lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Vida? Creo que está presente por todo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                              En muchos mundos, como en el nuestro… ¡La Vida estará presente!
La lógica nos dice, según las observaciones y comprobaciones, estudios y misiones realizadas hacia el espacio, lo que hemos podido captar de las regiones más profundas con los magnificos telescopios de los que disponermos, los mismos experimentos realizados con los aceleradores de partículas y otros muchas misiones y Proyectos y también, complejos experimentos que, nos llevan a pensar que, el Universo, es igual en todas partes y en todos los lugares del Cosmos están presentes las mismas leyes fundamentales y, si eso es así (que lo es), en cualquier planeta bien situado y que reúna la condiciones necesarias, la vida habrá surgido como lo hizo en la Tierra

Vida inteligente fuera de la Tierra, ¿podríamos contactar con ella?

             Todos recordamos escena de la película de Spielberg “Encuentros en la Tercera Fase”

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

Así se expresaba Fred Hoyle.

En la luna Europa, un satélite de Júpiter, los científicos han encontrado la mejor prueba hasta de la existencia de una gran masa de agua líquida justo bajo la helada superficie de esta intrigantes luna. Los análisis indican que se trata de agua tan  caliente, como para fracturar la gruesa piel de hielo que recubre Europa. Y que ese agua está a menos de 3 km. bajo la corteza del satélite. Los resultados, que se publicaron en Nature, fueron anunciados por la NASA. Las numerosas fracturas en el hielo superficial de Europa, perfectamente visibles desde el espacio, llevan más de una década intrigando a los astrónomos.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

              Y pensar que un día, lejano ya en el pasado, Marte pudo ser la Tierra…

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

veenenbos-europa_20061119new_1

Referencia: Chyba, C. F. (2000). Energy for microbial life on Europa. Nature. Las observaciones de Sodio (Na) en la atmósfera de Europa (M. E. Brown and R. E. Hill 1996, Nature 380, 229–231), y un modelo analítico se utilizó determinar la tasa de perdida de Na en Europa.  El resultado final nos indica que la tasa de perdida es mayor que la tasa de implantación, lo que determina, que como la Luna,Europa ser una fuente neta de Sodio (Na). Recordar que el Na es uno de los elementos más presentes en un océano líquido…

Europa y Titán, esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

                  ¿Quién decir lo que hay o no hay en aquel pequeño mundo?

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

               Lo que podemos encontrar de que termine el siglo es… ¡Impredecible!

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad la vida en el Sistema Solar después de la Tierra.

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

La química de la vida puede estar presente en cualquiera de esos pequeños mundos que nos rodean y, conforme a los estudios realizados y los que continúan en marcha actualmente, en cualquier momento dentro de este mismo siglo en el que nos ha vivir, se podría dar la noticia sorprendente de que han detectado ¡al fin!, formas de vida extraterrestres.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

imagen sorprendente nos debería maravillar y, sin embargo, la vemos como algo cotidiano

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Io nos muestra su furia volcánica y Tritón que es una bola de roca y hielo de 2.700 Km. de diámetro, una superficie bastante suave y con pocos cráteres, y está envuelta por una finísima atmósfera de nitrógeno.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

La Cassini dejó caer en Titán a la sonda Huygens para que nos hablara de aquel pequeño mundo. Las maniobras llevadas a cabo por esos ingenios, son verdaderamente increibles para poder conseguir imágenes y contarnos algo de lo que por aquellas regiones está pasando. Pequeños mundos que estando en nuestro propio “barrio” eran un misterio y que , gracias al ingenio del hombre, comenzamos a desvelar.

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera

Los núcleos, la masa, la energía…¡La Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés. Nuestra curiosidad nos llama a desentrañar los misterios y secretos que, tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar sucediendo ahora, o, en el futuro pusidieran tener lugar, ya que, de alguna manera, todas ellas tienen que ver con nosotros que, de alguna manera, somos parte de la Naturaleza, del Universo y, lo que sucedió, lo que sucede y lo que sucederá… ¡Nos importa!

El saber ocupa un lugar en nuestras mentes

No podemos saber si la Humanidad como tal, estará aquí mucho tiempo más y, si con el tiempo y los cambios que se avecinan, nosotros los humanos, mutaremos hacia seres más completos y de mayor poder de adaptación al medio. Y, desde luego, nuestros descendientes, llegara un dia lejano en el futuro en el cual, habrán dejado la Tierra antes de que se convierta en Gigante Roja y calcine el Planeta y, habrán colonizado otros mundos. Para eso faltan mucho miles de millones de años. En la actualidad, solo estamos dando los inseguros primeros pasos por los alrededores de nuestro hogar, plantearnos ir mucho mas allá, es impensable. No tenemos ni la capacidad tecnológica ni la inteligencia necesaria para desarrollar los medios que se necesitan para poder desplazarnos a otros mundos lejanos que, posiblemente, estando situados en zona habitable como la misma Tierra, nos podrían dar el cobijo necesario para su colonización y hacer de ellos nuestros futuros hogares.

El futuro: Siempre será incierto

Pero, hablemos de Física

La partícula emitida por un núcleo radiactivo, por lo general lleva una considerable cantidad de energía. Y, ¿de dónde procede esa energía? Es el resultado de la conversión en energía de una pequeña parte del núcleo (E = mc2); en otras palabras, el núcleo siempre pierde un poco de masa en el acto de expeler la partícula.

