar y vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance la fecha y abre las puertas de la computación cuántica. que nos hagamos una idea del hallazgo, en 1935 Einstein lo llegó a denominar la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado! Pero se sigue hablando de partículas supersimétricas.

                                      ¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello,  no la tiene ni la nueva capacidad energético del  acelerador de partículas LHC . Ni sumando todos los aceleradores de partículas de nuestro mundo, podríamos lograr una energía de Planck (1019 GeV), que sería necesaria para poder llegar hasta las cuerdas vibrantes de la Teoría. Ni en las próximas generaciones seremos capaces de poder utilizar tal energía.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Sabemos sobre las partíoculas elementales que conforman la materia bariónica, es decir, los átomos que se juntan para formar moléculas, sustancias y cuerpos… ¡La materia! Pero, no sabemos si, pudiera haber algo más elemental aún más allá de los Quarks y, ese algo, pudieran ser esas cuerdas vibrantes que no tenemos capacidad de alcanzar.

                                              ¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

                 Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero…

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pietez Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

                                                       Basta con cambiar un quark tipo U a uno tipo D.

Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acció la fuerzxa nuclear débil.  Un quark tipo U cambia a uno tipo D por medio de la interacción débil así

Las otras dos partículas que salen son un anti-electrón y un neutrino. Este mismo proceso es el responsable del decaimiento radiactivo de algunos núcleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrónes).

La interacción débil, recordareis, fue inventada por E.Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de lo que un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10′5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar, de manera un poco exagerada:

¡La partícula Divina!

¡Ya veremos en que termina todo esto! Y que explicación se nos ofrece desde el CERN en cuanto al auténtico escenario que según ellos, existe en el Universo para que sea posible que las partículas tomen su masa de ese oceáno de Higgs, en el que, según nuestro amigo Ramón Márquez, las partículas se frenan al interaccionar con el mismo y toman su masa, el lo llama el “efecto frenado”.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista. (Mach, Maxwell, Lorentz… y otros).

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no tenemos la menor prueba experimental.

Ahora, por fin la tenemos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas y a la materia oscura que, de momento, están en la sombra y no brillan con luz propia, toda vez que ninguna de ellas ha podido ser verificada, es decir, no sabemos si el Universo atiende a lo que en ellas se predice.

El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo pudo surgir  el Universo no dependen de que se encuentre el bosón de Higgso se averigue si realmente existe la materia oscura, Aunque sepamos llegar al fondo de la Teoría de Cuerdas y confirmarla, Poder crear esa Teoría cuántica de la Gravedad…Y, en fín, seguir descubriendo los muchos misterios que no nos dejan saber lo que el Universo es.  Ahora, por fin, tenemos grandes aceleradores y Telescopisos con la energía necesaria y las condiciones tecnológicas suficientes para que nos muestre todo eso que queremos saber y nos digan dónde reside esa verdad que incansables perseguimos. Sin embargo, siempre seguiremos haciendo preguntas y siempre, también, serán insuficientes, los aparatos que podamos construir para que nos digan como es el Universo y cómo funciona la Naturaleza. Saberlo todo, nunca sabremos.

¡La confianza en nosotros mismos, no tiene límites! Pero, no siempre ha estado justificada.

emilio silvera

Tratamos de saber quiénes somos

Autor por Emilio Silvera    ~    Archivo Clasificado en El cerebro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CIENCIA -El País

Rafael Yuste, ideólogo del Proyecto BRAIN: “El gran desafío de la ciencia es crear el mapa del cerebro humano”

Por Zuberoa Marcos

Rafael Yuste

      Rafael Yuste

Neurobiólogo. Ideólogo del Proyecto BRAIN

Siendo neurocientífico, que Rafael Yuste admire a Santiago Ramón y Cajal desde su adolescencia puede sonar a tópico. Sin embargo, la lectura de “Los tónicos de la voluntad: reglas y consejos sobre investigación científica” del Nobel Aragonés, que su padre le regaló a los 14 años, marcó la vocación de uno de los creadores del proyecto BRAIN (Investigación del Cerebro a través del Avance de Neurotecnologías Innovadoras). Si sólo el nombre ya resulta complejo, sus objetivos lo son aun más. Porque lo que pretenden conseguir el grupo de científicos entre los que se encuentra el español afincado en Estados Unidos es, según palabras de Barack Obama (quien asumió como propio el proyecto) “obtener una fotografía dinámica del funcionamiento de nuestro cerebro para entender mejor cómo pensamos, cómo aprendemos y cómo recordamos”.

