miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Más problemas técnicos

Autor por Shalafi    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Muy buenas

Tal y como podía suponerse, aún quedaban duendes escondidos entre los unos y ceros que impedían que se pudieran publicar comentarios. Ya parece que funciona. Si encuentran nuevos errores, háganmelos saber mediante comentarios en esta entrada (si es que funcionan…)

Gracias y perdonen las molestias

EDITO: nuevo arreglo hecho. Subo el post para que lo tengan accesible.

Shalafi

Estamos en el Cambio Climático

Autor por Emilio Silvera    ~    Archivo Clasificado en La contaminaciñon del planeta    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

energia-nuclear-espanol

 

Ños Gobiernos de muchos paises, los más adelantados del mundo, están en Francia para tratar de llegar a un acuerdo (ya se ha logrado) en la emisión de gases nosivos para el clima. Los políticos, siempre han utilizado las Centrales nucleares como arma arrojadiza y han amenazado (lo siguen haciendo) con cerrarlas, y, no diré que la energía nuclear es lo mejor que podríamos tener pero, mientras no logremos la energía de fusión nuclear, esta clase de energía es más que necesaria y, teniendo los máximos cuidados para que no ocurran catastrófes similares a la de hace unos años en Japón, hay que seguir manteniénmdolas.

 

 

energiasolar[1].jpgcarbon-petroleo-primera-fuente-energetica_EDIIMA20121218_0164_4[1].jpg

 

Las energías producidas por la quema del carbón sí que es mala

Los cientificos opinan:

 

“Veo las objeciones a la energía nuclear como no científicas o incluso anti-científicas”, dice Caldeira. “Todos oímos hablar de accidentes de avión pero muy poco sobre accidentes de coche, pese a que menos de 1.000 personas al año mueren en accidentes de avión y más de un millón en carretera”, y añade: “La situación con la nuclear es similar: los aerosoles emitidos en la combustión de carbón matan a millones de personas cada año, de una manera anónima, mientras que los muertos causados por la energía nuclear, siendo muy pesimistas, apenas llegan a los centenares de personas”.

El índice de contaminación lo producen aquellos combustibles que más se están utilizando en el mundo.

Para Caldeira, muchas de las objeciones a la energía nuclear “son resultado de un analfabetismo numérico, es fácil asustarte con cosas que no comprendes y estar en contra de la energía nuclear es una moda para gente que no piensa”. También reconoce que “es socialmente más fácil estar contra la nuclear”.

“La gente que mira los números con cuidado y se deja llevar por los datos en lugar de por una emoción irracional suele acabar reconociendo a la nuclear como una de las pocas fuentes de energía relativamente segura y abundante con potencial para resolver el problema del clima”, concluye.

Al final, todo es una cuestión de prioridades. Y si el cambio climático se sitúa como el principal problema al que enfrentarnos, la oposición a la energía nuclear de mucha gente empieza a palidecer y bajar puestos en la lista de preocupaciones. Como resume Caldeira: “Puedes verlo como si en la Edad de Piedra no usáramos una tecnología sostenible porque en un momento dado nos quedaríamos sin piedras. Al final bastó con que las piedras fueran abundantes y duraran el tiempo suficiente para llegar hasta la Edad de Bronce”.

LA EDAD DE BRONCE

La Humanidad ha ido avanzando a medida que el transcurso del Tiempo les permitía obervar la Naturaleza y aprender. Se construyeron las primeras ciudades en Sumeria y comenzaron a crearse otro tipo de vinculaciones entre los humanos, desaparecieron las tribus y crecieron las Sociedades en las que, cada vez, eran más avanzados los medios empleados para que los seres que las constituían pudieran desarrollar sus vidas con la mayor comodidad posible en el trabajo, para obtener alimentos, en las casas…

Pero vayamos a lo que es cierto y no política de grupos que sólo tratan de adquirir beneficios de todo este tinglado de las energías, y, de entre todos, los políticos y grupos de ecologístas son los más peligrosos para la propia sociedad. Si miramos el cuadro que arriba nos dice la realidad de la contaminación según qué combustible se  esté utilizando, la cosa queda muy clara.

                             James Hansen

Cuatro científicos dieron una conferencia en la Cumbre del Cambio Climático de París. Podría pasar por otro de los muchos eventos que rodean a las negociaciones por un nuevo acuerdo, pero es mucho más. Es un alegato para dejar de demonizar la energía nuclear sin la cual, sostienen estos investigadores, al planeta no le salen las cuentas.

