jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Seguimos avanzando para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Queriendo saber    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un equipo internacional de astrónomos ha logrado retratar una colisión entre dos galaxias que tuvo lugar cuando el universo tenía sólo la mitad de su edad actual gracias a la combinación de telescopios, situados tanto en el espacio como en tierra, y a una lente cósmica “infinitamente más grande”.

Según informó hoy el Observatorio Europeo Austral (ESO por sus siglas en inglés), los científicos utilizaron esta lente cósmica junto con diversos telescopios para revelar detalles de la galaxia H-ATLAS J142935.3-002836

 

El equipo de astrónomos encontró la galaxia H-ATLAS J142935.3-002836 durante un sondeo del proyecto H-ATLAS y, mediante una “extensa campaña de seguimiento con los telescopios más potentes”, consiguieron demostrar que el objeto que se observa a través de la lente era una colisión galáctica que da lugar cada año a cientos de nuevas estrellas.

En concreto, los científicos utilizaron tres telescopios del Observatorio Europeo Austral (ESO por sus siglas en inglés): el ALMA, el APEX y el VISTA, situados en el desierto de Atacama (Chile), los telescopios espaciales Hubble, de la NASA y la Agencia Espacial Europea (ESA por sus siglas en inglés) y Spitzer, de la NASA, y los terrestres Gemini Sur y Keck-II entre otros.

… poderosa herramienta para estudiar las primeras estrellas que surgieron hace miles de millones de años. (Archivo). El telescopio Atacama Pathfinder …

El telescopio Atacama Pathfinder Experiment (APEX), ubicado en el desierto de Atacama, cuenta con un nuevo instrumento, que tras las primeras pruebas captó una imagen de la zona de formación estelar NGC 6334, (la Nebulosa de la Pata de Gato) en la constelación austral de Scorpius (El Escorpión), cuyo resultado es notablemente mejor que imágenes anteriores obtenidas por el telescopio de esta misma región.

Nebulosa de la Flama (NGC 2024). Crédito: ESO.

El Observatorio Europeo Austral (ESO por sus siglas en inglés) está de enhorabuena: estrena VISTA, un nuevo y potente telescopio. Ubicado en el Observatorio de Paranal, en pleno desierto de Atacama chileno, VISTA tiene un espejo de 4,1 metros de largo y las mismas cualidades excepcionales de observación de su ‘compañero’, el Very Large Telescopi (VLT). El telescopio ha sido desarrollado por un consorcio de 18 universidades del Reino Unido.

Su primer trabajo ha sido conseguir esta espectacular imagen de la Nebulosa de la Flama,una nube de formación de estrellas de gas y polvo en la constelación de Orión. Gracias a la tecnología infrarroja de VISTA, la imagen permite ver los objetos que ocultan las nubes de polvo y nos muestra las jóvenes estrellas que se ocultan tras ellas.

El esquema muestra cómo cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito de la imagen: ESO/M. Kornmesser

El esquema muestra cómo cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito de la imagen: ESO/M. Kornmesser.

Los potentes Telescopios con prestaciones increíbles con los que hoy pueden contar los Astrónomos de todo el mundo, posibilitan que se puedan captar objetos de increíble belleza y, sobre todo, fenómenos que nos enseñan lo que ocurre en el Cosmos, en el que ahora sabemos que nada es eterno ni estático. Hay presente fuerzas que hacen posible los cambios por medio de interacciones gravitatorias, electromagnéticas, de radiación y de la estabilidad de los átomos gracias a la fuerza nuclear fuerte que, hace posible la existencia de todos los objetos visibles o no, conformado de miles de millones de moléculas formadas por átomos que se juntan. Todo lo que vemos son Quarks y Leptones que se disfrazan de estrellas, mundos o galaxias.

Como podemos ver aquí, la tendencia de todo, es la de juntarse. Existe una fuerza irresistible que llama a esa unión y, sin embargo, el Universo en su contexto general más amplio, se expande sin cesar y, cada día que pasa, las galaxias están más lejos las unas de las otras, salvo las que son vecinas y siguen juntas por efecto de la Gravedad.

El Universo será cada vez más frío, más grande, y más solitario.

¡Qué porvenir!

emilio silvera

¿Que es el principio de exclusión de Pauli?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

 

 

 

El principio de exclusión de Pauli es un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado.1 Formulado inicialmente como principio, posteriormente se comprobó que era derivable de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del spin.

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio.