El supercomputador Magerit (CeSViMa), el más potente de España, es usado por el proyecto

BRAIN tiene unas dimensiones acordes con sus objetivos: involucra a laboratorios de muchos países, requiere cientos de millones de euros para poder ser financiado y la dedicación de un buen número de investigadores de distintas disciplinas. El fin último de BRAIN es mapear la actividad del cerebro, lo que permitirá desarrollar técnicas para alterar la actividad de circuitos neuronales y, de esa manera, corregir los defectos que provocan las enfermedades mentales entre otras utilidades.

Los gigantes de la tecnología siguen con mucho interés los avances del Proyecto BRAIN. ¿Y porqué habría de interesarle a una empresa como Google, por ejemplo, la neurobiología? Rafael Yuste lo tiene muy claro: porque incluso los algoritmos utilizados por el mejor buscador del mundo son primitivos comparados con nuestro cerebro. Entender cómo pensamos sería un paso de gigante (y tal vez definitivo) para el desarrollo de la inteligencia artificial. Y aunque mentar estos avances produce vértigo y miedos en muchos, el científico español es un firme defensor del progreso: “La tecnología en lugar de limitarnos y atemorizarnos nos hará más libres. Será como un nuevo humanismo”.

¿Cuánta materia vemos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                          La constante de Hubble en función de la Densidad Crítica

La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por Ω. Esta es la densidad de la materia que se necesita para producir un universo plano. Si Densidad efectivamente observada es menor o mayor que ese , en el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbido de lodo, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” las galaxias.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón
  • La razón densidades de “Materia Oscura” y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el uno o dos % menor de la densidad crítica; es decir, menos de lo que se necesita cerrar el universo.

Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico?

 

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, simplemente debe ser a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

http://esamultimedia.esa.int/images/dtos/mission/C2_goce.jpg

Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.

Esos halos, tendrían muchas veces las masas que podemos ver en la Materia luminosa de las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la uninimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.

La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.

MACSJ0717.5+3745

Usando del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.

MACSJ0717.5+3745 etiquetado

La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida filamento- de 13 millones de años luz.

Se han obtenido Imágenes (MACSJ0717) que muestran cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia desconocida intersectan, pero…

¿Cuál debe ser la Masa del Universo?

Alan Guth's photo

                  Alan Guth

claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.

nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

Abell 370: Lente gravitacional de un cúmulo de galaxias

Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica , ¿que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, deajndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El expectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo que la luz salió de su fuente.

Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejmplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el inflación esté ligado a este proceso.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

Cuando ( mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimineto tan rápido las reglas impuestas por la relatividad de Eintien que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracci´çon considerable.

Claro que, con esto pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.

                     El Universo se expande

Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribucón de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que podemos detectar de “casi” plana conforme a la materia que contiene.

La Galaxia NGC 4388 y su Inmensa Nube de Gas

En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habrái impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.

No me extrañaria que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estándo en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para que nuestro Universo, sea tal como lo podemos observar.

En imagenes como , los “expertos” nos dicen cosas como:

“La materia oscura en la imagen de varias longitudes de onda de arriba se muestra en un falso color azul, y nos enseña detalles de como el cúmulo distorsiona la luz emitida por galaxias más distantes. En de gas muy caliente, la materia normal en falso color rojo, son fruto de los rayos-X detectados por el Observatorio de Rayois X Chandra que orbita alrededor de la Tierra.”