Los físicos se vieron durante mucho tiempo turbados por el hecho de que, a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo. En realidad, los electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (corregido por muy pocos electrones) era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menos grado. Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿qué era erróneo en la emisión de partículas beta?, ¿qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y hacia 1.936 Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas. En 1.931 Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida. Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas; no poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Habitualmente aceptamos que la física es la ciencia que estudia la estructura y propiedades de la materia y la energía, las formas de existencia de las mismas en el espacio y el tiempo, así como las leyes de rigen sus interacciones. En este definición no hay limitaciones precisas entre la naturaleza viviente e inanimada, y aunque ello no implica la reducción de todas las ciencias a la física, se deduce que las bases teóricas finales de cualquier dominio de las ciencias naturales tienen una naturaleza física.

Pero, sigamos…

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y liberaba un electrón que, como en la decadencia beta, portaba insuficientes cantidades de energía. Enrico Fermi dio a esta partícula putativa el nombre de neutrino, palabra italiana que significa “pequeño neutro”.

El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino. Como ya he comentado en otra página de este trabajo, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiplos de una mitad, según la dirección del giro. Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión. Supongamos que la rotación del neutrón sea +½, y admitamos también que la rotación del protón sea +½ y la del electrón -½, para dar un resultado neto de cero. Demos ahora al neutrino una rotación de +½ y la balanza quedará desequilibrada.

+½ (n) = +½ (p) – ½ (e) + ½ (neutrino)

Detectando Neutrinos

En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.

Pero aún queda algo por desequilibrar. Una sola partícula (el neutrón) ha formado dos partículas (el protón y el electrón), y si incluimos el neutrino, tres partículas. Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula. En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.

El propio neutrino surgiría de la conversión de un protón en un neutrón. Así pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto también equilibra la balanza.

La Vía Láctea sobre Mauna Kea

Impresionante vista de la Vía Láctea desde el Manua Kea. La Galaxia, el Universo…Todo es energía.

Es importante conservar esas leyes puesto que parece estar presentes en toda clase de relaciones nucleares que no impliques electrones o positrones, y sería muy útil si también se hallasen presentes en reacciones que incluyesen esas partículas. Las más importantes conversiones protón-neutrón son las relacionadas con las reacciones nucleares que se desarrollan en el Sol y en los astros. Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8% de su energía. Pero eso sería meternos en otra historia y, por mi parte, con la anterior explicación sólo trataba de dar una muestra del ingenio del hombre que, como habréis visto, no es poco.

Desde que puedo recordar, he sido un amante de la física. Me asombran cuestiones como la luz, su naturaleza de un conglomerado de colores, ondas y partículas, su velocidad que nos marca el límite del máximo que podemos correr en nuestro universo, y en fin, muchos otros misterios que encierra esa cosa tan cotidiana que nos rodea y lo inunda todo haciendo posible que podamos ver por donde vamos, que las plantas vivan y emitan oxígeno o que nos calentemos. Realmente, sin luz, nuestra vida no sería posible. Entonces, ¿qué es realmente la luz?

Muchos (casi todos) opinan que es algo inmaterial. Los objetos materiales grandes o muy pequeños como las galaxias o los electrones, son materia. La luz, sin embargo, se cree que es inmaterial; dos rayos de luz se cruzan sin afectarse el uno al otro. Sin embargo, yo creo que la luz es simplemente una forma de energía lumínica, una más de las diversas formas en las que puede presentarse la materia. Nosotros mismos, en última instancia, somos luz.

Está claro que los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) cuando pasa del aire al cristal, al agua o a cualquier otra sustancia transparente.

Cuando la luz entra en un cristal o en alguna sustancia transparente, de una forma oblicua (es decir, en un ángulo respecto de la vertical), siempre se refracta en una dirección que forma un ángulo menor respecto de la vertical. La exacta relación entre el ángulo original y el ángulo reflejado fue elaborada por primera vez en 1.621 por el físico neerlandés Willerbrord Snell. No publicó sus hallazgos y el filósofo francés René Descartes descubrió la ley, independientemente, en 1.637.

¿Nos suplirán un día? Seguro que en el futuro, serán otros los que hagan experimentos con la luz y busquen su verdadera naturaleza.

Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1.666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta de las persianas, cayendo oblicuamente sobre una cara de un prisma de cristal triangular. El rayo se refracta cuando entra en el cristal y se refracta aún más en la misma dirección cuando sale por una segunda cara del prisma (las dos refracciones en la misma dirección se originan porque los lados del prisma se encuentran en ángulo en vez de en forma paralela, como sería el caso de una lámina ordinaria de cristal).

Newton dedujo que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa “espectro” fantasma).

Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada. Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo verde, azul y violeta, en este orden. Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa espectro o fantasma). Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades. Le surgieron y se planteó algunas inquietantes cuestiones: ¿por qué se refractaban las partículas de luz verde más que las de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbarse mutuamente, es decir, sin que se produjeran colisiones entre partículas?

En 1.678, el físico neerlandés Christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar las diversas difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire. La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción. Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda más corta que la luz azul; ésta, más corta que la verde, y así sucesivamente.

Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda. Y como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna (las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades).

Pero la teoría de Huyghens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos, ni por qué proyectaban sombras recortadas, ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y de agua. Por añadidura, se objetaba que si la luz consistía en ondas, ¿cómo podía viajar por el vacío, ya que cruzaba el espacio desde el Sol y las estrellas? ¿Cuál era esa mecánica ondulatoria?

Con el éxito de Newton de su ley de la Gravitación Universal, no es extraño que afirmara de forma tajante que la luz es corpuscular. Newton se opuso violentamente a la naturaleza ondulatoria de la luz, ya que no veía cómo se podía explicar con ella la propagación rectilínea de la misma. Por otro lado estaba Christian Huygens, 13 años mayor que Newton que defendía la naturaleza ondulatoria con algunas ventajas.