                                                          Condensado de Bose-Einstein

Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

         Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planckbosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

http://farm5.static.flickr.com/4140/4745204958_afd02b2486.jpg

La mejor teoría para explicar el mundo subatómico nació en 1928 cuando el teórico Paul Dirac combinó la mecánica cuántica con la relatividad especial para explicar el comportamiento del electrón. El resultado fue la mecánica cuántica relativista, que se transformó en un ingrediente primario en la teoría cuántica de campos. Con unas pocas suposiciones y unos ajustes ad-hoc, la teoría cuántica de campos ha probado ser suficientemente poderosa para formar la base del modelo estándar de las partículas y las fuerzas.

    El campo magnético de las estrellas de neutrones

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo   un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma que lo haría si el hierro no estuviese magnetizado. El magnetismo delneutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse formar la antimateria, de la misma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

La verdad es que, el momento, el éxito ha sido nulo y la antimateria, si existió alguna vez, quedó destruída en esos primeros momentos del Big Bang y, desapareció debido a que, la materia bariónica era algo mayor que la antimateria, es decir, había más protones que antiprotones.

Los físicos hablan de antipartícula y se están refiriendo a una partícula subatómica que tiene la misma masa que otra partícula y valores iguales pero opuestos de otra propiedad o propiedades. Por ejemplo, la antipartícula del electrón es el positrón, que tiene una carga positiva igual en módulo a la carga negativa del electrón. El antiprotón tiene una carga negativa igual al módulo de la carga positiva del protón. El neutrón y el antineutrón tienen momentos magnéticos con signos opuestos en relación con sus espines. La existencia de antipartículas es predicha por la mecánica cuántica relativista.

Cuando una partícula y su antipartícula colisionan ocurre la aniquilación. La antimateria consiste en materia hecha de antipartículas. Por ejemplo, el antihidrógeno consiste en un antiprotón con un positrón orbitando. El antihidrógeno ha sido creado artificialmente en laboratorio. El espectro del antihidrógeno debería ser idéntico al del hidrógeno y, precisamente por eso, es tan difícil para los astrónomos localizar antimateria (si es que la hay).

Parece que el Universo está formado mayoritariamente de materia (ordinaria) y la explicación de la ausencia de grandes cantidades de antimateria debe ser incorporada en  modelos cosmológicos que requieren el uso de teorías de gran unificación de las partículas elementales.

Y, a todo esto, no debemos olvidarnos de la otra materia, esa que llamamos oscura y que, en realidad, deja al descubierto nuestra inmensa ignorancia, ya que, todo el Universo está empapado de ella, y, sin embargo, aún no hemos sido capaces de discernir lo que dicha materia oscura pueda ser, como se formó, o de qué está hecha y cómo se generó en el Universo, en verdad es un gran misterio qur todos los Astrónomos del mundo persiguen incansables.

Ahora se habla de otras dimensiones, y, nuestro cerebro está conformado en tres espaciales y una temporal ( la relatividad especial) y, desde luego, nos cuesta “ver” dimensiones más altas y no podemops crear en nuestras mentes imágenes que nos lleven a 5, 10, 11 o cualquier de dimensiones que están fuera de nuestro alcance mental pero, las matemáticas nos dicen que podrían muy bien existir y, para ello, han ideado una hermosa Teoría del Todo que llaman de supercuerdas o Teoría M.

File:Calabi-Yau.png

Por mucho que esforzamos nuestra imaginación, visualizar esas dimensiones extra… ¡No será nada fácil! Nuestro muntro es tridimensional más el Tiempo que, desde Einstein, es la cuarta dimensión, Sin embargo, aunque con la numerología se trabaja con más dimensiones, y, los físicos de cuerdas logran que la Cuántica y la Relatividad (lo pequeño y lño grande) se junten sin alborotos, en la realidad cotidiana, donde las matemáticas quedan fuera, esas dimensiones más altas… ¡No se ven por ninguna parte!

Según los físicos, si es verdad que dichas dimensiones están ahí, ¿no podría esa materia y energía oscura estar alojada en alguna de ellas? Tengo un registrado en la Sociedad de Autores científicos que, precisamente se refiere a eso, a que la materia oscura pueda estar fuera de nuestra visión y que no la podamos detectar precisamente por no tenerla a la vista, y, mediante fluctuaciones del vacío, esa cantidad ingente de materia oscura deja pasar a los gravitones, los bosones intermediarios de la fuerza de Gravedad, que llegan a nuestro propio espacio, a nuestras dimensiones, y, se deja sentir haciendo que las galaxias se alejen las unas de las otras a mayor velociodad de lo que lo harían si la única materia presente fuese la Bariónica.

En fin, amigos, es tanto lo que no sabemos que, mejor será la búsqueda de éste y de otros misterios que, como el de la masa de las partículas, aún se nos escapa y tenemos que construir maravillas como el LHC para tratar de que responda a nuestras preguntas.

