viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Espaciotiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

           Curvatura del Espacio-Tiempo

Hay que entender que el espaciotiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espaciotiempo. La trayectoria de un objeto en el espaciotiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espaciotiempo curvo con las posiciones y movimientos de las partículas de materia. La relatividad especial nos explica otras cosas, complementando así, una teoría completa y precisa de la Naturaleza del Universo.

 

Nuestra línea de universo resume toda nuestra historia, desde que nacemos hasta que morimos.  Cuanto más rápido nos movemos más se inclina la línea de Universo.  Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz.  Por consiguiente, una parte de este diagrama  espacio – temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein que, nos dice que nada en nuestro Universo puede viajar a velocidades superiores a C.

La curvatura del espaciotiempo es la propiedad del espaciotiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espaciotiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

 

Einstein lo dedujo en una fórmula matemática que relaciona la geometría del espaciotiempo con la distribución de masa y energía: esta fórmula se conoce como ecuación de Einstein y es el centro medular de la teoría de la relatividad general.

La equivalencia aceleración-gravitación llevó a Einstein, de forma genial, a la concepción de la fuerza de la gravedad como una curvatura del espaciotiempo. La visualización de este hecho la podemos observar en la figura: una superficie elástica (semejante al espaciotiempo) se curva bajo la acción de objetos pesados (las grandes masas, de intensos campos gravitatorios), de forma que las trayectorias (geodésicas) que pueden seguir los objetos pequeños cuando están cerca de los grandes se acercan a los mismos. Einstein formuló una ecuación que muestra el grado de curvatura del espaciotiempo en función de la cantidad de masa, relaciona masa con curvatura: materia (o energía) con deformación del espaciotiempo.

 

Así, en un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espaciotiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson-Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espaciotiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein-de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

  • universo de Einstein-de Sitter Wm= 1, Wl= 0
  • Universo cerrado Wm= 2, Wl= 0
  • modelo favorito actualmente con Wl= 0.75, Wm= 0.25
  •  Wl= 0, Wm= 0
  • universo de de Sitter sin Big Bang Wl= 1, Wm= 0

Representación gráfica de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Resultado de imagen de Las tres clases de universo en función de la Densidad crítica

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un viejo jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Uno de los gráficos anteriores, que es una muestra de las tres posibles maneras en que puede estar conformado nuestro universo, dependerá finalmente, de la densidad critica, es decir, de la masa que realmente contenga el universo. Claro que, según dicen, hay por ahí una materia desconocida que denominamos “oscura” y que, al parecer, confroma la mayor parte de la materia del universo.

“Es un tipo de masa invisible que posee gran atracción gravitatoria. El descubrimiento lo realizó, por medios de rayos X, el laboratorio Chandra perteneciente a la NASA. (Pongamos en cuarentena lo de “descubrimiento”).

 

Los astrónomos dicen que han encontrado las mejores pruebas hasta la fecha sobre la “Materia Oscura”, la misteriosa sustancia invisible que se cree constituye la mayor parte de la masa del universo. En la imagen de arriba han querido significar, diferenciándola en colores, las dos clases de materia, la bariónica y la oscura que, en este caso, sería la azulada -según dicen-. Sin embargo, la imagen no refleja la proporción que dicen existe entre la una y la otra.

 

            En el Universo, como ocurre en los átomos, casi todo son espacios vacíos

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

Arriba tenemos uan visión del enorme cúmulo de galaxias Abell 2218, ubicado en la constelación de Draco a unos dos mil millones de años-luz de la Tierra.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias y supercúmulos de galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espaciotiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

 http://csociales.files.wordpress.com/2009/07/tierra-y-luna4.jpg

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

 

                     La fuerza de gravedad hace posible la cohexión del Sistema Solar

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

 Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

                                                      Tener en nuestras manos la Gravitación Cuántica, es cosa del futuro

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón

De todas las maneras, los misterios cuánticos serán desvelados por nuestras mentes poderosas de la misma manera que hemos podido traspasar otras barreras del saber. Llegará ese tiempo futuro en el cual, dejará de ser un misterio esa compleja unión de la Gravedad de Eintein con la Cuántica de Planck. Claro que, como decía por alguna parte, el futuro estará cargado de nuestro presente y, si no hacemos ahora lo que debemos…mal pintarán las cosas.

emilio silvera

Rumores del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al pasado    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la India le atribuyen un carácter divino a las Nanda Davi, Kailas, Kanchenjunga y a otras muchas cumbres que, según ellos, sirven de residencia a los dioses. Se afirma que Siva tiene su sede en el monte Kailas (Kang Rimpoche). Se cuenta también de él que descendió sobre el Kanchenjunga, mientras que la diosa Lakshmi, por el contrario, se elevó hacia los cielos desde la cumbre.

Analizando estos mitos se llega a la conclusión de que por aquellas épocas remotas en que los dioses se mezclaban con los humanos, se producía un tráfico en los dos sentidos a través del espacio.

Resultado de imagen de Los dioses bienhechores de la India

A partir del momento en que se encaminó desde el salvajismo a los rudimentos de la civilización, la Humanidad creyó en la existencia de dioses poderosos y bienhechores. De alguna manera debían buscar el equilibrio y la fuerza necesaria para sobrevivir en aquellos peligrosos tiempos; creer en algo.