Ambas teorías explicaban perfectamente la reflexión y refracción de la luz. Pero diferían en una cosa. La teoría corpuscular afirmaba que las partículas de luz se acelerarían al pasar por un material de mayor densidad óptica y las ondas a menor. Esto no era comprobable por aquella época. Debido a la influencia de Newton y a la poca habilidad de Huygens para desarrollarla matemáticamente, la teoría ondulatoria quedó descartada durante un siglo.

Aproximadamente durante un siglo, contendieron entre sí estas teorías. La teoría corpuscular de Newton fue, con mucho, la más popular, en parte porque la respaldó el famoso nombre de su autor. Pero hacia 1.801, un físico y médico inglés, de nombre Thomas Young, llevó a cabo un experimento que arrastró la opinión pública al campo opuesto. Proyectó un fino rayo luminoso sobre una pantalla, haciéndolo pasar antes por dos orificios casi juntos; si la luz estuviera compuesta por partículas, cuando los dos rayos emergieran de ambos orificios, formarían presuntamente en la pantalla una región más luminosa donde se superpusieran, y regiones menos brillantes, donde no se diera tal superposición. La pantalla mostró una serie de bandas luminosas, separadas entre sí por bandas oscuras; pareció incluso que en esos intervalos de sombra, la luz de ambos rayos contribuía a intensificar la oscuridad.

Sería fácil explicarlo mediante la teoría ondulatoria; la banda luminosa representaba el refuerzo prestado por las ondas de un rayo a las ondas del otro, dicho de otra manera, entraban “en fase” dos trenes de ondas, es decir, ambos nodos, al unirse, se fortalecían el uno al otro. Por otra parte, las bandas oscuras representaban puntos en los que las ondas estaban “desfasadas” porque el vientre de una neutralizaba el nodo de la otra. En vez de aunar sus fuerzas, las ondas se interferían mutuamente, reduciendo la energía luminosa neta a las proximidades del punto cero.

Considerando la anchura de las bandas y la distancia entre los dos orificios por lo que surgen ambos rayos, se pudo calcular la longitud de las ondas luminosas, por ejemplo, de la luz roja a la violeta o de los colores intermedios. Las longitudes de onda resultaron ser muy pequeñas. Así, la de la luz roja era de unos 0’000075 cm. Hoy se expresan las longitudes de las ondas luminosas mediante una unidad muy práctica ideada por Ángstrom; esta unidad, denominada igualmente Ángstrom (Å) en honor a su autor, es la cienmillonésima parte de un centímetro. Así pues, la longitud de onda de la luz roja equivale más o menos a 7.500 Å, y la de la luz violeta a 3.900 Å, mientras que las de colores visibles en el espectro oscilan entre ambas cifras.

La cortedad de estas ondas es muy importante. La razón de que las ondas luminosas se desplacen en línea recta y proyecten sombras recortadas se debe a que todas son incomparablemente más pequeñas que cualquier objeto; pueden contornear un obstáculo sólo si este no es mucho mayor que la longitud de onda. Hasta las bacterias, por ejemplo, tienen un volumen muy superior al de una onda luminosa, y por tanto, la luz puede definir claramente sus contornos bajo el microscopio. Sólo los objetos cuyas dimensiones se asemejan a la longitud de onda luminosa (por ejemplo, los virus y otras partículas subatómicas) son lo suficientemente pequeños como para que puedan ser contorneados por las ondas luminosas.

Un físico francés, Agustin-Jean Fresnel, fue quien demostró por vez primera en 1.818 que si un objeto es lo suficientemente pequeño, la onda luminosa lo contorneará sin dificultad. En tal caso, la luz determina el llamado fenómeno de “difracción”. Por ejemplo, las finísimas líneas paralelas de una “reja de difracción” actúan como una serie de minúsculos obstáculos, que se refuerzan entre sí. Puesto que la magnitud de la difracción va asociada a la longitud de onda, se produce el espectro. A la inversa, se puede calcular la longitud de onda midiendo la difracción de cualquier color o porción del espectro, así como la separación de las marcas sobre el cristal.

La mano del Universo juguetea con unos puntos luminosos que quieren llegar a ser cegadores…Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.

Fraunhofer exploró dicha reja de difracción con objeto de averiguar sus finalidades prácticas, progreso que suele olvidarse, pues queda eclipsado por su descubrimiento más famoso, los rayos espectrales. El físico americano Henry Augustus Rowland ideó la reja cóncava y desarrolló técnicas para regularlas de acuerdo con 20.000 líneas por pulgada. Ello hizo posible la sustitución del prisma por el espectroscópio.

Ante tales hallazgos experimentales, más el desarrollo metódico y matemático del movimiento ondulatorio, debido a Fresnel, pareció que la teoría ondulatoria de la luz había arraigado definitivamente, desplazando y relegando para siempre a la teoría corpuscular.

No sólo se aceptó la existencia de ondas luminosas, sino que también se midió su longitud con una precisión cada vez mayor. Hacia 1.827, el físico francés Jacques Babinet sugirió que se empleara la longitud de onda luminosa (una cantidad física inalcanzable) como unidad para medir tales longitudes, en vez de las muy diversas unidades ideadas y empleadas por el hombre. Sin embargo, tal sugerencia no se llevó a la práctica hasta 1.880 cuando el físico germano-americano Albert Abraham Michelson inventó un instrumento denominado “interferómetro”, que podía medir las longitudes de ondas luminosas con una exactitud sin precedentes. En 1.893, Michelson midió la onda de la raya roja en el espectro del cadmio y determinó que su longitud era de 1/1.553.164 m.

Archivo:Krypton discharge tube.jpg

Tubo de descarga lleno de kriptón puro


Pero la incertidumbre reapareció al descubrirse que los elementos estaban compuestos por isótopos diferentes, cada uno de los cuales aportaba una raya cuya longitud de inda difería ligeramente de las restantes. En la década de 1.930 se midieron las rayas del criptón 86. Como quiera que este isótopo fuera gaseoso, se podía abordar con bajas temperaturas, para frenar el movimiento atómico y reducir el consecutivo engrosamiento de la raya.