        Una máquina gigantesca que quiere viajar hasta las cuerdas vibrantes

Pero, una cosa es cierta, nuestra osadía que nos lleva a comentar sobre cosas que no llegamos a comprender y, como por ejemplo, los taquiones, son simplemente objetos creados en nuestra inagotable imaginación. Los taquiones, si lo recordais, son partículas hipotéticas que viajan a mayor velocidad que la de la luz y, según la teoría electromagnética, una partícula cargada que viaja a través de un medio con velocidad mayor que la de la luz en ese medio emite radiación Cerenkov y, un taquión cargado emitirá radiación Cerenkov incluso en el vacío.

Claro que, por el momento no se han detectado partículas con esas caracterísiticas y, si llegan a hacer acto de presencia, ¿qué hacemos con la relatividad especial de Einstein que nos dice que nada en nuestro Universo podrá ir a más velocidad que la luz?

¡Es un serio problema! Mejor que el dichoso Taquión no aparezca.

Por otra parte, nunca podremos dejar de sorprendernos cuando nos sumergimos en el “universo” de la mecánica cuántica y en el mundo subatómico de las partículas. El 18 abril 2012, investigadores del Instituto Kavli de TU Delft y de la Fundación FOM han logrado una primera detección de partículas Majorana. Etore Majorana fue un brillante físico italiano que llevó a cabo sus investigaciones en los años treinta del siglo pasado, ahondando en la teoría cuántica y como una partícula especial que podría existir, una partícula que sería en sí misma su propia antipartícula: el fermion de Majorana. Eso sitúa a partícula en la frontera entre materia y antimateria.

¿Será cierto aquello de que, todo lo que podamos imaginar se puede convertir en realidad… ¡con el paso del tiempo!

emilio silvera

¡La Física! Siempre nos sorprende

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

                            Foto: COSMIN BLAGA, OHIO STATE UNIVERSITY.
Investigadores de la Universidad Estatal de Ohio (Estados Unidos), han registrado, utilizando una nueva cámara ultrarrápida, la primera imagen en tiempo real de dos átomos vibrando en una molécula. La clave del experimento, que ha sido publicado en la revista ‘Nature’, fue la utilización de la energía del propio electrón de una molécula.  El equipo usó pulsos láser ultrarrápidos para expulsar un electrón fuera de su órbita natural en una molécula; el electrón retrocedió, entonces, hacia la molécula, dispersándose, de forma análoga a la manera en que un destello de luz se dispersa alrededor de un objeto, o una onda expansiva de agua se dispersa en un estanque.
Podemos comprobar que cada día estamos más cerca de saber, sobre la verdadera naturaleza de la materia al poder acceder a ese microscópico “mundo” de lo muy pequeño, allí donde residen los cuantos, esos infinitesimales objetos que se unen para conformar todo lo que podemos ver en nuestro universo, desde la más pequeña mota de polvo hasta la galaxia más grande.

 

 

Diagrama de un microscopio de fuerza atómica

 

 

Las veloces computadoras cuánticas hechas con átomos atrapados por haces de luz pueden estar un poco más cerca, gracias a las primeras imágenes de átomos individuales obtenidas en una de estas grillas.

 

La velocidad de las computadoras cuánticas tiene que ver con el hecho de que sus componentes pueden ocupar una serie de estados en lugar de sólo dos como ocurre en una computadora binaria. Ciertos algoritmos especiales podrían explotar estos estados cuánticos para resolver problemas que derrotarían a una computadora convencional.

Una candidata a computadora de este tipo es la llamada “rejilla óptica”, en la que haces de rayos láser estratégicamente ubicados hacen que los átomos ultrafríos se coloquen en forma de grilla, como si fueran huevos en su envase de cartón. Pero antes de que uno pudiera leer o escribir sobre estos átomos, algo indispensable si la rejilla fuera a actuar como una computadora cuántica, haría falta determinar las posiciones exactas de los mismos.

Ahora dos equipos de investigadores, uno conducido por Stefan Kuhr del Instituto Max Planck de Óptica Cuántica de Garching, Alemania, y el otro por Markus Greiner de la Universidad de Harvard, han dado el primer paso al obtener imágenes de átomos individuales de rubidio en una rejilla óptica. Este es un reto no sólo porque los átomos son pequeños, sino también porque los fotones de los átomos cercanos pueden interferir unos con otros, enturbiando cualquier patrón.

 

 

 

 

Para superar esto, los equipos estudiaron el patrón de luz de un solo átomo. Luego crearon un algoritmo capaz de generar una combinación de este patrón a partir de diferentes disposiciones de una grilla de átomos. Cotejando estas simulaciones con el modelo real observado, el algoritmo podía determinar cuál era la distribución de los átomos.