En la antigua Grecia se consideraban el Parnaso y el Olimpo como los lugares en que moraban los dioses.

Podría continuar hablando de estos temas de los que en su momento profundicé bastante, pero como el presente trabajo es aleatorio y sin un rumbo fijo, no es cosa de hacer ningún tratado de un tema concreto, así que dejémoslo aquí como una curiosidad muy interesante (con un fondo – siempre – de verdad).

¡Me falta tiempo! Quisiera hacer tantas cosas, quisiera aprender tantas cosas, quisiera arreglar tantas cosas, quisiera, quisiera, quisiera… mucho trabajo para uno solo.

Algún día, cuando me sienta con ánimo, os hablaré de los muchos mundos que existen dentro de este mundo nuestro.

Resultado de imagen de El Jardín de las Hespérides

Os contaré cómo fue la primera batalla de la historia y os podré hablar del Jardín de las Hespérides. En más profundidad de la Atlántida y de cómo se formó el Estrecho de Gibraltar, de los gigantes y los ligures, de Lug y Lusina, de la Espiral del Dios Lug, de nuestra civilización y de la Civilización, la Diáspora que nos cuenta que, como todas las cosas, las civilizaciones son mortales. Hablaré de Isoré, cuyo nombre subsiste en estado puro en un solo lugar: un castillo cerca de la confluencia del Vienne y del Loire en Francia. Podré hablaros de la leyenda de Osiris… o de lo que le ocurrió al labrador Fradin en 1.924 en Bourbonnais (la aldea de Glozel, no lejos de Vichy). En ese mismo trabajo que tengo más que pensado, incluiré lo que sé sobre los dólmenes y los druidas (muy sabios), todo ellos enlazado con Liguria y las invasiones célticas, allá por el 1.700 a. de C.

Estas historias me fascinaron y sobre ellas escribí hace muchos años, cuando aún vivía en casa de mis padres. No sé dónde fueron a parar tantos folios emborronados con mi imaginación; ahora me gustaría conservarlos. Nadie los leyó nunca; mi pudor a descubrir mis pensamientos esa muy elevado en mi corta edad (tendría entonces 20 – 22 años). Así que, si me armo de valor, repetiré todo aquello. ¡Puedo!

Al investigador

Quienes piensen que la alquimia es de naturaleza terrestre, mineral y metálica, que se abstengan.

Quienes piensen que la alquimia es estrictamente espiritual, que se abstengan.

Quienes piensen que la alquimia es sólo un símbolo utilizado para desvelar analógicamente el proceso de la “realización espiritual”, en suma, que el hombre es la materia y el atanor de la obra, que abandonen sus propósitos.

Claude d’Ygá

Resultado de imagen de El Arte Hermético y los principios de la Alquimia

El arte hermético, los principios de la alquimia, su historia y los contactos de la alquimia con la ciencia moderna. Los alquimistas licenciados por la universidad de Montpellier en el s. XIII, Alberto Magno, Arnau Vilanova y Raimundo Lulio, Roger Bacon y más tarde Michael de Nostre-Dame (más conocido por su pseudónimo Nostradamus), Rebelais y Erasmo, además de médicos árabes y judíos, todos ellos adictos a la filosofía hermética, y todos interesados por la alquimia y las transmutaciones metálicas.

Más tarde me topé con la física que me enlaza directamente con las matemáticas (que por desgracia no domino), la biología, la astronomía, la astrología y la cosmología, en fin, con todo lo que realmente importa, la vida misma y el universo.

Resultado de imagen de filósofos griegos clasicos

Antes de llegar a la física pasé por innumerables recorridos del saber humano: los clásicos griegos, los filósofos, Platón, Sócrates, Aristóteles, pero sin dejar a Kepler y Galileo, ni tampoco a Newton y Darwin. Mi avidez de saber era ilimitada y más de una noche, sobre las 3 ó las 4 de la madrugada, mi madre apagaba la luz de mi mesita de noche y cerraba el libro abierto sobre mi pecho o caído en el suelo. El sueño me impedía seguir; además, muy temprano había que cumplir en el trabajo. ¡Qué tiempos!

Alternaba las matemáticas comerciales y la contabilidad con mi preparación a las oposiciones de gestor administrativo; dos pruebas en Madrid, una escrita, la segunda, y otra oral, la primera.

Resultado de imagen de dante alighieri infiernoResultado de imagen de dante alighieri infierno

Pero entre libros de estudios y ratos libres, nunca dejaba otras clases de lecturas como a William Shakespeare, Dante, Goethe, Descartes, Beltran, Rusell, Flanmarion, Julio Verne, Voltaire, Isaac Asimov, y en realidad, todo lo que pillaba, hasta tostones de Homero como la Iliada y la Odisea o los de docenas de clásicos, tanto rusos como de otras nacionalidades que caían en mis manos. De los siete sabios de Grecia a los pensadores Buda o Confucio; todo para mí era saber más cosas.