En 1.960, el Comité Internacional de Pesos y Medidas adoptó la raya del criptón 86 como unidad fundamental de la longitud. Entonces se reestableció la longitud del metro como 1.650.763’73 veces la longitud de onda de dicha raya espectral. Ello aumentó mil veces la precisión de las medidas de longitud. Hasta entonces se había medido el antiguo metro patrón con un margen de error equivalente a una millonésima, mientras que en lo sucesivo se pudo medir la longitud de onda con un margen de error equivalente a una milmillonésima.

emilio silvera

El Saber del Mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

         No intentes ver la verdad sin conocer la mentira.

     No sabrás lo que es la luz sin conocer las tinieblas.

      Si no sabes de donde vienes no sabrás nunca quien eres.

Lo sé por experiencia, la dificultad, agudiza el ingenio… ¡La crisis también!

Mi padre me dijo una vez que,  el respeto por la verdad es casi el fundamento de la moral.

Resultado de imagen de Partículas virtuales

Nada puede surgir de la “nada”, si surgió…, ¡es porque había!

A la edad de quince años, había aprendido a oír el silencio. En cualquier sitio, aunque no lo parezca, podemos “oir” lo que la Naturaleza nos dice. No es poco lo que nos perdemos por no saber observar lo que nos rodea.

La vida no es gratis, se nos da para pagarla. ¡De tantas maneras! Todos tenenos que llevar nuestra “carreta” para llegar al destino propuesto.

     Más vale un… por si acaso, que un… yo creí.

¡Qué vida ésta!

En el Universo puede haber miles de millones de planetas. Si están habitados ¡Cuánto dolor y amargagura! Y, si no lo están… ¡Que desperdicio de mundos!

Resultado de imagen de La complejidad de la mante

En verdad, los seres humanos… ¡Son muy complejos! Y, hasta tal punto es así que, ni nosotros mismos llegaremos nunca a cocernos.

Siempre me ha llamado la atención el hecho de que, a lo largo de la historia, en cualquier parte del mundo, sin importar su condición u origen, de vez en cuando, surgieron personajes que, con sus hechos, dejaron señalado un camino que muchos siguieron y, de esa manera, ha ido caminando la Humanidad a lo largo de la Historia, influída por esas mentes que, en uno u otro ámbito del saber humano, abrieron los caminos a seguir. Muchos serían los ejemplos que podríamos poner aquí pero, hoy, dejaré una simple reseña de uno de ellos.

Pitágoras de Samos.  569 a.C. (Samos).475 a.C. (Tarento).

Pitágoras era hijo de un comerciante griego, por lo que viajó mucho de niño, acompañando a su padre.  No se conocen muchos detalles de su infancia, pero es seguro que recibió buena educación.  En Mileto, Tales y Anaximandro lo introdujeron en el mundo de las Matemáticas y le recomendaron ir a Egipto para profundizar en su estudio, lo que hizo en el 535 a.C. Estudió en el templo de Dióspolis.

Allí fue hecho prisionero hacia el 525 a.C. y llevado a Babilonia, de donde regresaría a Samos hacia el 520 a.C.  Al regreso, fundó una escuela que llamó El Semicírculo.  Al cabo de dos años se trasladó a Cretona, en el sur de Italia, donde fundó una escuela filosófica y religiosa que tuvo muchos seguidores.

Las enseñanzas principales decían que la realidad era matemática y que el estudio puede llevar a la purificación espiritual y la unión con la divino.

Creían que todo lo que existe son números y todas las relaciones podían reducirse a relaciones numéricas.  Además, atribuían a cada número una propia personalidad (masculina o femenina, perfecta o incompleta, bella o fea).

Por ejemplo, el 10 era el número perfecto, pues contenía en sí mismo los cuatro primeros enteros (1 + 2 + 3 + 4 = 10).

Escuela de Pitágoras, imagen perteneciente al libro “The story of greek people”, Eva March Tappan, Houghton Mifflin, 1909.

La escuela exigía a sus miembros estricta lealtad y secretismo por lo que los conocimientos en Matemáticas producidos por ellos eran siempre atribuidos a Pitágoras, y no podemos saber qué descubrió él personalmente y qué se le atribuyó.  Sin ir más lejos, el conocido teorema de Pitágoras (del que antes di un ejemplo) no lo descubrió él, sino que ya era conocido por los babilonios mil años antes, aunque puede que él fuese el primero en demostrarlo.

El objeto de estudio de esta escuela no eran las Matemáticas tal como las pensamos hoy, sino desde una perspectiva más filosófica.  Se preocupaban de los principios en que se basan las Matemáticas, el significado de los conceptos número o círculo, así como qué ha de entenderse por demostración (de un teorema por ejemplo).

Son varios los teoremas debidos a Pitágoras o, más genéricamente, a los pitagóricos: el que afirma que la suma de los ángulos de un triángulo es igual a dos ángulos rectos, o el teorema de Pitágoras, esto es, que un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

También descubrieron los números irracionales –que no se pueden expresar como el cociente de dos enteros- y los cinco sólidos regulares: el tetraedro, el hexaedro o cubo, el octaedro, el dodecaedro y el icosaedro.

Aunque Pitágoras es uno de los matemáticos griegos más conocidos, a mí, no se porqué, me gusta más Euclides.  Claro que a cada acontecimiento o a cada personaje, hay que valorarlo dentro del contexto de su obra en su época, en su “tiempo”.

El lenguaje, las matemáticas, la escritura,… son las cosas que nos hicieron distintos, partiendo siempre de la base de que teníamos los sentidos y la mente que requerían aquellos logros que nos separaron de los demás animales.