Cada átomo en la grilla actúa como un bit cuántico. Kuhr dice que la rejilla óptica tiene muchos más de estos “qubits” que otros sistemas enfocados en la computación cuántica, por lo que puede ofrecer mayor velocidad.

 

 

Imagen

 

 

Los láseres pueden volver reales las partículas virtuales. Los láseres de última generación tienen el poder de crear materia por medio de la captura de partículas fantasmales que, de acuerdo a la mecánica cuántica, permean el espacio aparentemente vacío

El principio de incertidumbre de la mecánica cuántica implica que el espacio nunca puede estar realmente vacío. En cambio, las fluctuaciones aleatorias causan el nacimiento de un caldero hirviente de partículas, como electrones y sus homólogos de antimateria, los positrones.

Las llamadas “partículas virtuales” normalmente se aniquilan entre sí demasiado rápido para que las veamos. Pero los físicos predijeron en los años 30 que un campo eléctrico muy fuerte transformaría las partículas virtuales en reales, y entonces las podríamos observar. El campo las impulsa en direcciones opuestas, porque tienen cargas eléctricas que se oponen, y las separándolos de modo que no puede destruirse mutuamente.

 

 

Los rayos láser del futuro funcionan con muy cortos destellos de luz y son tan versátiles que revolucionarán la producción industrial. Un avance logrado por científicos alemanes. No hay otro instrumento que pueda cortar o perforar metal con tan alta precisión como los rayos láser de destellos ultracortos. Con estos se puede grabar un mapa del mundo en la cabeza de un alfiler en el que – incluso – pueden identificarse las más pequeñas islas del Caribe.

Main Control Center

 

Los láseres son ideales para esta tarea, porque su luz posee campos eléctricos fuertes. En 1997, los físicos del Stanford Linear Accelerator Center (SLAC), en Menlo Park, California, utilizaron luz láser para crear unas pocas parejas de electrón-positrón. Ahora, nuevos cálculos indican que los láser de nueva generación serán capaces de crear pares por millones.

Reacción en cadena

En el experimento de SLAC, sólo se creó un par electrón-positrón a la vez. Pero con los láseres más potentes, es probable que se produzca una reacción en cadena.

El primer par es acelerado a gran velocidad por el láser, haciendo que emita luz. Esta luz, junto con la del láser, genera aún más pares, dice Alexander Fedotov de la Dirección Nacional de Investigaciones Nucleares de la Universidad de Moscú y sus colegas en un estudio que aparecerá en Physical Review Letters.

“Surgirá una gran cantidad de partículas del vacío”, dice John Kirk del Instituto Max Planck de Física Nuclear en Heidelberg, Alemania, que no participó en el estudio.

En los láseres que pueden concentrar cerca de 1026 vatios en un centímetro cuadrado, esta reacción desatada debería convertir de manera eficiente la luz del láser en millones de pares de electrones positrones, calcula el equipo.

 

Fábrica de antimateria

 

 

 

 

Ese nivel de intensidad lo podría alcanzar un láser que será construido por el proyecto Extreme Light Infrastructure en Europa. La primera versión del láser se podría construir en 2015, pero podría llevar un año más completar las actualizaciones necesarias para llegar a 1026 vatios por centímetro cuadrado, dice el coautor del estudio Georg Korn del Instituto Max Planck de Óptica Cuántica en Garching , Alemania.

La capacidad de generar una gran cantidad de positrones podría ser útil para los colisionadores de partículas, como el propuesto del Colisionador Lineal Internacional, que impactará electrones y positrones, dice Kirk McDonald de la Universidad de Princeton en Nueva Jersey.

Pero Pisin Chen, de la Universidad Nacional de Taiwan en Taipei, dice que el costo de los poderosos láseres puede hacer que este método sea más caro que el alternativo. En la actualidad, la manera estándar de crear una gran cantidad de positrones es disparar un haz de electrones de alta energía a una pieza de metal, para producir pares electrón-positrón. Vean la publicación siguiente:


La materia supera a la antimateria en un experimento que imita a la creación

 

 

 

El desequilibrio en el acelerador de partículas de Illinois podría presagiar grandes avances en Física

A menos de una billonésima de segundo después del Big Bang ocurrió otro evento tumultuoso. Aunque el Cosmos nació con partes iguales de materia y antimateria, que se destruyeron una a la otra al entrar en contacto, de alguna forma la materia comenzó a predominar. Los físicos han descubierto una nueva pista sobre la causa de este desequilibrio fortuito, que condujo a la existencia de galaxias, planetas y personas.