Ahora recuerdo, y no tengo más remedio que reírme, que teniendo media novia aficionada a las plantas me leí un tratado de plantas de interior para poder prestarle ayuda y ofrecerle mis conocimientos. Cuando nos encontramos, muy de tarde en tarde, nos abrazamos con cariño.

Leí a Euclides y sobre los elementos (Autólico de Pitania), obra de la que se editaron bastantes ediciones (1.296 – 1.482 y otras) y la edición de Ratdolt que fue uno de los más bellos de los primeros libros científicos editados impresos y por los que me interesé en su momento.

Resultado de imagen de Fidias, Arquímedes, Alejandría o SiracusaResultado de imagen de Fidias,

Fidias, Arquímedes, Alejandría o Siracusa eran para mí nombres muy familiares. He leído sobre la esfera y el cilindro, sobre la medida del círculo, sobre conoides y esferoides, sobre las espirales, cuadratura de la parábola, sobre los cuerpos flotantes y el Método, obras irremisiblemente perdidas y reconstruidas parcialmente mediante complejas estructuraciones de restos que, seguramente, dieron como resultado un híbrido de distintos autores posteriores que se basaban en el texto original.

También captó mi atención Ptolomeo y su gran síntesis astronómica, Copérnico y su mundo astronómico y, desde luego, me empapé de la civilización romana, guardián de la herencia griega y de su mitología. La Gran Enciclopedia Científico-Técnica de Cayo Plinio segundo, llamado “el Viejo” que reunió el legado de todos los antepasados y recogió el saber para evitar su pérdida.

Todas estas cuestiones me interesaron y de ellos me empapaba con la avidez y la curiosidad sin límite de un niño.

Galeno (129 – 194) es el médico más famoso de la antigüedad. Nació en Pérgamo, hoy en la Turquía occidental. Miembro de una familia de la clase alta urbana del helenismo romano, fue médico de cuatro emperadores. En sus trabajos se apoyó en las enseñanzas de Hipócrates y Aristóteles, pero aportó sus propias ideas.

Resultado de imagen de Vesalio y Copérnico.Resultado de imagen de Copérnico.

El siglo XVI vio una revolución científica con Vesalio y Copérnico.

No existe, como frecuentemente oímos o leemos, una época oscura en la historia de la Humanidad que va de los romanos de los primeros siglos de la era cristiana a los europeos del siglo XVI. Lo que hay es ignorancia de que existan otras culturas y civilizaciones de las que llamamos cultura occidental desconocida.

Había otros mundos científicos, tecnológicos y filosóficos de saberes acumulados en el orbe árabe.

Así, los exploradores del saber se encontraron con nombres como el del matemático y geógrafo Mamad Ibn Musa al-Iwarizmi (800 – 847), del que procede la voz algoritmo, el químico y médico al-Razi (865 – 925), el físimo Ibn al-Hatham, Alhazen (965 – 1038), el matemático al-Biruni (973 – 1048), el médico Ibn Sina, Avicena (980 – 1037), el astrónomo al-Zangali, Azarquiel (1029 – 1087) o el médico Ibn Rushd, Averroes (1126 – 1198), que si la historia hubiese seguido otros caminos acaso habrían figurado de manera prominente en muchos lugares destacados de la historia.

Bueno, como es mi costumbre, mi mente me la jugó de nuevo; estaba hablando de Copérnico y Vesalio. Sin querer, me acordé de la “oscuridad” de la edad media y no pude evitar el nombrar a personajes que, en otra parte del mundo, brillaban con luz propia.

De Nicolás Copérnico, cualquier interesado en la ciencia, como los pocos lectores que yo tengo, poco les puedo contar que no sepan.

En 1543, el año en el que se publicaron libros (dos) que terminarían convirtiéndose en dos clásicos de la ciencia: De Revolutionibus Oebium Coelestium, de Nicolás Copérnico, y De Humani Corporis Fabrica, de Andreas Vesalio, aunque ninguno de los dos supo nunca desembarazarse de las cargas doctrinales de las disciplinas a las que se referían, Vesalio de Galeno y Copérnico de Aristóteles. Pero ambos, en sus respectivos campos, marcaron una época, un antes y un después.

No me parece oportuno continuar reseñando aquí sus biografías, y con los mencionado lo dejo. Mejor comento algo sobre Tycho Brahe (1546 – 1601) y Johannes Kepler (1571 – 1630).

emilio silvera

¿Cuando llegamos aquí y para qué?

Autor por Emilio Silvera    ~    Archivo Clasificado en el Mundo y nosotros    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                ¿Que cómo se originó la vida?

Es la pregunta del millón. Unos opinan que se originó fuera de la Tierra y que un cometa sembró de organismos el planeta. Otras versiones apuestan por el océano y, otras, por un caldo primordial, o pequeñas charcas templadas bombardeadas por rayos ultravioletas y gamma en una atmósfera poco evolucionada, o en las cercanías de turbulencias termales de chimeneas situadas en los fondos marinos, en cuyo ambiente existirían nutrientes, energías y protección contra agresiones exteriores, principalmente impactos extraterrestres, otros han optado por superficies de granos de pirita, donde la capacidad de adsorción de este mineral para una gran diversidad de moléculas y la energía proporcionada por la síntesis de dicho cristal permiten suponer que tal vez constituyeron una serie de circunstancias favorables para la aparición de la materia viva.