Resultado de imagen de Los primeros hominidos

La lengua o el lenguaje, cuyos comienzos se limitan a sonidos guturales y sin sentido de aquellos primeros homínidos que, caminando ya erguidos, vivían más o menos en comunidad y, ello, les llevó, a inventarse un sistema arbitrario de signos que los miembros de una comunidad establecían por convención, con el fin de comunicarse, así fueron los principios del lenguaje que, en cada caso, en cada lugar, está relacionado con la psicología y antropología específica de los distintos pueblos, lo que llevó a que el lenguaje, tomado en su conjunto, sea multiforme y heteróclito, y conectado con lo físico-fisiológico-psíquico y dentro de un dominio individual y a la vez social.

El lenguaje hablado se quiso expresar mediante escritura, y, el comienzo, fueron dibujos, signos, jeroglíficos, etc., hasta alcanzar un alto nivel mediante las reglas inventadas para la escritura.

La importancia del lenguaje y la escritura para la humanidad no está bien valorada, pocos piensan en lo importante que fue el hecho ocurrido hace ya muchos miles de años, cuando aquel ser primitivo, pintó un animal en la pared de su cueva, allí, en aquel lugar, se dio el primer paso.

Mediante un conjunto de sonidos articulados podemos manifestar lo que pensamos y comunicarnos con los demás y, cada pueblo, tiene su propio lenguaje.  Este hecho, el de distintas lenguas para cada región del mundo, expresa en realidad nuestro retraso en la evolución del lenguaje y en la de otros aspectos más generales que, algún día lejos aún en el futuro, nos llevarán a la unificación de todos y de todo en este planeta que pasará a ser una sola entidad ante el resto de civilizaciones que vendrán desde otros mundos pero, para que eso llegue…falta mucho.

(Sólo como aclaración tengo que dejar el apunte de que, los clásicos griegos bebieron de la fuente del saber egipcio, persa, hindú y otros.)

emilio silvera

El Universo se expande y, ¡la Mente también!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Muchas veces, como el balbuceo de un niño, hablamos de cosas que no entendemos, es simplemente una maraña de ideas que nos ronda por la Mente y, nosotros, osados como siempre, decimos lo que se nos ocurre sobre ellas, y, lo sorprendente es, que a veces, hasta acertamos.

¿Cuáles son los últimos principios y causas del mundo? Grabado de Flammarion de Camille Flammarion: L’Atmosphere: Météorologie Populaire (París, 1888).

“La metafísica (mñás allá de la física) aborda problemas centrales de la filosofía, como lo son los fundamentos de la estructura de la realidad, el sentido y la finalidad última de todo ser. La metafísica tiene dos temas principales: el primero es la ontología, que en palabras de Aristóteles viene a ser la ciencia que estudia el ser en cuanto tal. El segundo es el de la teleología, que es el estudio de los fines como causa última de la realidad. Existe, sin embargo, un debate que sigue aún hoy sobre la definición del objeto de estudio de la metafísica, sobre si sus enunciados tienen propiedades cognitivas.”

Actualmente, y pese a las críticas que ha recibido la metafísica a lo largo del pasado siglo, la disciplina no ha desaparecido de la investigación filosófica que denuncia, precisamente, el “olvido del ser” que, a favor del “ente”, había caracterizado a la metafísica tradicional. Claro que no todos pensaban de la msima manera y, la metafísica para ellos, era sólo una ficción.

De todas las maneras hay que reconocer que el proyecto siempre ha  estado abierto y también inconcluso y, sitúa al SER humano, en el centro de la reflexión metafísica. Somos tan complejos que, ni nosotros mismos podemos explicar quiénes somos.

Todas las reflexiones y pensamientos sobre este tema son buenos y, mucho o poco, ayudan a seguir avanzando en la dirección correcta y con un solo proyecto: llegar a conocernos, porque….. ¿Quiénes somos? ¿Por qué precisamente nosotros? ¿Por qué ahora? ¿Cuál es nuestro verdadero origen? ¿Hacia donde vamos? ¿Tenemos acaso un destino predeterminado?

Sí, me gustaría poder responder a tales preguntas, sin embargo, mi limitación e ignorancia es… ¡Infinita y  metafísica!

Me gustaría saber como me he metido en éste embrollo de la metafísica, campo que no es el mío y del que puedo hablar de oídas, pero, como dije antes, ¡Somos tan osados!

Se dice que:

“… Nuestro ADN funciona como una antena de comunicación a nivel cuántico que rompería las barreras del espacio y del tiempo lo que confirmaría la visión holística de un ser humano interrelacionado con todo y con todos. La oscilación vibratoria de nuestro ADN puede causar patrones de perturbación en el vacío produciendo así agujeros de gusano magnetizados.”

 

 

Todo esto nos lleva a pensar en…

Esa sustancia espiritual e inmortal que es capaz de entender, de sufrir y querer, de sentir y de informar al cuerpo humano del que se vale para ir y venir, ese espíritu digo, tiene mucha complejidad, y, su capacidad aún dormido, juega con los conceptos y trata de desvelar lo que subyace dentro de ella, y, al decir ella, me refiero al Alma, y, al decir Alma me refiero a nuestro cerebro, nuestro saber, nuestros sensores.

Desde niño fui un tipo curioso, todo me interesaba. Es posible, no lo sé, que parte importante de mi comportamiento sea debido a que, cuando tenía dos años, quedé impedido de mi pierna izquierda, y. aquello que me restaba posibilidades físicas, me empujó a refugiarme más tarde, en la lectura y en el yo interior, he tenido una vida interior muy potente que, estoy seguro, fortaleció mis sentidos y mi mente.

         ¿El Rey Argantonio?