 

 

 

Circunferencia de 4 kilómetros de diámetro del Acelerador de Partículas del Laboratorio Fermi de Chicago

 

El nuevo hallazgo se basa en ocho años de estudio de la desintegración de partículas de vida corta, llamadas mesones B, que se produce durante las colisiones de alta energía en el acelerador de partículas Tevatrón del Laboratorio Fermi (Fermilab), ubicado en Batavia, Illinois. Los científicos del experimento DZero del Tevatrón han descubierto que los mesones B, cuando se desintegran, producen cerca del 1 % más de pares de muones (una versión pesada del electrón) que de pares de sus antipartículas, los antimuones. Los físicos se refieren a este fenómeno como una violación CP.

El desequilibrio, reportado el 14 de mayo en un seminario del Fermilab y publicado en Internet el 18 de mayo, podría servir para entender cómo fue que la materia superó a la antimateria en el Universo. También aumenta las posibilidades de que el Gran Colisionador de Hadrones, el acelerador de Suiza que sustituyó al Tevatrón como el colisionador de partículas más poderoso del mundo, encuentre nuevas partículas elementales o una nueva física. Hablamos del LHC que, de hecho, las ha encontrado.

 

 

feature photo

 

El acelerador de partículas Tevatróndel Laboratorio Fermi (Fermilab),ubicado en Batavia, Illinois. Fue el primero en producir antimateria

 

 

“Aunque pequeño, este excedente del 1% es 50 veces más grande que la asimetría entre materia y antimateria prevista para la desintegración de mesones B por el modelo estándar de la Física de Partículas”, señala el portavoz del DZero, Stefan Söldner-Rembold, de la Universidad de Manchester en Inglaterra.

“Se nos puso la piel de gallina”, cuenta Söldner-Rembold acerca del momento en el que él y los 500 colaboradores del DZero comprendieron lo que habían descubierto. “Estábamos muy contentos porque significa que hay una nueva Física más allá del modelo estándar que tiene que estar a nuestro alcance para que la asimetría sea tan grande”.

“Aunque hay una probabilidad de menos del 0,1 % de que los resultados del DZero sean una casualidad, de acuerdo con las normas de la Física de Partículas hay que considerarlos como indicios aún por confirmar”, advierte el teórico Yuval Grossman de la Universidad de Cornell. Söldner-Rembold señala que los hallazgos del DZero son similares a una asimetría en la producción de materia-antimateria descubierta hace un año por otro experimento llevado a cabo en el Tevatrón, el CDF, pero los nuevos resultados tienen una precisión mayor.”

 

 

 

 

“Las teorías que podrían explicar las observaciones del DZero incluyen la supersimetría, que supone que cada partícula elemental en el modelo estándar de la Física de Partículas tiene una superpareja más pesada todavía por descubrir”, explica la teórica del Fermilab Marcela Carena, que no pertenece al equipo descubridor. “Otras teorías posibles incluyen un modelo en el que la gravedad y otras fuerzas operan en otras dimensiones ocultas, y la noción de que hay una cuarta familia de quarks más allá de las tres generaciones (arriba y abajo, encanto y extraño, y cima y fondo) que sirven como bloques de construcción de los núcleos atómicos y otras partículas.

“En los modelos que consideran una cuarta familia de quarks, la presencia de quarks nuevos y pesados y su interacción con las tres familias conocidas podrían dar lugar a un desequilibrio mayor entre materia y antimateria que el que se encuentra en el modelo estándar”, señala Carena. Y agrega: “En la teoría de la supersimetría, las superparejas pesadas jugarían un rol similar al de los quarks pesados, creando interacciones que podrían favorecer la producción de materia sobre la antimateria”.

 

 

 

 

No siempre la física lo puede explicar todo. Sin embargo… ¡Lo va consiguiendo!

 

En la teoría de las dimensiones extra, nuevas partículas mensajeras (portadoras de fuerzas previamente desconocidas) se moverían en dimensiones ocultas. Estas partículas transportadoras podrían alterar la carga y otra propiedad, llamada “sabor”, de las partículas elementales, causando el desequilibrio adicional entre materia y antimateria.

Carena añade: “Sin embargo, es difícil encontrar una teoría que pueda explicar esta asimetría sin contradecir otros resultados experimentales”.

 

 

 

La materia superó a la antimateria en el comienzo

 

 

Ulrich Nierste, de la Universidad de Karlsruhe en Alemania, advierte: “La conexión del resultado del DZero con el excedente de materia que existe en el Universo es vaga. Si bien el hallazgo insinúa una nueva fuente de asimetría en las propiedades del mesón B y de su antipartícula, el proceso que creó más partículas que antipartículas en el Universo primitivo podría involucrar un mecanismo físico muy diferente”.