Como veréis, todos estos que han opinado en las distintas maneras en que pudo llegar aquí la vida, saben tanto de ello, como se yo, o sea, Nada. Sólo tenemos aproximaciones e ideas que, pueden ser más o menos certeras, pero al fin y al cabo, hipótesis.

El hombre podrá saber si hay vida en el Universo

Lo que si parece una cosa segura es que, la Vida,  es inevitable, las materiales que la conforman se “fabrican” en las estrellas y se esparce por los mundos, y, si eso es así como se supone que es… ¡Todo el Universo estará lleno de vida! Si señor, ha oído usted perfectamente. La vida en el Universo es inevitable. Son muchas las cosas que han influido para que eso sea así.

Pensemos un momento:

-Si la fuerza nuclear fuerte,
la nuclear débil,
el electromagnetismo,
la Gravitación,
las constantes Universales fundamentales,
la masa y la carga de las partículas elementales,
la diversidad de las familias de partículas,
la energía de las estrellas y de los planetas, y, los Elemenmtos,
y un sin fin de detalles más…

 

 

Si todo esto fuera de otra manera, si simplemente la carga y masa del electrón, fuera distinta, nosotros no podríamos estar aquí, y nuestro Universo sería otra cosa, incluso un Universo sin vida.

Y digo yo, ¿Qué puñetas es un Universo sin vida?

¡La Nada!

Que gracias a todas las confluencias de los parámetros a los que antes me refería, no es nuestro caso. Si existe el espacio es porque existe la materia.

Aquí hemos tenido a los mesopotámicos, a los egipcios, babilónicos, griegos, y, tantas Civilizaciones que fueron… Hasta llegar a nosotros que, aunque algo irracionales algunas veces, hemos sido capaces de avanzar y extender los primeros conocimientos de las matemáticas, la física, la astronomía, la química, la biología, la filosofía, la música, …, y tantas cosas más. ¡Ah, también, el poderoso sentido de la familia!

Resultado de imagen de La familia

No está nada mal ¡Es el motor que mueve el mundo de los Humanos!

He procurado concretar aquí de muchas cosas relacionadas todas ellas en algún punto del espacio-tiempo, en nuestra línea de Universo, y, desde luego, en tan corto espacio, es imposible reseñarlo todo, este comentario es una simple reflexión y, para tener una idea más amplia, habría que haber abordado:

– De nuestros antepasados ancestrales, sus entornos y formas de vida, su evolución. El enorme camino recorrido.

– De lo que entendemos por la conciencia, lo que nos dicen los grandes pensadores sobre el Ser. El poder saber y sentir que un instante puede contener un universo entero, lleno de matices, sentimientos y fuerzas que luchan entre sí.

– De lo que está conformado todo, la materia “inerte” y la materia viva. Aunque sería más apropiado decir la materia “dormida ” o la materia ” despierta “.

– De lo que entendemos por materia y como esta conformada desde lo más pequeño que, toma complejidad y se hace grande.

– De los posibles orígenes de la vida que ahora conocemos en el Planeta Tierra.

Y, de otras muchas cuestiones y conceptos que, no han sido tratados aquí en este momento y si en otros trabajos presentados de manera sencilla y sin demasiada profundidad, pero sí lo suficiente como para ser comprendido de manera básica y somera de cuestiones que, de alguna manera, a todos debía interesar. Aquí, en otras ocasiones se habló de lo que hemos sido, de lo somos y, posiblemente, de lo que podemos llegar a ser,y, con más o menos acierto, lo que sí debemos tener en cuenta es la buena intención del autor.

Resultado de imagen de La belleza como principio físico

No sé si la belleza es un principio físico, lo que sí se, es que el cariño y la amistad es un principio del espíritu y del alma del Ser consciente. Los sentimientos: Si no los tenemos, en realidad no somos. El hombre es un animal social, necesita de los demás, y, está claro que el Ser está en la unión de dos partes, al igual que sin quarks no tenemos núcleo ni átomo, sin dos partes contrapuestas no tenemos ese uno esencial.

Resultado de imagen de Hombre y Mujer que forman el UNO

     En realidad… ¡Dos son Uno!

Todo en el Universo es equilibrio, y, de la misma manera, nosotros, los seres vivos, tenemos el equilibrio en la unión de esas dos partes que hacen el todo, haciendo posible la continuidad.

Por todas partes estamos rodeado de grandes cosas, de maravillas que, normalmente, nos pasan desapercibidas, no pensamos en la grandeza de todo lo que tenemos y de todo lo que podemos hacer. Muchas veces, cuando caemos en la cuenta, ya es tarde.