Una manera de competir con los demás (para no ser menos), era la de saber más, era una forma de imponer mi criterio sobre el de los otros que, de alguna manera, se sometían a ese mayor saber. Bien temprano aprendía que el conocimiento es “poder” … En cierta manera.

Recuerdo, aquellas noches de verano, en que todos los niños de mi calle y de las limítrofes, sentados en la acera a mí alrededor, me oían contar historias de Argantonio, aquel rey Tartessos y les hablaba del mito de Gerión o del décimo trabajo de Hércules, localizado en nuestra zona que era, para los griegos el fin de occidente. Les hablaba de leyendas y mitos relativos al Jardín de los Hespérides o del undécimo trabajo de Hércules, el de Atlas, Prometeo y los Titanes, así como de la leyenda de la Atlántida.

Es curioso como puedo ver nítidamente en mi mente, sus caras de asombro a medida que mi voz les relataba aquellas historias.

Hace un año me encontré con Matías Álvarez, uno de aquellos niños que escuchaban embelezados mis historias. Es Ingeniero Industrial superior que ejerce fuera de Huelva, por donde se deja caer cuando puede para visitar a su hermana Remedios.

Después de los abrazos y saludos (hacía más de 20 años que no nos veíamos), me recordaba:

          Los escenarios de mi niñez… ¡Ya no existen! Casi ninguno

“A mis hijos les he contado muchas veces las mismas historias que tú nos contaba a los niños del barrio. Nunca he olvidado al monarca Argantonio, y todas aquellas tradiciones de carácter histórico recogidas por Estesícoro (raíces argénteas del río Tartessos) Anacreonte (longevidad de su monarca Argantonio), Hecateo (Habla de una tal Hlibyrge, ciudad de Tartessos), Herodoto (Tartessos como emporio de gran riqueza más allá de las Columnas de Hércules, así como de relaciones con los focenses), Eforo, Aristófanes, Estrabón (Tartessos como ciudad, río, región y centro de concentración de metales) y Avieno, que ofrece la más abundante información de índole geográfica. La ciudad llamada Tartessos esta identificada por aquí, cerca de lo que hoy es Huelva.”

 

Aquellos recuerdos de cuando éramos niños fue algo estimulante, y, sobre todo, comprobé que, aquellas interminables charlas, sentados en el suelo en el calor de las noches de verano, con el botijo cerca, al parecer, no habían caído en el vacío, algunos las recordaban.

Por aquella época, mi voracidad lectora era inmensa. Creía firmemente que Tartessos estaba en Huelva y que el Jardín de las Hespérides estaba situado en lo que hoy conocemos como Isla Saltés. Esa fue la conclusión a la que llegué después de leer todo lo que encontré sobre el tema. Hasta las insinuaciones de Homero, sitúan Tartessos en Hueva. ¿Sabeis que en el centro de la Isla Saltes existen unas ruinas de un templo de Artemisa?

De nuevo me he desviado para contaros una batallita de mi juventud, perdonad, seguiré con temas más interesantes para el lector. ¡AH! También les contaba otras historias inventadas sobre la marcha en la que ellos eran los personajes. Esas les gustaban más que las de verdad, ya que, por mi parte, procuraba que todos, en uno u otro momento, fueran héroes en alguna de las muchas empresas difíciles que introducía en esas historias ¡Qué cosas! ¡Que gente! ¡Qué tiempo!

Resultado de imagen de La España de la Posguerra

De alguna manera les hacía olvidar el hambre que tenían procurando llevarlos a mi mundo particular de ficción.

En aquella época, ¡Lastima!, no tenía los conocimientos necesarios para haberles hablado de Física y Astronomía, seguro que les habría gustado y habrían aprendido algunas cosas. Pero a esa edad, todos preferían la aventura y el misterio, yo también. Era la edad.

Antes de que lo olvide:

Cuando publiqué por primera vez este trabajo, también daba la noticia de la inauguración del Gran Telescopio de Canarias que, a estas alturas, nos ha ofrecido muchos de sus logros para que conozcamos mejor el Universo. Entonces decía:

“Erguido en el punto más alto de la isla canaria de La Palma, por encima del mar de nubes y envuelto en la cristalina atmósfera que proporcionan los vientos aliseos, el Gran Telescopio de Canarias (GTC) está a punto de ver su primera luz el próximo 13 de julio (el pasado año). El observatorio, que será una de las más importantes instalaciones científicas españolas, recibirá así su bautizo astronómico y podrá mirar al cielo por primera vez, pese a que no se espera que funcione a pleno rendimiento hasta dentro de un año.

Su construcción por segmentos, inspirada en los también gigantes telescopios de Hawai, conocidos por keck, facilita su manejo y traslado por carretera. Está hecho de un material llamado Zerodur (vitrocerámica) y han sido construidas por una compañía alemana.

Gracias a la calidad de imagen extraordinariamente alta, los astrónomos podrán estudiar otros sistemas planetarios lejanos. Schott ha fabricado 42 espejos hexagonales (36 más 6 de repuesto) realizados en cristal cerámico aluminizado.

¡SUERTE!”

Desde entonces, sus logros han sido muchos.

 

La nebulosa ‘Sharpless 2-106‘, con forma de reloj de arena

 

“La imagen del nacimiento de una estrella fue elegida como ‘Imagen astronómica del día‘ por la NASA el pasado 7 de noviembre. Esta astrofotografía fue tomada por el mayor telescopio óptico-infrarrojo del mundo, el Gran Telescopio Canarias (GTC) y OSIRIS, situado en el Observatorio del Roque de Los Muchachos del Instituto de Astrofísica de Canarias (IAC), en La Palma.”

 

 

Imagen captada por el Gran Telescopio Canarias de la estrella.