“Sin embargo”, dice Carena, “hace falta alguna nueva fuente de asimetría para explicar el desequilibrio que hay entre la materia y la antimateria en el Universo, y, por lo tanto, nuestra existencia”. En cualquiera de los modelos propuestos “el Gran Colisionador de Hadrones debería ser la ventana directa para observar nuevas partículas”.

Uno de los experimentos más pequeños del Colisionador, diseñado para estudiar los mesones B, podría confirmar los hallazgos del DZero dentro de uno o dos años”, dice Yuval Grossman. Y agrega: “Los experimentos más grandes podrían entonces buscar nuevas partículas que serían el origen del desequilibrio cósmico entre materia y antimateria y determinar sus masas”.

 

 

 

 

El experimento Beauty (Belleza) es la matriz de investigación para la creación de antimateria. El choque de dos protones contra otro a la velocidad de la luz, ha tenido como resultado una partícula con 5 veces más masa que sus protones originales. A esa exótica partícula se le ha llamado B+ y está compuesta por un quark b-anti y un quark u. La partícula B+ se desintegra a una altísima velocidad pero le da tiempo a recorrer ¡¡2 mm!! antes de desintegrarse en dos partículas, el mesón J / ? y el Kaon K+. Esta distancia, comparada con los minúsculos tamaños que estamos tratando, es una auténtica pasada. Hemos tenido antimateria pura moviéndose a lo largo de dos extensos milímetros de “nuestro” espacio. Impresionante.

Lo revolucionario sin embargo es que de esta forma, los investigadores habrían demostrado la teoría de Albert Einstein. “Sí, podemos crear masa a partir de energía usando la famosa fórmula de Einstein, E=mc2, dicen los responsables del CERN. Aunque también hay que destacar que la confirmación de que existe la antimateria plantea muchas preguntas de difícil resolución puesto que esa sustancia no existe en nuestro universo. “Ya que la desaparición de antimateria primordial no puede ser explicada por el modelo tradicional, tendremos que comenzar a pensar en algo nuevo”, afirman los investigadores. “Los científicos están evaluando diferentes posibilidades pero, dado que sólo podemos observar un 4% de la energía y materia total del universo, podemos inferir que la respuesta al misterio de la antimateria se encuentra en la parte desconocida del mismo”, concluyen.

 

 

 

 

 

 

Como podéis ver, las preguntas son muchas y, las respuestas, son más escasas. Sin embargo, no dejamos de insistir y buscar con todos medios a nuestro alcance para saber sobre la Naturaleza no ya de la materia y la antimateria, sino sobre los muchos enigmas que tenemos planteados y a los que no sabemos dar una adecuada explicación. Parece que a lo lejos vemos una luz cegadora que nos inyecta la esperanza necesaria para seguir la búsqueda y tratar de llegar al corazón de todos esos secretos que el Universo esconde.

 

 

 

Dibujo20130308 oldest known star hd140283 backyard view

 

Hay cosas que… más que sorprendentes son… ¡Inclreibles! He leído por ahí que…

 

“Un grupo de astrónomos, usando datos del telescopio espacial Hubble, ha determinado la edad de la que es la estrella más vieja cuya edad puede medirse con precisión. El resultado ha sido que la edad de la estrella es de 14.500 ± 800 millones de años, mayor que la estimación de la edad del universo, unos 13.800 millones de años. La estrella en cuestión (HD 140283), también llamada “estrella Matusalén,” una gigante roja que se encuentra a una distancia de 190,1 años luz en la constelación de Libra (distancia medida con precisión mediante la técnica de paralaje). En el año 2000 se dató su edad en 16.000 millones de años. Sin embargo, existen algunas cuestiones que podrían aclarar la extrema edad de esta estrella. Nuevos modelos sobre la difusión de helio en el núcleo indican que la penetración del mismo podría ser mayor de la que se piensa, lo que provocaría un menor ritmo de combustión. También la relación oxígeno-hierro en esta estrella es anómala, demasiado grande, por lo que se cree que futuras observaciones que puedan determinar con mayor grado de precisión la abundancia de oxígeno podrían reducir nuevamente la estimación de la edad de la estrella.”