Podría pensarse que estos ponentes están financiados de alguna manera por la industria pero los datos lo desmienten. El principal orador es James Hansen, de 74 años. Es el mismo que en los años 60 descubrió que los aerosoles afectaban al clima en Venus y trasladó esos modelos a la Tierra, el que en 1988 testificó ante el Congreso de los Estados Unidos alertando del peligro del calentamiento global y el que en 2009 fue arrestado en Virginia Occidental por protestar contra la extracción de carbón mediante el método de remoción de la cima de una montaña, todo ello mientras era director del Instituto Goddard de Estudios Espaciales de la NASA. Levanta, digámoslo así, pocas sospechas.

Los estudios publicados por estos cuatro nombres -James Hansen, Ken Caldeira, Tom Wigley y Kerry Emanuel– han sido citados 128.578 veces por otros científicos. Actualmente investigan o dan clase en las universidades de Columbia, Stanford, el Centro Nacional de Investigación Atmosférica (NCAR) estadounidense y el Instituto Tecnológico de Massachusetts (MIT), respectivamente.

Caldeira en la Universidad de Stanford

 

“Todos oímos hablar de accidentes de avión pero muy poco sobre accidentes de coche, pese a que menos de 1.000 personas al año mueren en accidentes de avión y más de un millón en carretera”, y añade: “La situación con la nuclear es similar: los aerosoles emitidos en la combustión de carbón matan a millones de personas cada año, de una manera anónima, mientras que los muertos causados por la energía nuclear, siendo muy pesimistas, apenas llegan a los centenares de personas”.
No debemos dejarnos engañar por los aprovechados de circunstancias negativas que utilizan en su propio beneficio o de sus grupios. La Energía Nuclear es limpia si consideramos que es la que menos contamina y, es posible que algún día, podamos utilizar otras energías naturales menos contaminantes pero, no nos dejémos engañar por esos salvadores que salen con Empresas Poco rentables (Digamos ABENGOA) CUYOS PROMOTORES SE HACEN MULTIMILLONARIOS vendiendo energías que aún no son rentables.
Hagamos caso a los verdaderos expertos.
Publica emilio silvera.

¡Aquellos primeros momentos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

Antes de que la imagen de arriba fuese una realidad tuvieron que pasar muchos miles y millones de años. Hasta donde sabemos y el origen más aceptado para nuestro Universo es el de una inmensa explosión proveniente de una singularidad en la que la densidad y la energía eran “infinitas” y a partir de ahí, comenzó la gran aventura:

¡El Universo!

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor   de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

La historia de cómo llegaron los átomos es típica de aquellos primeros tiempos del Universo joven. A medida que la temperatura seguía bajando como resultado …

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark.  asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

Estas partículas – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

Atomos-y-electricidad-7.jpg

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

Es sorprende ver, como funbciona la Naturaleza.

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.

¿Qué “escalera” habrá que subir para llegar a ese otro universo?

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimendiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho m´sas allá de nuestro alcance. Sin embnargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.

 

¿Quién sabe lo que en otros mundos podremos encontrar?

¡Oh mundo de muchos mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá algo más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

Estrella se encuentra a 15 millones de años luz de la Tierra. Foto: NASA

                  El Hubble captó una estrella “muriendo” con el núcleo expuesto a 15 millones de años-luz

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

 

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

                     Nuestro Sol es la estrella más estudiada en nuestro mundo

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.

         Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.

La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.

Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.

Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, le resulte entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.

Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

                                                       Luna roja sobre el Templo de Poseidon

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

                           Siempre nos muestra la misma cara

Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?

emilio silvera

¡La Física! ¡El Universo! ¡Nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si queréis estar bien informados, os recomiendo este libro en el que el autor, un maestro indiscutible de la literatura de divulgación científica, nos cuenta la apasionante historia de cómo el hombre ha ido descubriendo el escenario cósmico en el que habita, desde aquellos grandes pensadores clásicos hasta las más modernas visiones del origen y el fin del universo.

 

 

 

 

Es evidente que el estímulo para la expansión evolutiva del cerebro obedeció a diversas necesidades de adaptación como puede ser el incremento de la complejidad social de los grupos de homínidos y de sus relaciones interpersonales, así como la necesidad de pensar para buscar soluciones a problemas surgidos por la implantación de sociedades más modernas cada vez.  Estas y otras muchas razones fueron las claves para que la selección natural incrementara ese prodigioso universo que es el cerebro humano.