El objeto descubierto, Swift J1822.31606, se halla a unos 16.300 años luz de la Tierra, en la constelación de Sagitario, y cuenta con más de medio millón de años de antigüedad. Es una estrella muerta que se convirió en un magnetar. De hecho, si la estrella de origen hubiese sido más masiva, ahí moraría un agujero negro.

Alguien de la Real Sociedad Española de Física que, habitualmente,  lee mis libretas, me comentó:

“Lo que encuentro ameno y divertido es el enfoque que le das a las cuestiones que estás tratando, y, la manera tan original que tienes de contarlo. Lo cierto es que consigues que lo complejo parezca sencillo, tal como lo cuentas”

“También me resulta curioso el ver como tratas temas dispares entre sí, y como los planteas de manera que, en realidad, no parecen tan dispares y dan la sensación de estar conectados del alguna manera”

Esto me decía mi amigo en su última carta, en la que me felicita por “Los misterios de la Tierra”. Yo, sinceramente, agradezco a mis lectores (en realidad un grupo de amigos parciales en sus diagnósticos sobre mis trabajos), el hecho de que, al menos por amistad, resalten lo que escribo, de alguna manera me incentivan para seguir.

Si queréis saber de esas librtetas… Algunas de las muchas Libretas manuscritas por mí  se denominan:

 

De esta manera, y con esta serie de trabajos sobre física, cosmología y referidos a otros conocimientos del saber, se trata de divulgar cuestiones que todos deberían conocer, tales como: ¿hay un solo Universo?, ¿por qué se curva el espacio en presencia de grandes masas como planetas o estrellas?, ¿es posible ralentizar el tiempo si viajamos a velocidades cercanas a la de la luz?, ¿qué es el Modelo Estándar de la Física?, ¿qué son los ladrillos de la materia?, ¿qué y cuántas son las Fuerzas Fundamentales de la Naturaleza?, ¿tendrá fin el Universo?, ¿qué es una estrella supermasiva, cómo nace, cómo vive, en qué se convierte cuando llega a su final?, ¿dónde se fabricó la materia de la que estamos hecho todos nosotros?

En realidad, el expresar en un papel en blanco los pensamientos que fluyen en mi cabeza, es una necesidad que me sirve como ejercicio de relajación y, de camino, repaso y estoy aprendiendo cosas nuevas. Como decía Popper: “Cuanto más profundizo y más consciente soy de las cosas, mucho más conciencia tengo de lo poco que se. Mi conocimiento es limitado, mientras que, mi ignorancia es infinita”.

Reconozco que soy inquieto, en una consulta del médico, cuando me marcho, es fácil que deje emborronadas las revistas y sus hojas con huecos en blanco con  múltiples ecuaciones de física y deje ideas de mecánica cuántica o relatividad general. El que llegue detrás de mí y eche un vistazo a lo escrito, no me extraña que para si mismo se pregunté. “De qué habla éste”.

Pero la mayoría de las veces tengo ideas que me gustaría comentar con otras personas que entiendan estas inquietudes del Ser, del Universo, de la materia o del espacio-tiempo, y sin embargo, no encuentro ninguna a mi lado, así que he terminado acostumbrándome a una charla conmigo mismo con el bolígrafo y el papel a mano, así al menos, no se pierde todo lo que pasa por mi cabeza.

Monografias.com

Se puede apreciar en la anterior gráfica de resonancia como la neorocientífica nos muestra la evolución de la zona del córtex según la edad, desde la primera infancia va evolucionando y no se detiene dentro de la escala evolutiva. Explica que el neocortex nos capacita para adquirir conocimientos, desarrollar sociedades, culturas y tecnologías.

          El conocimiento es tener noción de saber, es inteligencia.

El problema filosófico de las cuestiones relacionadas con el conocimiento, es decir, la forma del conocimiento de la realidad, las posibilidades existentes de que ese conocimiento responda exactamente a lo que ésta es en sí, etc, no constituyó una preocupación fundamental para los filósofos hasta la llegada de Kant que, en el S.XVIII, suscitó en gran escala estas dificultades. Con anterioridad a Kant, el problema se reducía al sujeto que conoce y objeto conocido, se fijaban fundamentalmente en el segundo de ellas, y la filosofía moderna, por el contrario, está centrada en el sujeto cognoscente.

La inquietud por este problema comienza con Descartes, Leibniz, Locke, Berkeley, Hume que influyó decisivamente en Kant en quien el problema a esta cuestión, como ya he comentado antes, en alguna parte de este mismo trabajo, la formulo así: todo conocimiento arrana o nace de nuestras experiencias sensoriales, es decir, los datos que nos suministran nuestros cinco sentidos, pero no todo en él procede de estos datos. Dicho de otra manera, hay en nosotros dos fuentes o potencias distintas que nos capacitan para conocer, y son la sensibilidad (los sentidos) y el entendimiento o inteligencia. Esta no puede elaborar ninguna idea sin los sentidos, pero también estos son inútiles sin la ayuda del entendimiento, es como un conjunto simétrico, algo perfectamente acoplado para formar un todo.

Me viene a la memoria en este punto, la explicación que me dio una vez, mi hija María, cuando por curiosidad le pregunté: ¿Qué es el contrapunto?

El contrapunto

“Es la concordancia armónca de dos o más veces cada una con su línea melódica, de cuya superposición resulta la armonía de la obra musical.”

 

Se aplica además el arte de conducir las voces con cierta independencia, sin incurrir en falta contra las reglas de la armonía. El contrapunto severo se atiene estrictamente a ellas, mientras que el libre admite cierta soltura, siempre que no incurra en desarmonía y cacofonía. En el doble las voces pueden ser intercambiadas. Los métodos empleados son la imitación de un motivo, el canon y la fuga, y estos últimos son complicados entre lanzamientos del motivo de la melodía.