Muchos más de lo que pensamos, cuando ya no tiene remedio piensan: “Lo pude hacer mejor. Tenía que haberla respetado más. Le tendría que haber dicho cuanto la quería. Me tenía que haber comportado de otra manera.” Y, así podríamos seguir. La vida es muy corta, y, la mayoría, la desperdicia de manera lastimosa. Los egoísmos mezquinos nublan las mentes y no les dejan ver donde reside lo importante.

emilio silvera

¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:

“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = h?, donde E es la energía del paquete, ? es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ? de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (?) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

También Gerardt Hooft es el autor de lo que han dado en llamar l principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor, y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck existe al menos un grado de libertad (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

donde:

Claro que esta… ¡Es otra Historia!

emilio silvera

“EL METODO DE LA CIENCIA, EL OBJETIVO DE LA RELIGION”

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 –  9 sept. 2015
“EL METODO DE LA CIENCIA, EL OBJETIVO DE LA RELIGION”    Aleister Crowley.Hoy día existe un debate fundamental acerca de la comprensión del Universo. Este debate tiene lugar entre los racionalistas y los metafísicos y sus maneras opuestas de contemplar el mundo. Se supone que sólo puede quedar uno; Que la explicación final del universo  ha de tener un resultado determinado. Por lo tanto la pregunta de si podría existir un punto de encuentro entre ambos es negativa, ya que es contrario a las creencias de unos y otros.

Desde muy antiguo hemos sido educados pensando que tan sólo puede existir una verdad y, como consecuencia de esta creencia, hemos inventado en cada época un modo adecuado para satisfacerla.
El modo que hemos empleado en cada momento se podría decir que es la herramienta conceptual, el criterio de veracidad para dar sentido a ese concepto tan difuso que denominamos verdad. Pero, en esta herramienta o modo de pensamiento hay algo que nunca ha cambiado y es que siempre hemos exaltado a una especie de divinidad imaginaria, algo que nos ha permitido entender (o dar sentido) por completo al mundo, aun cuando su argumento sea irracional.

Lo único que ha cambiado con el tiempo  es nuestro criterio o nuestra forma de validar lo que es o no cierto…. Pero no se nos ha permitido cambiar nunca la regla fundamental: la existencia de una divinidad.
Relativizando el asunto podemos entenderlo con un ejemplo. Hoy tildamos de irracionales a los metafísicos, con el pretexto de que no pueden demostrar ninguno de sus argumentos. En otros tiempos tildamos de irracionales a los nativos de otras culturas, al mismo tiempo que dábamos sentido a un Dios capaz de reencarnarse en forma humana. Parecen argumentos muy distintos, pero el sentido es el mismo.

Hoy día a esta divinidad imaginaria la denominamos teorema, y es la forma básica de condensar nuestra lógica matemática. Nunca nadie y en ningún momento de la historia ha podido contradecir la lógica de un teorema matemático. De hecho, es imposible hacerlo siempre que convengamos que sus reglas son ciertas en todo momento.

Por lo tanto, tienen razón los racionalistas. Jamás los metafísicos podrán demostrar ninguna de sus propuestas. La única forma de hacerlo sería incumpliéndolas. Ahora bien, esto supone ir contra una especie de regla universal, más antigua incluso que nuestra aceptación de la divinidad; Y es que, como todos sabemos, las matemáticas son perfectas para entender el Universo.

De acuerdo con Buckminster Fuller, no debemos intentar cambiar un sistema, tenemos que construir uno nuevo, que haga que el anterior se vuelva obsoleto. En otras palabras, si no puedes con tu enemigo únete a él, descubre cómo piensa y cambia sus creencias.

Einstein ya lo hizo. Este científico, con su teoría de la relatividad se saltó las reglas matemáticas y cambio el sistema. Él estaba convencido de que las matemáticas eran perfectas para describir todo cuanto sucede en su mundo lógico e imaginario, pero que eran incompletas para describir la realidad.

Este argumento se conoce como “incompletitud” y establece que ningún sistema  puede decir nada acerca de su propia existencia y que, en consecuencia, todo lo que diga sobre ella será simplemente una creencia, una fe irracional. Siempre habrá una respuesta por imposible que parezca que no podremos demostrar utilizando la herramienta matemática, una respuesta que (aunque exista) no podremos decir nada de ella.

Por eso los metafísicos también tienen razón en sus planteamientos. A esta posibilidad de que exista un plano inmaterial de la realidad, algo que no podemos detectar (aunque intuyamos que pertenece a la realidad) la denominamos una respuesta fuera del sistema. Se podrá estar en contra de ella, pero lo cierto es que no existe ningún criterio lógico de pensamiento que desmienta ninguna de sus afirmaciones. Prueba de ello es nuestra tendencia creciente a admitir (más allá de un argumento racional) que la mente crea la realidad.

Esto sucede porque los racionalistas se suponen exentos de la carga de la prueba. Según ellos es la otra parte la que debe demostrar de forma racional la existencia de su divinidad, ese plano metafísico o inmaterial de la realidad, ese plano en el que según ellos todos estamos conectados.

No podemos, por tanto, decir nada acerca de la existencia de un sistema, no podemos usar sus reglas para demostrar que son incorrectas, este es el método circular de pensamiento que hace que sea inútil el  enfrentamiento. Por lo tanto, debe de ser cierto que desde dentro no podemos hacer nada, tenemos que salirnos fuera de su sistema de creencias. Tenemos que crear un nuevo sistema.
El racionalista siempre te pedirá que demuestres la existencia de ese plano inmaterial de la realidad. El problema, por tanto, es: ¿quién pone las herramientas para hacer esto? Para el racionalista la única regla valida o herramienta son las matemáticas, básicamente porque establecen la presunción de que no puede haber otra.