 

Algunas galaxias individuales dominadas por materia normal aparecen en colores amarillentos o blanquecinos. La sabiduría convencional sostiene que la materia oscura y la materia normal son atraídas lo mismo gravitacionalmente, con lo que deberían distribuirse homogéneamente en Abell 520. Si se inspecciona la imagen superior, sin embargo, se ve un sorprendente vacío de concentración de galaxias visibles a lo largo de la materia oscura. Una respuesta hipotética es que la discrepancia causada por las grandes galaxias experimentan algún de “tirachinas” gravitacional.

Una hipótesis más arriesgada sostiene que la materia oscura está chocándo consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al , unas grandes lagunas y, tratándo de taparlas hacen aseveraciones que nada tienen que ver con la realidad).

http://farm6.static.flickr.com/5146/5653032414_c8e6085f98.jpg

Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente podríamos llegar a comprender esos fenómenos que nos atormentan y a los que no podemos encontrar una explicación  que podamos constatar.

¿Materia Oscura?  Sí, Unicornios y Gárgolas, también.

emilio silvera

¿Qué será la materia?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « Higgs? ¡Si existen!

En primaria, nos decían que estaba en tres estados. Se profundizaba poco más y, el desconocimiento de la materia era grande

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

 

Maravillas como el proceso triple Alfa nos hace pensar que la materia está viva. La radiación ha sido muy bien estudiada y hoy se conocen sus secretos. Sin embargo,  son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

             El electrón es onda y partícula

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

thomson

              Josepth John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

(“Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attosegundo equivalente a la trillonésima parte de un segundo”.)

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas. Las inmensas galaxias son el conjunto de muchos pequeños átomos unidos para formar moléculas que a su vez se juntan y forman cuerpos. Los océanos de la Tierra, las montañas de Marte, los lagos de metaño de Titán, los hielos de Europa… ¡Todo está hecho de materia bariónica! Es decir, son pequeños Quarks y Leptones que conforman los átomos de lo que todo está hecho en nuestro Universo. Bueno, al menos todo lo que podemos ver.

Un “simple” átomo está conformado de una manera muy compleja. Por ejemplo, un protón está hecho de tres quarks: 2 up y 1 down. Mientras tanto, un neutrón está constituido de 2 quarks down y 1 quark up. Los protones y neutrones son hadrones de la rama barión, es decir, que emiten radiación. También son fermiones y, debido a su función en el átomo, se les suele llamar nucleones. Dichos quarks existen confinados dentro de los protones y neutrones inmersos en una especie de pegamento gelatinoso formado por unas partículas de la familia de los Bosones que se llaman Gluones y son los transmisores de la Fuerza nuclear fuerte. Es decir, si los quarks se quieren separar son atrapados por esa fuerza que los retiene allí confinados.

Haga clic para mostrar el resultado de "Louis de Broglie" número 12

Louis de Broglie

Estudiar el “universo” de las partículas subatómicas es fascinante y se pueden llegar a entender las maravillas que nos muestra la mecánica cuántica, ese extraño mundo que nada tiene que ver con el nuestro cotidiano situado en el macromundo. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”. Recientemente he podido leer que unos científicos han logrado (de alguna manera) “congelelar” la luz y hacerla sólida. Cuando recabe más información os lo contaré con todo detalle. El fotón, el cuanto de luz, es en sí mismo una maravilla.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

Dibujo20090715_graviton_cartoon_(C)_animaginator

El gravitón parece estar riéndose de todos y no se deja ver. El gravitón es la partícula elemental responsable de la fuerza de la gravedad. Todavía no ha sido descubierto experimentalmente. Teóricamente debería tener masa en reposo nula. ¿Qué límites para la masa del gravitón ofrece el fondo cósmico de microondas? El gravitón es la partícula elemental responsable de la “versión” cuántica de gravedad. No ha sido descubierto aún, aunque pocos dudan de su existencia. ¿Qué propiedades tiene? Debe ser un bosón de espín 2 y como la gravedad parece ser una fuerza de largo alcance, debe tener masa en reposo muy pequeña (billones de veces más pequeña que la del electrón), posiblemente es exactamente cero (igual que parecer ser la del fotón).

