miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Cerebro! Esa Maravilla

Autor por Emilio Silvera    ~    Archivo Clasificado en El cerebro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cerebro es el órgano más complejo del cuerpo humano, con 30 mil millones de neuronas. Cada neurona tiene 100.000.000.000.000 de conexiones, más que el número de estrellas de nuestra Galaxia, la Vía Láctea.

En la bibliografía neurocientífica, los moldes cognitivos que nos permiten realizar el conocimiento de patrones se denominan Atractores. Un atractor es una constelación concisa de neuronas (las células nerviosas esenciales para el procesado de la información en el cerebro) ligadas por fuertes conexiones.

Una caracterísitca de los Atractores es que un amplio abanico de impresiones sensoriales activan la misma constelación neuronal, el atractor, de forma automática y simple. En síntesis ese es el reconocimiento de patrones. Se podría llegar a decir que, las personas que han sido y son capaces de formar un gran nú,ero de moldes cognitivos, cada uno de los cuales captura la esencia de un gran número de experiencias pertinentes, adquieren la “sabiduría”.o. al menos, uno de sus ingredientes esenciales.

Todos los buenos filósofos que han sido a lo largo de la Historia de la Humanidad, de alguna manera, han estado preocupados por ese binomio que forman el Cerebro y la Mente, el uno material y el otro (según creemos) inmaterial, como un Ente que emana del primero. Pero, ¿podríamos discernir si lo que le pasa al Cerebro le pasará también a la Mente, o, por el contrario, una vez ésta se hizo mayor puede ser autónoma y existir por sí misma?

Nuestro cerebro incide en todos los órganos de nuestro cuerpo, es el que envía las órdenes para que todos sepan qué comportamiento deben tener en una u otra situación. No hay reacción de ninguna de las partes de nuestro cuerpo que no esté comandada por el cerebro que, ante un suceso determinado, emite las órdenes de lo que cada órgano u órganos tienen que hacer en función de ese suceso, de ese hecho, de esa situación.

Si actividades tan normales y cotidianas como ver la TV requieren tantos recursos del cerebro para poder reciclar y normalizar toda esa información que nos llega, ¿¡qué maquinaria cerebral no se pondrá en marcha tras la complejidad de actividades como las que puede llevar a cabo un físico teórico!? o, ¿del rigor intelectual de un gran matemático o del músico que compone una sinfonía capaz de elevarnos hasta mundos de insospechada belleza sensorial?

La neiurociencia cognitiva apenas ha comenzado a poder discernir sobre estas realidades, ¡cómo el impulso creativo de Oboe puede llevarnos a sentir esos impulsos cognitivos de difícil explicación. Claro que una cosa sí que tenemos clara, no podemos hablar de Cerebro sin Mente ni tampoco, de Mewnte sin Cerebro. Esos dos elementos que forman un binomia completo, uno material y el otro etéreo, son los responsables de que sintamos como lo hacemos y tengamos, esos sentimientos que, no siempre podemos dominar y, sin ser algo material, tienen una fuerza infinita que nos mueve y nos lleva, a veces, hacia donde no deberíamos ir.

En la primera estación, la Estación del Desarrollo. se forman las aptitudes y habilidades cognitivas. Esta condición ya ha comenzado antes de nacer y se prolonga hasta la tercera década de la vida del individuo. El desarrollo del cerebro es un proceso muy complejo y multifacético. Comienza con la neurogénesis, el nacimiento de las neuronas, que son las células del crebro implicadas de modo directo en el procesamiento de la información que recibimos del mundo que nos rodea, es recogida por los sentidos y enviadas al cerebro que, las va desarrollando para entender dónde estamos y lo que ocurre en nuestro entorno.

El axón, cilindroeje o neurita es una prolongación de las neuronas especializadas en conducir el impulso nervioso desde el cuerpo celular o soma hacia otra célula. En la neurona adulta se trata de una prolongación única. Las dendritas nacen como prolongaciones numerosas y ramificadas desde el cuerpo celular. Sin embargo en las neuronas sensitivas espinales se interpone un largo axón entre las dendritas y el pericarion. A lo largo de las dendritas existen las espinas dendríticas, pequeñas prolongaciones citoplasmáticas, que son sitios de sinapsis. El citoplasma de las dendritas contiene mitocondrias, vesículas membranosas, microtúbulos y neurofilamentos.

Comienzan su desarroloo durante la gestación, cuando las dendritas comienzan a brotar en el proceso conocido como arborización. Este proceso culmina durante los primeros años de vida.