 

 

 

 

Lo cierto amigos míos es que, como el ciego que adelanta su bastón de apoyo, vamos tanteando sobre estos misteriosos temas que deseamos conocer y, por medio de la física con la ayiuda de ingentes ingenios de la mejor tecnología que hemos podido construir, vamos día a día despejando incógnitas de todos esos problemas de cuya complejidad, nos habla la Naturaleza que no quiere ponernos nada fácil el acceso a conocimientos para los que, seguramente, no estamos aún preparados.
Algunas veces tengo la impresión de que, la misma Naturaleza que nos creó, cuida de nosotros y no nos deja manejar, ciertos “juguetes” que podrían ser demasiado peligrosos para nosotros dado que, no tenemos ni el entendimiento, ni la capacidad necesaria para poder asimilar ciertas realidades que no sabríamos utilizar con la necesaria racionalidad para impedir sucesos irreparables para nosotros mismos.
emilio silvera

Racionalizar las cosas, asegurar decisiones

Autor por Emilio Silvera    ~    Archivo Clasificado en Curiosidades    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Os acordais de la Mars Climater Orbiter? Allá por el mes de Septiembre de 1998, la NASA preparaba a bombo y platillo la gran noticia que sacudiría el “mundo”  de Prensa con una gran noticia. En breve (dijeron), saldría para el planeta Marte la nueva misión comocida como la Mars Climater Orbiter, diseñada para estudiar la atmósfera superior de Marte y, estaba acondicionada para poder enviarnos importantes sobre el clima y la atmósfera marciana. En lugar de ello, simplemente se estrelló contra la superficie marciana.

La distancia entre la nave espacial y la superficie del planeta Marte era de 96,6 kilómetros inferior de lo que pensaban los controladores de la misión, y 125 millones de dolares desaparecieron en el rojo polvo de la superficie de Marte. La pérdida ya era suficientemente desastrosa, pero aún, hubo que morder más el polvo cuando se descubrió la causa: Lockheed-Martin, la empresa que controlaba el funcionamiento diario de la nave espacial, estaba enviando datos al control de la misión en unidades imperiales -millas, pies y libras de fuerza- mientras que el equipo de investigación de la NASA estaba suponiendo, como el resto del mundo científico internacional, que recibián las instrucciones en unidades métricas. La diferencia entre millas y kilómetros fue lo suficiente para desviar la nave unas 60 millas el curso previsto y llevarla a una órbita suicida hacia la suprficie marciana, en la que quedó chafada e inservible dando al traste, no ya con (que también) sino  con un montón de ilusionados componentes del equipo que esperaban grandes acontecimientos del Proyecto.

La lección que podemos obtener de catástrofe está muy clara:  ¡Las Unidades de medida son importantes! Nuestra especie, ha querido siempre tener un patrón que le guie para saber, en el campo de las medidas como moverse con cierta seguridad, y, poco a poco, hemos ido perfeccionando esos patrones acorde a los observados en la Naturaleza.

                                                                             Unidades de medidas de peso

                                                              Rústica unidades de medida de líquidos

Nuestros predecesores nos han  legado incontables unidades de medida de uso cotidiano que tendemos a utilizar en situaciones diferentes por razones de conveniencia. Compramos huevos por docenas, pujamos en la subasta en guineas, medimos las carreras de caballos en estadios, las profundidades oceánicas en brazas, el trigo en fanegas, el petróleo en barriles, la vida en y el peso de las piedras preciosas en quilates. Las explicaciones de todos los patrones de medida existentes en el pasado y en el presente llenan cientos de volúmenes.

Todo era plenamente satisfactorio mientras el comercio era local y sencillo. Pero cuando se inició el comercio internacional en tiempos antiguos, se empezaron a encontrar otras formas e contar. Las cantidades se median de diferente de un pais a otro y se necesitaban factores de conversión, igual que hoy cambiamos la moneda cuando viajamos al extranjero a un pais no comunitario. Esto cobró mayor importancia una vez que se inició la colaboración internacional de proyectos técnicos. La Ingenieria de precisión requiere una intercomparación de patrones exacta. Está muy bien decir a tus colaboradores en el otro lado del mundo que tienen que fabricar un componente de un avión que sea exactamente de un metro de longitud, pero ¿cómo sabes que su metro es el mismo que el tuyo?

                    No todas las medidas se regían por los mismos patrones

En origen, los patrones de medidas eran completamente locales y antropométricos. Las longitudes se derivaban de la longitud del brazo del rey o de la palma de la mano. Las distancias reflejaban el recorrido de un día de viaje. El Tiempo segúi las variaciones astronómicas de la Tierra y la Luna. Los pesos eran cantidades convenientes que podían llevarse en la mano o a la espalda.

Muchas de esas medidas fueron sabiamente escogidas y aún siguen con nostros hoy a pesar de la ubicuidad oficial del sistema decimal. Ninguna es sacrosanta. una está diseñada por conveniencia en circunstancias concretas.Muchas medidas de distancia se derivan antropomórficamente de las dimensiones de la anatomía humana:

El “pie” es la unidad más obvia dentro de esta categoría. Otras ya no resultan tan familiares. La “yarda” era la longitud de una cinta tendida desde la punta de la nariz de un hombre a la punta del dedo más lejano de su brazo cuando se extendía horizontalmente un lado. El “codo” era la distancia del codo de un hombre a la punta del dedo más lejano de su mano estirada, y varía entre los 44 y los 64 cm (unas 17 y 25 pulgadas) en las diferentes culturas antiguas que lo utilizaban.