 

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm., de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

  Para detectar ondas gravitacionales necesitamos instrumentos extremadamente precisos que puedan medir distancias en escalas diminutas. Una onda gravitacional afecta longitudes en escalas de una millonésima de billonésima de metro, así que ¡necesitamos un instrumento que sea lo suficientemente sensible para “ver” a esas escalas!

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es 0, su carga es 0, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Un fenómeno de gran violencia galáctica

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Algunos proyectos como LIGO, están a la caza de esas ondas gravitatotias y, los expertos dicen que, cuando podamos leer sus mensajes, se presentará ante nosotros todo un nuevo universo que aíun no conocemos. Ahora, todo lo que captamos, las galaxias y estrellas lejanas, son gracias a la luz que viaja desde miles de millones de años luz hasta nosotros, los telescopios la captan y nos muestran esas imágenes de objetos lejanos pero, ¿qué veremos cuando sepamos captar esas ondas hgravitatorias que viajan por el Espacio a la velocidad de la luz como los fotones y, son el resultado del choque de galaxias, de agujeros negros y de estrellas de nuetrones?

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque lo hemos captado, no lo sabemos descifrar.

No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

emilio silvera

La Relatividad es la unidad. Es la regla fundamental

Autor por Emilio Silvera    ~    Archivo Clasificado en Colaboración    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Albert Einstein

Ricard Jiménez

 

“La mayor deficiencia de la raza humana es nuestra incapacidad para comprender la función exponencial”  Albert A. Bartlett.

Antes de comenzar a utilizar esta nueva “herramienta” tienes que confiar en ella. Sólo así podrás contemplar su inmensa potencia. Su método de funcionamiento no es más que una manera diferente de pensar, o de contemplar siempre dos planos opuestos de la realidad. En esta independencia basa su toda su potencia, realmente nada le afecta. Su escala es la relatividad universal: toda visión, sea la que sea, siempre tendrá su visión opuesta.

Para entenderlo desarrollaremos un ejemplo que tiene como protagonista a nuestra Ley más universal: “La ley de la relatividad”; Una Ley que, sin ninguna duda, nos abrió la puerta a una forma diferente de entender el Universo. En esta ocasión se trata de contemplarla de forma fractal: ver de qué manera la podemos expresar de forma genérica en diferentes dimensiones matemáticas.

Para ello usaremos el caso más sencillo en el que podemos “situar” esas dimensiones matemáticas, y es utilizar las dimensiones geométricas. La relatividad general es una ley que decimos que se entiende en un ámbito tetra-dimensional, la relatividad espacial (por otro lado) transcurre en un reino tridimensional en el que, mágicamente, nos aparece un límite fundamental, cuando su tercer eje es el “movimiento”. En una visión bidimensional, cuando descendemos al plano geométrico, los límites que encontramos en algunos desarrollos aritméticos (que denominamos “sucesiones infinitas) y que podemos representar gráficamente nos revelan que existen “contornos matemáticos” que no podemos traspasar.

¿Existe por tanto algún límite fundamental en un escenario tetra-dimensional que no podemos traspasar? Y… si existe ¿Cuál es el éste?

Dicho límite fundamental sería la unidad. En otras palabras, todas las dimensiones matemáticas que podamos imaginar tienen un límite fundamental y dicho límite es la unidad.

Normalmente decimos que la unidad es un valor no-dimensional, diciendo con ello que no le atribuimos existencia. Aquí vamos a ver que eso no es cierto, porque una unidad puede ser un patrón inteligente de comportamiento. Una unidad puede guardar todo un universo dentro. Ciertamente un Universo de la nada pero, al fin y al cabo, un universo…. El nuestro.

La regla siempre será ésta: Si partimos de una unidad inicial y ésta se mueve siempre creciendo de forma exponencial, su límite fundamental convergerá nuevamente a una unidad. Esto sucederá siempre que dicha regla de crecimiento se base en los cuadrados de sus elementos. Y a ésta regla podemos llamarla “relatividad universal”.
Es una regla muy básica, tanto que para entenderla, no necesitamos fórmulas matemáticas, tan sólo abrir (metafóricamente) tu mente a la existencia de una regla irracional, porque precisamente en este concepto se basan todas las leyes de la relatividad.

Comenzaremos por la más famosa de todas ellas.