La palabra contrapunto la utilizó por primera vez Philippe de Vitro, teórico del siglo XIV.

   Mi hija María es Pianista y Clavecinista

El contrapunto es la técnica compositiva por la cual, sobre una melodía dada, se construye un conjunto de una o varias contramelodías o contrapuntos, consiguiendo que, finalmente todo sea un conjunto armonioso.

Aunque mis intereses están en  la física y otras ramas del conocimiento, de vez en cuando, recurro a María para preguntarle algunas cuestiones bajo el punto de vista musical que, no en pocas ocasiones, coincide con temas científicos. Acordáos de Pitágoras y…

La respuesta que me dio sobre el contrapunto es aplicable a un sin fin de cuestiones y problemas científicos y cotidianos: buscar la armonía en la diferencia.

                   Diferente pero armónico en su conjunto

Podríamos aplicar el arte de combinar los sonidos de las voces humanas o los instrumentos, o de unos y otros a la vez para causar un efecto estético, a nuestra vida social y sobre todo a la política, procurando que unos y otros, voces discordantes y pensamientos distintos, guiados por una regla de ética y moral, pudieran reflejar un comportamiento estético, y, además, que fuese práctico para conseguir un bien “armónico común”. Si nos fijamos en la Naturaleza y supiéramos copiarla…

Pero sigamos con el tema: La música enaltece al ser humano, no eleva y nos hace mejores, una música que nos llega y es capaz de despertar nuestros sentimientos, nos puede transportar muy lejos, allí donde encontraremos el amor y la felicidad que, en este mundo nuestro, está escondida.

El término procede del griego mousiké a través de la adaptación latina música. En el mundo griego se designaban con este nombre todas las ramas del arte que eran presididas por las Musas. Pitágoras fue el teórico musical más importante de la Antigüedad.

Formuló el concepto de armonía y a partir de sus análisis sobre la naturaleza del sonido se creó el cálculo pitagórico de intervalos y las escalas modales, cuya importancia fue decisiva en el desarrollo de la música medieval.

Los principios teóricos de los griegos se transmitieron a la música litúrgica cristiana a través de autores como san Agustín, Boecio y Casiodoro. Durante los primeros siglos del cristianismo, la música se circunscribió al ámbito religioso, concretamente al canto litúrgico, cuyo fundamento está constituido por la síntesis entre el sistema modal griego y ciertas influencias de la tradición judía.

Como veo que esto se me va de las manos y puedo terminar este trabajo escribiendo una historia de la música, mejor lo dejo y me dedico a lo que en realidad me debo: El pensamiento, el saber, la inteligencia, la mente, el “universo”  de lo sensorial.

emilio silvera

La NASA… ¡Qué cosas dice!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

NASA: Ningún Asteroide Impactará Contra la Tierra

25.08.15.- Durante estos últimos días, numerosos blogs y webs están erróneamente afirmando que un asteroide impactará contra Tierra, entre el 15 y el 28 de septiembre de 2015. Según estos rumores, el “impacto” se produciría cerca de Puerto Rico, causando la destrucción sin sentido en las costas de los Estados Unidos y México, así como América Central y del Sur del Atlántico y del Golfo.

Es un rumor que se ha hecho viral – ahora aquí están los hechos.

“No hay ninguna base científica – ni una pizca de evidencia – de que un asteroide o cualquier otro objeto celeste impactará contra la Tierra en esas fechas”, dijo Paul Chodas, gerente de la oficina de Objetos Cercanos a la Tierra de la NASA en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California.

De hecho, el Programa de Observaciones de Objetos Cercanos a la Tierra de la NASA dice que no ha habido asteroides o cometas observados que pudiesen afectar a la Tierra en cualquier momento en el futuro previsible. Todos los asteroides conocidos como potencialmente peligrosos tienen una probabilidad de menos del 0,01% de impactar contra la Tierra en los próximos 100 años.

Espectacular imagen de la Tierra captada por el satélite Terra de la NASA
Espectacular imagen de la Tierra captada por el satélite Terra de la NASA. Image Credit: NASA

La oficina de objetos cercanos a la Tierra en el JPL es un grupo clave involucrado con la colaboración internacional de astrónomos y científicos que vigilan en el cielo con sus telescopios, en busca de asteroides que pudiesen hacer daño a nuestro planeta y la predicción de sus trayectorias a través del espacio para el futuro próximo.

“Si hubiese cualquier objeto lo suficientemente grande como para hacer ese tipo de destrucción en septiembre, ya lo habríamos visto”, declaró.

Otra cosa, Chodas y su equipo saben que esta no es la primera vez que una salvaje afirmación sin fundamento de un objeto celeste a punto de impactar contra la Tierra se ha hecho, y por desgracia, probablemente no será la última. Parece ser uno de los favoritos de la World Wide Web.

En 2011 había rumores sobre el llamado “día del juicio final” del cometa Elenin, que nunca planteó ningún peligro de dañar la Tierra y se dividió en una corriente de desechos pequeños en el espacio. Luego estaban las afirmaciones de Internet que rodearon el final del calendario maya el 21 de diciembre de 2012, insistiendo en que el mundo se acabaría con un gran impacto de un asteroide. Y sólo este año, los asteroides 2004 BL86 y 2014 YB35 han tenido trayectorias cercanas a la Tierra, pero sus sobrevuelos de nuestro planeta en enero y marzo terminaron sin incidentes – como dijo la NASA que lo harían.

“Una vez más, no hay evidencia existente de que un asteroide o cualquier otro objeto celeste está en una trayectoria que impactará contra la Tierra”, dijo Chodas. “De hecho, ni uno solo de los objetos conocidos tiene alguna posibilidad creíble de golpear nuestro planeta durante el próximo siglo.”