Las sinapsis, los diminutos contactos entre las dendritas y los axones que emanan de diferentes neuronas, son esenciales para la comunicación entre neuronas. Su formación recibe el nombre de sinaptogénesis y su curso temporal varía considerablemente para las distintas partes del cerebro. En la corteza visual, por ejemplo la mayor parte de la sinaptogénesis se completa hacia el final  de los primeros años de vida. En cambio, en la corteza prefrontal la sinaptogénesis se alarga hasta finales de la adolescencia y principios de la vida adulta.

La producción de estructuras neuronales se ve complementada por la eliminación de las neuronas, dendritas y sinapsis excedentes. Este proceso de poda, comocido como muerte celular  programada o apoptosis, se produce desde el nacimiento y también, en momentos distintos en diferentes partes del cerebro, acabando en la corteza frontal.

Estamos comenzando a comprender el desarrollo del cerebro y de las interacciones que se producen entre varios procesos a lo largo de diferentes escalas de Tiempo. Es un misterio, y, no hemos podido llegar a saberl el por qué, en algunos el cerebro se desarrolla de diferentes maneras que en otros y, adquieren cualidades y propiedades que les permite llegar más lejos en la comprensión de las cosas, del mundo que les rodea, de la Naturaleza, del Universo en fín.

Había puesto las imágenes de un niño feliz y otro no tanto pero, la censura… La he cambiado por esto.

Pocas dudas nos pueden caber sobre los futuros de estos niños, dado que mientras uno gozará de todos los mejores colegios y profesores, al otro le espera una vida de postergación y miseria, será explotado durante toda su vida. En estas dos situaciones, sus cerebros, desde muy tiena edad, comenzarán a recibir mensajes tan distintos que será imposible que, cuando lleguen a ser adultos, puedan tener una visión similar de la vida y del mundo que les rodea.

                        Sí, iguales pero difernetes

Es una lástima que, en estas circunstancias de diferencias lleguemos a la tercera Estación de nuestras Vidas, la del envejecimiento del cerebro que, según el lugar de nacimiento, el entorno, la familia, la abundancia o las carencias, serán generadores de ideas muy distintas, se verá el mundo de manera tan dispar y diferente que, en ambos casos, se estará en un mundo diametralmente opuesto al otro.

Claro que, si preguntamos a cualuquir científico especialista ¿hasta qué punto es dorada la edad “dorada”, por extraño que parezca ninguna sabe qué contestar a tan fácil problema. Simplemente se trata de caer en la cuenta de que todos somos uno, y, mientras eso no sea posible, no podremos llamarnos Humanidad.

¡La Humanidad es otra cosa!

Lo cierto es que, a nuestros cerebros les queda mucho camino por recorrer, tenemos que ir acumulando sabiduría a través de la experiencia, tener la capacidad de elegir entre las muchas posibilidades que la vida nos presenta, de entre muchas, sólo aquella que nos lleve a ser mejores con los demás y saber, solucionar aquellos problemas que se vayan presentando en el futuro que, dicho sea de paso… ¡No serán pocos!

emilio silvera

Plasma, Nebulosas, Gases, elementos, moléculas.

Autor por Emilio Silvera    ~    Archivo Clasificado en a    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 ¿Qué mundos terroríficos nos podremos encontrar orbitando estrellas que los abrasan?

El Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la materia que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado que, en realidad, cubre el 99% del estado de la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones). Sospecho que hay otros estados de la materia que nos son desconocidos.

El plasma está en las estrellas, en remanentes ee Supernovas y… ¡en tántos lugares!

Según la energía de sus partículas, los plasmas (como digo), constituyen el cuarto estado de agregación de la materia, tras los sólidos, liquidos y gases. Parqa cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera conasiderable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, obsorción de plasma en las nebulosas donde están presentes elementos y moléculas ionizados y donde se producen  reacciones químicas o nucleares y otros procesos.

Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.

Un plasma  es un gas muy ionizado, con igual número de cargas negativas y positivas. Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilinea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilineas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas buenos conductores.

En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los plasmas de electrones libres de un metal también pueden ser considerados como un plasma.  La mayor parte del Universo está formado por materia en estado plasmático (sólo tenemos que pensar en la cantidad de estrellas que existen en las galaxias, en los remanentes supernovas y otros fenómenos físicos que se producen en el Cosmos). La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera, donde se produce el fenómeno denominado aurora.

Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas,  sin embargo, lo son la mayoría de los cuerpos luminosos.

http://www.ciberdroide.com/wordpress/wp-content/uploads/filamento.jpg

                            Bombilla de incandescencia

Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superándo las enormes fuerzas repulsivas internucleares, y lñograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.

Foto: Plasma Science and Fusion Center

Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.

Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.

Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los plasmas, nebulosas, gases, elementos, moleculas y electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.

http://farm5.static.flickr.com/4024/4415870627_9df3269b9f.jpg

El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.

En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de plasma de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.

Rho Ophiuchi

En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.

En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre.

foto

Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, más tarde situados en el planeta y ambiente adecuados,  tras cumplirse las reglas y cubrir los parámetros adecuados, dan lugar al surgir de la vida.

El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 180 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.

foto

Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.

En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos en los que podemos encontrar elementos como el oro y el platino que han sido creados en sucesos de una magnitud aterradora donde las fuerzas desatadas del Universo han quedado sueltas para transformarlo todo.

El H₂ y otras moléculas diatómicas homonucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadrupolares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiativa del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.

Experimentos muy recientes de desorción programada sobre silicatos ultrafríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.

Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.

El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.

Orión en gas, polvo y estrellas

La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.

La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aprición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.

Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble y otros telescopios, miramos asombrados maravilándonos de sus colores y fantásticas figuras arabescas que se forman por el choque del material allí existente con los vientos solares y la radiación de las estrellas radiantes nuevas que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco, también la vida.

emilio silvera

!El extraño Universo! ¡El Universo cotidiano!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso, El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

 

 

 

Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede probar o refutar la hipótesis de la “fuga de dimensiones”.

El Objeto de Hanny

 

 

¿Que serán, estos extraños cuerpos. Lo llaman Objeto de Hanny es una extraña y brillante nube de gas verde que ha intrigado a los astrónomos desde que se descubrió en 2007. La nube destaca cerca de una galaxia espiral porque un cuásar (un agujero negro supermasivo) en su núcleo la ha iluminado como si fuera un foco. Ahora está siendo estudiada con mucho más detalle gracias a las imágenes tomadas por el telescopio Hubble, que se han presentado en Seattle (EE UU).

Considerado uno de los objetos más extraños de los muchísimos observados en el espacio, en Hanny’s Voorwerp (en holandés), que tiene el tamaño de la Vía Láctea, el Hubble ha descubierto delicados filamentos de gas y un grupo de cúmulos de jóvenes estrellas. El color verde de la nube se debe al oxígeno ionizado.

Su descubridora, Hanny van Arkel, explicó en sublog que está encantada de asistir a la reunión de la Sociedad Americana de Astronomía , donde se han presentado las nueva imágenes, y en general, de haber entrado en contacto con el mundo de la astronomía. Ella es una profesora que descubrió la estructura celeste en 2007 mediante el proyecto Galaxy Zoo, que estimula la participación de no especialistas para que ayuden a clasificar las más de un millón de galaxias catalogadas en el Sloan Digital Sky Survey y las captadas por el propio Hubble en sus imágenes de campo profundo.

Galaxia Andrómeda

 

Nuestro vecina grande del Grupo Local

 

Un astrónomo persa, al-Sufi, ha sido reconocido como el primero en describir el débil fragmento de luz en la constelación Andrómeda que sabemos ahora que es una galaxia compañera de la nuestra. En 1780, el astrónomo francés Charles Messier publicó una lista de objetos no estelares que incluía 32 objetos que son, en realidad, galaxias. Estas galaxias se identifican ahora por sus números Messier (M); la galaxia Andrómeda, por ejemplo, se conoce entre los astrónomos como M31.

En la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. Desde 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.

 

Plutón fue descubierto a raíz de una búsqueda telescópica iniciada en 1905 por el astrónomo estadounidense Percival Lowell, quien supuso la existencia de un planeta situado más allá de Neptuno como el causante de ligeras perturbaciones en los movimientos de Urano.

El camino que condujo a su descubrimiento se atribuye a Percival Lowell quien fundó el Observatorio Lowell en Flagstaff, Arizona y patrocinó tres búsquedas separadas del “Planeta X”, del que por cierto, aquí hemos hablado en alguna otra ocasión.

En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado hacia la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de nuevo, parece que ésto último no sucederá nunca. La materia del Universo pararece estar aproximadamente en la tasa del la Densidad Crítica.