La Ley de la relatividad especial, la que relaciona la energía y la masa nos dice de forma sintetizada que en una partícula fundamental puede existir una inmensa fuerza. Dado que da sentido a la existencia de una velocidad y de un movimiento universal, de acuerdo con ella el Universo también tiende (en su movimiento espacio-temporal) a una singularidad: el “Big-Bang”.

Estas dos concepciones de la teoría de la relatividad especial no son más que dos formas diferentes de entender un mismo concepto. Cuando nos referimos en términos de fuerzas a esta relación universal adoptamos una perspectiva estática y, por lo tanto, lo podemos representar de forma geométrica. En cambio cuando razonamos sobre el Big-Bang observamos una tendencia, algo que solo podemos conceptualizar. El principio subyacente (no obstante) es el mismo… De forma general, no es más que condensar un infinito en una unidad.
Aquí vamos a dar un paso más, vamos a condensar o sintetizar todo ese infinito en nuestra forma básica de pensar: “Doble o nada”, la regla que conecta tu mente con el Universo.

La pregunta fundamental es ésta… ¿Cómo hace esto el Universo?

¿Cómo conecta elementos tan distintos? La respuesta más simple sólo puede ser ésta: dichos elementos en el fondo son el mismo. Se trata, en definitiva, de comprobar una regla fundamental… ¿Es la respuesta más sencilla la correcta?

Bien… Sigamos las evidencias. Lo primero es entender que la relatividad (en global) es una ley auténticamente Universal dado que se trata de una especie de ley no escrita, incluso de más profundidad que una ley matemática: es la famosa “Ley de la oferta y la demanda”. Esto implica que siempre se dará o, en otras palabras, que la relatividad universal es el único principio y final. Que no existe nada más… ¡Que todo se basa en el azar! Y… en consecuencia (o viceversa), todo está organizado.

Una ley no escrita es algo intuitivamente verdadero y que jamás hemos podido contradecir, ni en la teoría (o de forma lógica) ni en la práctica. La “Navaja de Occam” es el ejemplo perfecto: El diseño más eficiente es el más simple posible. En un plano más físico (o biológico) haríamos referencia a su principio más básico, “Todo fluye, nada permanece” o a su principio más conocido: “Todo tiende al equilibrio”.

La ley de la relatividad especial no es una ley matemática en sentido estricto, dado que incumple su principio fundamental, que es ver la realidad de forma estática. Dicha Ley incorpora de forma necesaria el movimiento; De hecho, además de ser ésta la contradicción lógica (al incumplir la regla matemática) de forma paradójica ésta sería su principal cualidad.

Pero… aunque la ley de la relatividad no tenga sentido matemático es tremendamente racional cuando adoptamos una perspectiva geométrica de las cosas. Quizás no siga una regla matemática en sentido estricto, pero sigue una de estas reglas básicas e intemporales que acabamos de citar: básicamente la regla que establece (de forma genérica) que todo tiene su opuesto y que, en eso consiste (precisamente) el equilibrio. Un teorema matemático no es más que un equilibrio que se da entre dos formas diferentes de observar la realidad o…de  “desdoblar” el razonamiento. De hecho, constituye un criterio de veracidad: la regla de “revisión científica por pares” sería un ejemplo.

De acuerdo con la lógica matemática algo es cierto si llegamos a ello siguiendo siempre dos caminos opuestos. Bien… utilizaremos, por tanto, dicha lógica de razonamiento.

La Ley de la relatividad especial consiste en eso precisamente, es puro razonamiento: es una especie de ley independiente e intemporal e…incluso… independiente también de los conceptos que usemos para entenderla. En consecuencia es independiente de las matemáticas. Esta sería la idea fundamental, que podemos expresarla de formas muy diferentes y, el criterio geométrico o simplemente numérico, es perfecto para hacer esto.