Matemáticamente existen unos pocos métodos de demostración. Todos ellos solemos aprenderlos en la adolescencia, en un periodo en que pasamos de la infancia a la edad adulta y en el que solemos estar interesados en otras cosas. Realmente es el peor momento para pensar en contradecir la regla lógica. No la cuestionamos y de esta manera pasa a formar parte de nuestras creencias.

Todos los métodos de demostración matemática se basan en que será correcto todo lo que hagamos en matemáticas si nunca incumplimos las reglas…. Lo que representa realmente un absurdo en sí mismo: un sistema circular.

Alternativamente consideramos la “reducción al absurdo” o el contraejemplo, como una manera alternativa de demostración matemática. De acuerdo con este método de pensamiento es absurdo todo aquello que contradiga la regla matemática que, en su esencia, es ésta: “Una solución no puede ser nunca igual a su opuesta”

Realmente todos los métodos de demostración matemática tienen el mismo comportamiento: es una absurdidad todo lo que no se pueda demostrar siguiendo este criterio de veracidad.

Poner en cuestión la regla matemática pasa por contradecir su principal premisa lógica. Decir que una solución no puede ser igual a su opuesta, es algo equivalente (conceptualmente) a decir que una unidad matemática ha de ser a-dimensional, es ella y nada más: una única verdad. Por eso en matemáticas decimos que un punto no tiene dimensión, que no existe en realidad.

Pero, resulta que las matemáticas son profundamente contrarias al funcionamiento de la realidad. Físicamente una unidad nunca ha sido ni será a-dimensional. En la naturaleza no se da nunca una única respuesta, todo lo más que hemos podido decir de ella es que sus resultados siempre son indeterminados, dos posibles estados.

La relatividad es un ejemplo perfecto, pero es lo mismo que pasa en el mundo cuántico cuyo único principio básico es que nada puede ser estrictamente definido, que todo es indeterminado. La teoría del Big-Bang también ahonda en este concepto: todo nuestro universo puede ser reducido de forma conceptual (y, en consecuencia, matemática) a un punto inicial. Por lo tanto lo contrario también puede ser cierto: “Un punto puede contener todo un Universo”

Quizás el ejemplo más claro de la indeterminación, relatividad o probabilidad en que se basa el Universo sea el cuanto de Planck. Normalmente decimos de él que es la unidad mínima en que podemos cuantificar el Universo ¡Y es cierto!… Pero resulta que un cuanto de Planck, aunque sea una unidad, no es a-dimensional,  sino que es capaz de expresarse en varias dimensiones diferentes: longitud de Planck, tiempo de Planck, etc…

Realmente nuestra concepción matemática más básica es contraria a la percepción que tenemos del funcionamiento del Universo: la dualidad del espacio-tiempo o del futuro y el pasado.
Este plano inmaterial de la realidad ya ha sido puesto de relieve en múltiples experimentos, no sólo la mecánica cuántica es un ejemplo, también los agujeros negros, la energía oscura que permea el Universo, etc…

Bajo el criterio metafísico no tiene sentido tratar de detectar el plano inmaterial, esto es una absurdidad. No tiene sentido colisionar partículas fundamentales para tratar de encontrar patrones de comportamiento inmateriales. Para los racionalistas este criterio no es válido argumentando con el pretexto de qué es cuestión de tiempo que podamos hacerlo.  Siguiendo el método matemático al final obtendremos las respuestas que queremos o si no nos las inventaremos: tan sólo tenemos que cambiar el nombre para ello. Detrás de este razonamiento existe el convencimiento (irracional) de que todo tiene un principio y un final y, en consecuencia, todo es susceptible de ser calculado.

No pensamos que pueda haber otras explicaciones de la realidad, no damos sentido a su existencia, pero esto únicamente sucede como consecuencia de nuestras creencias. Nos sometemos a un criterio de verdad absoluta y pensamos que no puede haber otro método de demostrar la realidad. El pensamiento racional es éste, ¿cómo podría haber otro criterio más completo si las matemáticas son perfectas para describir la realidad y todas nuestras leyes físicas se basan en ellas?

¿Cómo podemos salir de un argumento circular? Lógicamente creando un nuevo paradigma de pensamiento, una forma de pensar absurda e irracional, y completamente opuesta a las creencias matemáticas.
El truco para hacerlo es el mismo que se ha empleado desde antiguo: Se trata de crear un sistema de pensamiento circular pero que sea consistente consigo mismo. Será irracional… ¡Y estamos de acuerdo! Pero… es que el método matemático también sigue el mismo principio. Tan sólo es racional lo que está dentro de su esfera de conocimiento.

La cuestión por tanto es… ¿Podemos crear otra esfera de conocimiento tan consistente como la esfera matemática, siendo a su vez opuesta a ella?