 

 

 

El telescopio espacial Hubble enfocó regiones del espacio aparentemente vacías y negras, y después de muchos días de exposición obtuvo unas bellísimas fotos de galaxias muy lejanas, entre las cuales se distinguen unas cuantas pequeñas galaxias rojas, color que deben a un corrimiento al rojo tan elevado que se calcula por la ley de Hubble que su luz fue emitida hace unos 13000 millones de años. (foto recortada de foto cortesía de la NASA).

La galaxia se está acercando a nosotros a unos 300 kilómetros por segundo, y se cree que estará aquí aproximadamente en 3.000 millones de años cuando podría colisionar con la nuestra y fusionarse ambas formando una galaxia elíptica gigante. Claro que, no se está de acuerdo con la velocidad a la que Andrómeda, se acerca a nosotros. Según ésta nota, podría llegar cuando nuestro Sol, esté en la agonía de su final para convertirse en gigante Roja primero y enana Blanca después.

http://3.bp.blogspot.com/-H3d5nIBnzBI/TvMB8jtquYI/AAAAAAAAG-4/6zHBb8dJt_E/s1600/La-foto-imposible-del-universo_gallery_lightbox.jpg

 

La semilla desde la que se desarrolló nuestro Universo fue una Bola de fuego de pura energía inmensamente densa e inmensamente caliente. La pregunta es, ¿cómo llegó esta bola de fuego hasta el tipo de materia bariónica que podemos ver alrededor de todos nosotros, mientras el Universo se expandía y se enfriaba? O, si se prefiere ¿de donde salieron los quarks y los leptones? Y, puestos a preguntar, esa materia oscura de la que tanto hablamos, ¿estaba ya allí cuando llegó la bariónica? Si no fuese así, ¿cómo se puedieron formar las Galaxias?

Creemos que conocemos la respuesta, aunque, en realidad, lo que sí tenemos es un modelo de cómo creemos que sucedió, ya que, como a menudo es el caso de las historias, la explicación es más especulativa cuanto más atrás en el tiempo miremos y, en el caso del Universo, esto también corresponde a las energías más altas que se tienen que considerar.

Nos vamos hacia atrás en el tiempo y ponemos señales y nombres como los del límite y tiempo de Planck, era hadrónica (quarks: protones y neutrones, etc.) y era leptónicas (electrones, muones y partícula tau con sus neutrinos asociados). Ahí amigos, está toda la materia que podemos ver. Sin embargo, ¿qué sabemos en realidad de la materia? No olvidemos que de la materia llamada inerte, provenimos nosotros cuyos materiales fueron fabricados en los hornos nucleares de las estrellas.

 

 

Científicos de EEUU detectan ondas gravitacionales que serían la primera evidencia directa de la inflación, el momento de la historia del universo en que en menos de un segundo pasó de ser un punto diminuto a convertirse en una inmensidad. Han captado los primeros momentos del Big Bang. De acuerdo con la teoría de la Relatividad de Einstein, aquel cataclismo debió generar ondas gravitacionales, una especie de ondas expansivas cuyos efectos, aunque débiles, aún podrían observarse ahora, 13.800 millones de años después. Los investigadores del experimento BICEP 2, un telescopio de microondas situado en pleno Polo Sur, dicen haber fotografiado esas ondas por primera vez. Estas ondas son “los primeros temblores del Big Bang”,según el CFA.

Esas sombras serían una especie de eco del big bang en las microondas, lo que pone en duda la validez de la popular teoría sobre el origen del Universo. El trabajo se publica en la edición del 1 de septiembre de 2006 del Astrophysical Journal.

WMAP Leaving the Earth or Moon toward L2.jpg

 

 

Existen otros estudios llevados a cabo por observaciones realizadas con el observatorio orbital de la NASA WMAP (Wilkinson Microwave Anisotropy Probe – prueba Wilkinson de la anisotropía en microondas), que tiene como objetivo estudiar la radiación cósmica de fondo. Para ello se estudiaron las sombras dejadas en esta radiación cósmica de fondo por 31 cúmulos de galaxias.

El Dr. Lieu, especialista en el tema expresa que “Estas sombras son algo bien conocido que había sido previsto hace años”, y es “el único método directo para determinar la distancia al origen de la radiación cósmica de fondo”, hasta ahora toda la evidencia apuntaba a que era originada por una gran bola de fuego denominada big bang y ha sido circunstancial.

Lieu menciona también que “si usted ve una sombra, indica que la radiación viene más allá del cúmulo de galaxias, y si no las ve, hay un problema, entre los 31 cúmulos estudiados, algunos mostraron el efecto de sombra y otras no”.