Esta ley nos da una relación universal entre el espacio, el tiempo y el movimiento. Esta relación se da en un marco de referencia basado sólo en dos en ellas (el espacio-tiempo), que serían (o representarían) a los dos ejes típicos de coordenadas. Como consecuencia de esta aparente contradicción la respuesta es ésta: indeterminada. Esta ley nos da, por tanto, un patrón de comportamiento del movimiento. En esencia sería el siguiente: a cada paso que damos nos encontramos siempre con dos respuestas opuestas entre ellas. No existe una realidad objetiva o determinada. Todo depende… siempre.

Esta sería la regla vista desde una perspectiva opuesta: todo lo infinitamente opuesto tiene (en el fondo) un patrón de comportamiento. Un patrón que hace que, partiendo de una unidad, después de recorrer un infinito, regresemos de nuevo al principio. Un patrón que definiría el “eterno movimiento” de uno consigo mismo.

La Ley de la relatividad refleja la oferta y la demanda porque, si en lugar de utilizar la velocidad y el espacio-tiempo utilizaremos (por ejemplo) la demanda relativa de pimientos rojos y pimientos verdes respecto a la evolución de sus precios obtendríamos los mismos resultados. Si sólo hay un pimiento para satisfacer toda la demanda su precio será infinito. Si hay infinitos de ellos su valor será prácticamente nada, un valor simbólico.

El “dinero”, por ejemplo, tiene este comportamiento simbólico y además es un elemento que (a diferencia de un pimiento) podemos fraccionar indefinidamente. Es un ejemplo perfecto para mostrar como unificar el mundo imaginario con el mundo casi, casi real. No hay que olvidar que la ley de la relatividad especial es una especie de escenario mitad ciencia-ficción, mitad realidad. ¿Quién sabe lo que significa que el tiempo se haga eterno, en realidad?

En esencia el dinero es tan sólo una regla de equilibrio. Sin embargo cuando añadimos un tipo de interés el dinero “cobra” vida, dado que establece por sí mismo una distinción entre el pasado y el futuro….o (genéricamente) una distinción entre diferentes estados. Introduce, por tanto, el tiempo, como agente adicional.  Y es que, en realidad, no tiene ningún sentido pensar que todo lo que podemos “valorar” incrementa por si mismo su valor tan sólo por pasar el tiempo. No hay nada en el Universo que tenga un sentido definido, excepto claro el que nosotros mismos le otorguemos.

Bien podría decirse que “el tipo de interés” impide que contemplemos el movimiento natural o subyacente del Universo o la conexión total que existe siempre entre sus elementos. Sería una especie de distorsión. El dinero fracciona y valora arbitrariamente intervalos de tiempo pero en el Universo ya se da este fraccionamiento; De hecho, es infinito. Para el Universo esto no tiene ningún sentido. ¿Para qué poner un tipo de interés si, sea el que sea, es cuestión de tiempo que el dinero crezca hasta el infinito? Si sólo es una cuestión de tiempo es irracional hacer esto, porque el tiempo ya es eterno en el Universo.

Cuando damos vida al dinero forma un infinito en sí mismo, sigue un ciclo. Parte de un principio en el que no vale nada, pues tan sólo marca una regla de equilibrio, crea un infinito imaginario, y cuando el dinero crece hasta el infinito su valor vuelve al principio. Esta rueda sin sentido es lo que llamamos “capitalismo”. La forma de una burbuja monetaria sería un holograma, un reflejo del verdadero movimiento del Universo.

Lo único que no puede hacer el dinero es darse a sí mismo una valoración. Por eso el dinero es independiente del sistema de medida, cualquier nombre que le demos no tiene ninguna importancia, lo verdaderamente importante es lo que representa: la valoración arbitraria de cualquier relación.

De forma mágica, el dinero, cuando aplicamos un tipo de interés consistente en doblar la cantidad y considerar que transcurren infinitos periodos de tiempo, tiende mágicamente y de forma natural al valor áureo –e- que es precisamente el valor que expresa el movimiento… (de forma genérica) en el Universo. Por eso el valor e es el representante natural de la función exponencial, el único valor cuya función coincide son su función inversa: ese concepto tan extraño que llamamos “logaritmo neperiano o natural”. Su punto de encuentro o de equilibrio es siempre la unidad.