La unidad náutica de longitud, la “braza” era la mayor unidad de distancia definida a partir de la anatomóa humana, y se definía como la máxima distancia las puntas de los dedos de un hombre con los brazos abiertos en cruz.

El movimiento de Mercaderes y Comerciantes por la región mediterránea en tiempos antiguos habría puesto de manifiesto las diferentes medidas de una misma distancia anatómica. Esto habría hecho difícil mantener cualquier conjunto único de unidades. la tradición y los hábitos nacionales era una poderosa fuerza que se resistía a la adopción de patrones extranjeros.

El problema más evidente de tales unidades es la existencia de hombres y mujeres de diferentes tamaños. ¿A quién se mide patrón? El rey o la reina son los candidatos obvios. Claro que, había que recalibrar cada vez que, el titular del trono cambiaba por diversos motivos.

http://www.culturaclasica.com/cultura/statera.jpg

La depuración de patrones de  medidas comenzó de decisiva en Francia en la época de la Revolución Francesa, a finales del siglo XVIII. La introducción de nuevos pesos y medidas conlleva una cierta comvulsión en la Sociedad y raramente es recibida con entusiamo por el pueblo.  Así, dos años más tarde, se introdujo el “metro” como patrón de longitud, definido como la diezmillonésima de un cuadrante de meridiano terrestre. Aunque esta es una forma plausible de identificar un patrón de longitud, es evidente que no resulta práctica a efectos de comparación cotidiana. Consecuentemente, en 1795 las unidades fueron referidas directamente a objetos hechos de forma especial.

 

   Siempre hemos tratado de medirlo todo, hasta las distancias que nos separan de las estrellas

Sí, siempre hemos tenido que medirlo todo. Al principio, unidad de masa se tomó el gramo, definido como la masa de un centímetro cúbico de agua a cero grados centígrados. Más tarde fue sustituido por el kilogramo (mil gramos), definido como la masa de mil centímetos cúbicos de agua… Finalmente, en 1799 se construyó una barra de metro prototipo junto con una masa kilogramo patrón, que fueron depositadas en los Archivos de la nueva República Francesa. Incluso hoy, la masa kilogramo de referencia se conoce como el “Kilogramme des Archives”.

Contar la historia aquí de todas las vicisitudes por las que han pasado los patrones de pesos y medidas en todos los paises, sería demasiado largo y tedioso. Sabemos que en Francia, en 1870, cuando se creo y reunió por primera vez en Paris la Comisión Internacional del Metro, con el fin de coordinar los patrones y supervisar la construcción de nuevas masas y longitudes patrón. El Kilogramo era la masa de un cilindro especial, de 39 milímetros de altura y de diámetro, hecho de una aleación de platino e iridio, protegido bajo tres campanas de cristal y guardado en una cámara de la Oficina Internacional de Patrones en Sèvres, cerca de Paris. Su definición es simple:

El kilogramo es la unidad de masa: es igual a la masa del prototipo internacional del kilogramo.

tendencia hacia la estándarización vio el establecimiento de unidades científicas de medidas. Como resultado medimos habitualmente las longitudes, masas y tiempos en múltiplos de metro, kilográmo y segundos. Cada unidad da una cantidad familiar fácil de imaginar: un metro de tela, un kilogramo de patatas. esta conveniencia de tamaño testimonia inmediatamente su pedigrí antropocéntrico. Pero sus ventajas también se hacen patentes cuando empezamos a utilizar dichas unidades para describir cantidades que corresponden a una escala superior o inferior a la humana:

Los átomos son diez millones de veces más pequeños que un metro. El Sol una masa de más de 1030 kilogramos. Y, de esa manera, los humanos hemos ido avanzando en la creación, odeando patrones todos y, no digamos en la medida de las distancias astronómicas en las que, el año-luz, la Unidad Astronómica, el Parsec, el Kiloparsec o el Megaparsec nos permiten medir las distancias de galaxias muy lejanas.

Lo que decimos siempre: Nuestra curiosidad nunca dejará de querer saber el por qué de las cosas y, siempre tratará de racionalizarlo todo para hacernos fácil nuestras interacciones con el mundo que nos rodea. Y, aunque algunas cosas al principio nos puedan parecer mágicas e ilusorias, finalmente, si nuestras mentes la pensaron… ¡Pueden llegar a convertirse en realidad!

emilio silvera