Lo cierto es que podemos hacerlo. La única condición que hemos de tomar en consideración es que dicha solución sea siempre opuesta a ellas. En esencia, este sería el razonamiento:

La reducción al absurdo matemática establece que una solución opuesta al sistema es irracional, dado que nunca será capaz de ofrecer una respuesta determinada. En oposición, el criterio opuesto (el metafísico) establece que todo es indeterminado y que, precisamente, ésta es la respuesta: la ausencia perpetúa o eterna en el Universo de un resultado determinado. La viabilidad de esta respuesta está fundamentada en la existencia del eterno movimiento. Es lo que conocemos como principio de indeterminación: dado que todo se está moviendo no podemos establecer nunca con absoluta precisión el movimiento y la posición de una partícula.

En el fondo el criterio metafísico también es irracional, dado que un sistema basado eternamente en la dualidad en el fondo sigue una regla, una regla determinada de comportamiento. Se trata de un sistema irracional.

Es decir, el criterio metafísico establece que no hay nada en el universo que sea independiente, y existe una ley que es universal, y esta ley es la relatividad o la ley del eterno movimiento.

Einstein incumplió las reglas, porque introdujo el movimiento como elemento necesario en sus ecuaciones. El movimiento es contrario a la existencia de un teorema matemático, dado que por definición es estático. Un teorema matemático como el cálculo de una fuerza no es más que un flash, una foto puntual, la condensación en un plano estático de un patrón de funcionamiento, o la comparación aritmética entre dos instantes diferentes de tiempo.

¿Cómo funciona, en esencia, nuestro criterio de veracidad?

Un teorema matemático establece que podemos “recorrer” dos caminos (o funciones matemáticas) diferentes para llegar a un mismo resultado. El teorema matemático presupone de inmediato que un resultado es algo unitario o determinado. El criterio metafísico establece que esto no es cierto, dado que no podemos establecer si el Universo tuvo un principio o un final. Y es matemáticamente no podemos ir más allá, todo lo que supongamos a partir de este punto no será racional. El criterio metafísico establece que no se acaban nunca estos caminos, que existe el perpetuo movimiento en el Universo y que, por lo tanto, todo resultado siempre será indeterminado.

El problema subyacente es que no entendemos el cambio de estado como un movimiento del Universo, dado que matemáticamente no es posible hacerlo. Matemáticamente tan sólo cuantificamos entre diferentes estados, que es exactamente lo que hacemos cuando calculamos una fuerza. Matemáticamente tan sólo trabajamos con un universo estático. Y es difícil advertir las limitaciones de este sistema de pensamiento.

Aún cuando somos conscientes de que podemos acotar una solución con infinitos términos, no consideramos que esto sea un criterio de veracidad.

Por ejemplo, la sucesión de Basilea (una de las sucesiones matemáticas más famosas) (una sucesión matemática es un continuo de infinitos términos que nunca se acaba) establece que la suma de los inversos de los cuadrados de los infinitos números enteros que componen la recta real tiende a la forma de una circunferencia. Este es un resultado impresionante y que hemos incorporado como base a algunas de nuestras más importantes conjeturas matemáticas. Pero, lamentablemente, debido al axioma de verdad matemática, lo cierto es que con ella no hemos podido demostrar nada de forma concluyente.

De hecho, muchas de las más importantes conjeturas ahondan en este concepto. No se pueden demostrar, porque precisamente su resultado es incompatible con las reglas matemáticas. Podemos entender esto con un ejemplo:

Una de nuestras más importantes conjeturas establece la posibilidad de que podamos expresar siempre la complejidad de forma simplificada. Podemos entender esto diciendo (en palabras de fuller) que el mejor diseño es hacer lo máximo con lo mínimo. El mejor diseño implica por tanto la máxima eficiencia. Y, curiosamente, así es como se expresa siempre la naturaleza. Tan sólo tenemos que observar la forma de una esfera.

Si esto fuera cierto ¿Cuál sería la forma más simplificada de hacerlo? Lógicamente el criterio de que todo ha sido siempre y será indeterminado es la mejor manera de lograrlo, dado que únicamente requiere la presencia de dos elementos: de forma genérica, un elemento y su opuesto. La regla de indeterminación es una regla genérica y, por lo tanto, es perfecta para describir un patrón de comportamiento. Como dije antes una regla infinitamente indeterminada en el fondo sigue una regla, es un sistema.

Tan sólo incumplimos una regla matemática, pero su más regla básica, cuando decimos que todo elemento en el Universo (real o matemático) tiene siempre su supuesto. Esto implica un universo súper-simétrico o equilibrado… el Universo como un reflejo de si mismo…. Un universo matemático y a la vez físico.

Observa que un patrón indeterminado la regla es ésta: la condición de inicio es igual a la condición final. Si nada puede contradecir esto como sistema de creencias, esta regla será universal. La podemos contemplar, por tanto, como si de un teorema se tratara. La parte irracional es que siempre tendremos el infinito como resultado. Pero es que para los metafísicos el infinito es la respuesta.

La cuestión final es ésta ¿Podemos compactificar un sistema irracional y basado siempre en el infinito o principio de la eterna dualidad, de tal manera que ésta sea siempre su regla de comportamiento?