Este patrón “doble o nada” o “patrón de los inversos” o… simplemente la “unidad de los opuestos” es una ley universal que está incluso por encima de nuestro razonamiento. Es un principio universal en el que…  incluso la “Ley de la gravedad” basa sus principios, solo que… en un ámbito relativamente más físico.

No podemos contestar a la cuestión ¿Por qué existe este patrón? Ya que sería algo equivalente a preguntar ¿Por qué existe algo en lugar de nada? Lo único que podemos decir es que cuadra perfectamente con nuestra visión lógica del mundo. La relatividad en su versión más simplificada la llamaríamos probabilidad y… en un ámbito más matemático número irracional (una relación que nunca se acaba), algo que ha existido y siempre existirá.

¿Por qué se atraen los cuerpos? No lo sabemos, todo lo más que podemos de decir de “esto” es que sigue una regla de funcionamiento. La Ley de la Gravedad establece que cuando dos cuerpos están infinitamente juntos  (que… básicamente es lo mismo que decir que tienden a la unidad) se hace infinita la fuerza que “existe” dentro de ellos. Cuando los dos cuerpos se separan, de forma exponencial (o siguiendo una regla basada en los cuadrados) decrece la intensidad de la fuerza entre ellos;  Hasta que la misma se vuelve infinitamente pequeña o… en otros términos, tiende a esa unidad imaginaria que llamamos “nada”.

Podemos decir que esta visión de la relatividad (o, incluso, de la gravedad) rige en una cuarta dimensión imaginaria, una dimensión donde no cabe nada físico, tan sólo ideas y pensamientos, concepto y simbolismo.

La Ley de la relatividad, cuando nos referimos a ella en términos de velocidad sería (en realidad) una ley tetra-dimensional: pensar conceptualmente en cómo se curvan nuestros ejes de realidad.  Nos dice que podemos movernos a través del espacio-tiempo pero que éste aunque sea infinito siempre está acotado. Que existen unas barreras imaginarias que no podemos traspasar: su velocidad o…. (visto de forma geométrica) el movimiento del patrón de la dualidad universal. Desde nuestro punto de vista interno el espacio-tiempo es totalmente relativo y esto se debe a que existen unas fronteras que se basan en esta simple y estricta regla.

La única regla consistente y genérica capaz de condensar esta distorsión espacio-temporal (o de combinar una geométria recta con una geometría curvada) es la identidad de Euler que, vista de esta manera, sería como una especie de regla genérica inter-dimensional.

La identidad de Euler es una  identidad completamente irracional: establece la igualdad entre lo positivo y lo negativo, entre la existencia y la no existencia, entre una estructura geométrica y un movimiento. Pero… llega a la misma conclusión: el punto de equilibrio vuelve a ser la unidad.

¿Existe en el Universo algún otro concepto capaz de reflejar siempre la idea inherente a la relatividad universal?

Se trata, efectivamente, de nuestra regla matemática más eterna: el Teorema de Pitágoras.

El Teorema de Pitágoras sería la regla de equilibrio entre dos planos diferentes o dimensiones, dado que el teorema de Pitágoras es el único criterio capaz de unificar ambos tipos de geometrías en una regla fundamental.

Pero… ¿Qué es el teorema de Pitágoras?… De hecho no es nada, es una regla que conecta simplemente dos conceptos opuestos entre ellos, una regla genérica y universal. Sería como la Identidad de Euler pero de forma sintetizada y racional, observando solamente la estática matemática. En consecuencia, la identidad de Euler sería equivalente a contemplar el Teorema de Pitágoras en movimiento: la forma de cuadrar la circunferencia.

Esta idea de la eterna dualidad y las “convergencias imposibles” la podemos observar incluso de forma lineal. La regla nos dice nuevamente que los conceptos convergen en algún imaginario momento, si la única condición es que sean siempre opuestos.