 

En estudios previos, se han reportado la presencia de este tipo de sombras en la radiación cósmica de fondo, estos estudios sin embargo no usaron los datos proporcionados por el WMAP el cual está diseñado y construido específicamente para estudiar esta radiación de fondo.

Si la teoría estándar de la creación del Universo o Big Bang es la correcta y la radiación cósmica de fondo viene a la Tierra desde los confines del Universo, los cúmulos masivos de galaxias que emiten rayos X, cercanos a la Vía Láctea, deberían mostrar todos, la presencia de estas sombras en la radiación cósmica de fondo.

 

 

Los científicos aseguran también que basados en todo el conocimiento, hasta ahora, de las fuentes de radiación y halos alrededor de los cúmulos de galaxias, es imposible que estos cúmulos galácticos puedan emitir microondas a una frecuencia e intensidad idénticos a la radiación cósmica de fondo.

La predicción de la radiación cósmica de fondo data del año 1948 y fue descubierta en 1965. La predicción del efecto de sombra fue realizada en 1969, por los científicos rusos Rashid Sunyaev y Yakov Zel’dovich. El efecto se crearía de la siguiente forma: los cúmulos de galaxias emiten luz en rayos X por acción de la gravedad de su centro, que atrapa gas y lo calienta enormemente. Este gas es tan caliente que pierde sus electrones, o sea que se ioniza, produciendo, a su vez, enormes espacios llenos de electrones libres. Estos electrones libres interactúan con los fotones individuales de la radiación cósmica de fondo, originando con esto la desviación de sus trayectorias originales y produciendo el efecto de sombra.

Como vereis, siempre habrán motivos más que sobrados para la polémica y, a medida que se avanza la polémica crece, toda vez que, esos avances, dejan al descubierto muchas de las creencias largamanete asentadas que ahora, con las nuevas tecnologías, podemos descubrir que, en realidad, eran distintas de como se habían imaginado.

 

¿Que hace la Entropía con nosotros?

 

Si hablamos del Universo no podemos olvidar “El Tiempo” con su hermana “Entropía”,  destructora de todo lo que existe que, a medida que el primero transcurre, la segunda lo transforma todo. Debemos aprovechar ese corto espacio de tiempo que nos otorga el transcurrir entre las tres imágenes de arriba, sin no sabemos aprovecharlos…¿para qué estamos aquí? ¿Acaso será cierto que todo comenzó con la explosión de una singularidad que produjo lo que llamamos big bang?

Sí, es posible que todo comenzara así. Sin embargo, nadie lo puede asegurar. Y, algunos dicen que somos uno de tantos universos que en el Multiverso están y otros que se fueron para que puedan llegar los nuevos universos que aún no existen. Si eso fuese así ¿Habrá otros seres en esos otros universos?

La última frontera del Universo

 

 

¿Será ésta la última frontera? No,  creo que no, el Universo que nosotros conocemos, por mucho que corramos tras él, nunca podremos alcanzar el final. Siendo así, hablar de la última frontera, es…, al menos, arriesgado. No conocemos bien ni los objetos que pueblan nuestro propio Sistema solar, esos mundos enormes y gaseosos que, a su vez, están rodeados de otros pequeños mundos en los que, posiblemente, la vida esté presente. Sin embargo, nos permitimos hablar de los confines del Universo situados en lugares inaccesibles para nosotros. Bueno, al menos de momento. Incluso algún grupo de astrónomos han realizado un trabajo queriendo llegar a los confines del Universo y, de manera sorprendente, han declarado que mucho más hallá, han detectado la presencia de un inmenso bloque de materia que, según todos los indicios… ¡Es otro Universo!

tres-rosas-blancas

La fragancia, la dulzura, la pureza y el aroma de las rosas, sólo comparable a tu semblñante, a tu mirada a tu infinita bondad y, sobre todo, amada mía, a ese eternoy tierno aroma que tu persona desprende, algo que ning´çun perfume hecho por el hombre podrá nunca igualar.

Si el poco tiempo que estamos aquí, en este vasto Universo, no sabemos aprovecharlo de segundo en segundo para ofrecer nuestro mejor lado y nuestros mejores sentimientos, a la persona amada, entonces, ¿qué sentido ha tenido todo esto?

El Universo es bello, grandioso y misterioso pero… ¡Sin tí no tendría sentido!

¡Que sentimiento de paz! ¡De simbiosis con la Naturaleza! Cuando contigo estoy.

emilio silvera