Si podemos hacerlo habremos creado una respuesta que tendrá un resultado determinado, habremos creado un sistema, una unidad o un universo matemático geométrico e imaginario.  Este universo tendrá dos planos, un plano real y otro imaginario. Habremos creado un sistema opuesto al sistema matemático, pero sin violar el principio de relatividad, que siempre establece que necesitamos dos puntos de vista para entender la realidad.

Paradójicamente la que conocemos como la fórmula matemática más bella del Universo, la identidad de Euler, nos dice que esto es cierto. Podemos crear un sistema matemático completamente irracional que siempre tienda a una identidad. Y para ello tan sólo tenemos que dar sentidos a dos planos opuestos de la realidad. Y es que… genéricamente la identidad de Euler expresa la forma de condensar una realidad matemática infinitamente irracional en una forma acotada, algo que bajo nuestro punto de vista no deja de ser un resultado determinado.

La identidad de Euler nos da un patrón de entrelazamiento dimensional, nos dice que el Universo es un fractal que, en último término se puede sintetizar en la forma de una unidad. Esta unidad no es un punto de inicio ni un punto final (como el big-bang, o el big-crash) sino que tiene su propio movimiento. Ahora bien, este movimiento es opuesto al movimiento que observamos en el Universo, es un movimiento transversal, un movimiento que jamás podremos detectar porque opera en un plano diferente de la realidad.

Este plano inmaterial de la realidad es nuestro sentido del tiempo, y es la señal que nos indica que todo lo que es verdad se ha de basar en el movimiento. Lo contrario también es cierto, pero sólo puede explicar la parte más material de la realidad.

Porque…. ¿Cómo vamos a concebir un tiempo tridimensional, si desde pequeños nos han enseñado que el tiempo es lineal?  Siempre nos han enseñado la gran utilidad de comparar entre dos instantes diferentes de tiempo o cambios de estado, pero nunca nos han enseñado que tiene poco sentido hacerlo. El Universo es independiente de nuestros sistemas de medida, realmente hacer esto es irrelevante a nivel universal.

Siempre y en todo momento podemos condensar el movimiento del Universo de forma cíclica. Siempre podremos decir que cada ciclo es una unidad temporal, y que por tanto realmente tiene poco sentido referirnos a un tiempo lineal. La noción de tiempo lineal es un concepto que tan sólo está en nuestras mentes, una creencia implantada, pero que no se corresponde en global con la realidad. De hecho, como sabemos, siempre podemos transformar una escala espacial tridimensional en una medida temporal basada en ciclos o secuencias acotadas: hacemos esto cuando expresamos los números como ejes espaciales en forma polar.

Pero, aunque sea posible determinar una coordenada espacial en función de tres ciclos de tiempo, seguimos pensando que el tiempo es lineal. Al adoptar sistemas de medidas, sean los que sean, siempre hacemos esto, tratamos de acotar el tiempo de forma irracional. Las coordenadas GPS serían un ejemplo.

Como consecuencia de no adoptar un criterio absolutamente genérico, y utilizar uno arbitrario tratamos de detener el tiempo y el resultado que obtenemos siempre es éste: “Error del sistema, infinito, indeterminado”. Cualquier variable que introduzcamos para describir el Universo siempre ha acabado de la misma manera: no ha hecho falta, era innecesaria. El mundo cuántico, que tan sólo se basa en la probabilidad, sería un ejemplo perfecto: ningún criterio humano es necesario.

El “Libro de los Muertos” dice en el capítulo 112: “El Ojo de Horus es tu protección, Osiris, Señor de los Occidentales, constituye una salvaguarda para ti: rechaza a todos tus enemigos, todos tus enemigos son apartados de ti”. Un pasaje que recuerda realmente a la apertura del Mar Muerto; O ¿Por qué no?, a la regla roma de “Divide y vencerás”. Crea escalas y más escalas a fin de que no pueda verse nunca la realidad.

La leyenda dice que el libro de los muertos fue escrito por Thot, el dios de la escritura y el conocimiento. Contiene dos encantamientos, uno de los cuales, supuestamente, permite, a quien lo lea, percibir a los dioses por sí mismo.

La historia de la dualidad es la historia del eterno simbolismo egipcio. Y es que… de acuerdo con ellos, para conseguir la “vida eterna” los elementos opuestos han de estar siempre equilibrados. Es la eterna ley, es la regla. Y este es su símbolo: “la balanza”.

¿Podemos por tanto condensar la “vida eterna” de forma genérica, podemos condensar el infinito matemático de forma geométrica? Tanto la identidad de Euler como los egipcios nos dicen que es posible hacerlo, pero resulta que matemáticamente se nos cierra la puerta, porque el infinito no es respuesta. Y este…  es un error del sistema, una anomalía.

En consecuencia para romper la regla lo único que tenemos que hacer es tender a la unidad, crear todo un sistema basado en ella, y no sólo en la dualidad. ¿Cómo saber algo que no sabemos? ¿Cómo saber que no estamos manipulados, si desde que tenemos uso de razón siempre hemos estado gobernados?

Todo está en equilibrio, porque todo se basa en el permanente cambio de estado. Donde unos ven algo determinado, otros ven algo que nunca empieza y acaba. Pero supongo que estaremos de acuerdo en que no hay nada que pueda detener el movimiento de una onda.