Esta forma geométrica y lineal la podemos denominar “Sucesión de Basilea” y es uno de los resultados matemáticos más sorprendentes de la historia. Establece simplemente que la suma de infinitos cuadrados tiende a la forma de una circunferencia en el plano complejo. La Sucesión de Basilea sería como una sucesión irracional, pero que podemos representar de forma geométrica o acotada. Dicha sucesión es capaz de cuadrar la circunferencia de forma genérica, requiriendo para ello únicamente la presencia de infinitos términos o, en otras palabras, exigiendo el movimiento. Este movimiento siempre es el mismo, el movimiento exponencial…. Y nos está diciendo que el tiempo (matemático) se puede cuantificar siempre que se fraccione de forma infinita. Esta sería la idea inherente a un “cuanto de Planck” pero vista de forma dual: a cada instante de tiempo la realidad se desdobla en dos planos diferentes de la realidad.

El Teorema de Pitágoras es intemporal, es capaz de proporcionar un patrón determinado de comportamiento, pero convive pues con otra regla universal: la presencia de infinitos elementos. Esto es evidentemente cierto, dado que siempre podemos expresar de forma geométrica la forma de una circunferencia como una sucesión de infinitos triángulos, que se vuelven infinitamente pequeños. El factor de dicha sucesión sería, precisamente, la raíz cuadrada de 2.

Un número irracional sería la forma más sintetizada de observar el principio de la relatividad universal. Sólo es posible cumplir la regla en todo momento si disponemos de infinito tiempo.

Como acabamos de ver la teoría de la relatividad es genérica en su totalidad. Ahora bien en su versión especial se introduce una restricción arbitraria que establece que un suceso pasado no puede ocurrir en el futuro. Debido a esto la teoría de la relatividad especial tiende a una singularidad. De hecho esto es lo que establece: que dicha singularidad es el Big-Bang.

Si no estableciéramos esta distinción no romperíamos la dualidad y, en consecuencia, no existiría tal singularidad: el Universo nunca se acabaría, sería circular.  Si no establecemos ninguna restricción arbitraria podemos conciliar las dos leyes de la relatividad, la especial y la general… en algo que podríamos denominar relatividad universal. Y para ello tan sólo tenemos que considerar que una unidad tiene el mismo comportamiento que todo un Universo.

Al ser una ley absolutamente genérica, decir que tendemos a una singularidad es algo similar a decir que acabamos dependiendo de nuestra propia unidad de medida, de la escala de medida que hemos escogido para trabajar. Algo que depende y no depende de algo al mismo tiempo (dado que cualquier medida serviría) es la definición de algo indeterminado…. Como la “realidad”.

La unidad no es un objeto no-dimensional sino que en realidad encierra “dentro” un patrón de comportamiento, un patrón que se extiende hacia los dos confines del Universo, lo más grande y lo más pequeño: uno y su opuesto.

Esta tendencia a observar la realidad de forma estática (entendiendo con esto, que no contemplamos el tránsito (o el movimiento) del espacio-tiempo, entre dos planos diferentes de la realidad) se refleja en nuestras creencias. La idea de que el Universo tuvo un principio y, en consecuencia, tendrá un final, no es más que una extensión de nuestras ideas matemáticas. Es como una exigencia o una necesidad a buscar siempre una respuesta determinada… Pero, el Universo es una “divinidad”, el infinito no es algo que se pueda acotar, a menos ¡Claro! que nos basemos en los ciclos (o burbujas)

Dividir la realidad según una medida de distancia o en función de una fuerza, o hacer esto con todo el Universo no deja de ser una distinción arbitraria. Un Universo eterno no tiene principio ni final, transmite su energía o su información y vuelve a empezar.

No debemos subestimar la importancia de la regla o de la “herramienta”. Si tan sólo medimos el mundo utilizando una escala recta, es difícil advertir que todo empieza y acaba en sí mismo, que todo es y no es al mismo tiempo o que el pasado y el futuro son el mismo concepto.

Nuestra forma de pensar es propensa a aceptar la jerarquía, la forma piramidal,  además de todo concepto que se basa en los opuestos, pero no solemos contemplar la idea de que todo está conectado en realidad. Y es que nos han enseñado a pensar de forma local, pero nos han cortado las alas para volar….

La parte más importante de esta herramienta es su capacidad para cambiar tu mentalidad… y, de paso, demostrar que las ideas también crecen de forma exponencial.