Claro que, para levantar cualquier edificio, además de un estímulo para hacerlo se necesitan los ladrillos específicos con las que construirlo y la energía con la que mantenerlo funcionando. La evolución rápida del cerebro no solo requirió alimentos de una elevada densidad energética y abundantes proteínas, vitaminas y minerales; el crecimiento del cerebro necesitó de otro elemento fundamental:

Un aporte adecuado de ácidos grasos poliinsaturados de larga cadena, que son componentes fundamentales de las membranas de las neuronas, las células que hacen funcionar nuestro cerebro.

 

Comencemos ahora, el trabajo de hoy titulado: ¡La Física! ¡El Universo! ¡Nosotros!

El éxito alcanzado por la Física desde finales del siglo XIX hasta esta primera década del siglo XXI no sólo ha transformado nuestra concepción del espacio-tiempo, sino que ha llegado a poner en nuestras mentes una nueva percepción de la Naturaleza: la vieja posición central que asignábamos a la materia ha cedido su lugar a los principios de simetría, algunos de ellos ocultos a la vista en el estado actual del Universo.

Está claro que, los físicos, cada día más ambiciosos en su “querer saber” y su “querer descubrir”, buscan sin descanso nuevos caminos que les lleve a desvelar ocultas maravillas que tienen su hábitat natural en lo más profundo de la Naturaleza misma de la que no sabemos, aún, entender todas sus voces.

Son muchos los obstáculos que se encuentran en ese camino que nos lleva inexorable hacia esa soñada teoría final. Los científicos discrepan de los filósofos que no siempre, están de acuerdo con el hecho de que se pueda llegar a esa teoría última que lo pueda explicar todo, y, la firme creencia de que el Universo siempre tendrá secretos para nosotros, es una constante de la filosofía que la Ciencia, no deja de combatir.

Sin embargo, debe,mos ser conscientes de nuestras limitaciones. Por ejemplo, la Teoría de cuerdas es inaccesible para nosotros, ya que, para llegar hasta las cuerdas vibrantes, tendríamos que disponer de la Energía de Planck, es decir de 1019 GeV (gigaelectrónvoltios), capaz de profundizar en la materia lo suficiente como para “ver” las cuerdas. Ni con diez LGC unidos, podríamos reunir esa energía que, está muy lejos de nuestra civilización.

       Representación en 3D de la primera colisión en ATLAS. Más imágenes en ATLAS event displays.

Estamos embarcados en una enorme aventura intelectual que eleva al ser humano a la categoría más alta que en el Universo pueda. La Física de altas energías nos llevan a conocer las entrañas de la materia y nos cuenta como se producen esas interacciones en el corazón de los átomos y aunque no sabemos cómo puedan ser las leyes finales ni cuanto será el tiempo que tardaremos en encontrar las pistas que nos guíen por el camino correcto, lo cierto es que, el progreso continúa y cada vez se construyen aceleradores más potentes y sofisticados y telescopios más modernos y con mayor capacidad para transportarnos hacia regiones profundas del Universo en las que podemos contemplar galaxias situadas muy cerca de ese comienzo que llamamos Big Bang.

Como no podía ser de otra manera dado nuestro carácter siempre dispuesto a la controversia y nuestras mentes de pensamientos diversos, la propia idea de una teoría final nos ha llevado a la más profunda discrepancia entre unos y otros. Por una parte, están los partidarios de esa teoría que nos podrá hablar de un Universo de más altas dimensiones, donde la relatividad general de Einstein y la mecánica cuántica de Planck, conviven en la soñada concordia que muchos físicos han soñado y, por la otra, están aquellos que discrepando de los primeros se agarran al pensamiento de la imposibilidad de conseguir una teoría de esas características y, ellos hablan de física-ficción.

Lo cierto es que, a pesar de lo que digan los detractores de estas ideas avanzadas (no pocas veces por envidia y por el simple hecho de que ellos no tienen la capacidad de entender los nuevos conceptos y sus complejas matemáticas), la Física prosigue su camino y en no pocos campos, la lista de los Grupos Especializados que existen en la RSEF es un ejemplo del lugar que la Física ocupa en el ámbito de la Ciencia y en la Sociedad.

Real Sociedad Española de Física

Grupos Especializados dentro de la RSEF:

De Adsorción, de Astrofísica, de Calorimetría y Análisis Térmico, de Coloides e interfases, de Cristalografía y crecimiento cristalino, de Didáctica e Historia de la Física y la Química, de la Física Atómica y Molecular, de la Física del Estado Sólido, de la Física en las Ciencias de la Vida, de Física Estadística y No Lineal, de Física de Altas Energías, de Física de la Atmósfera y del Océano, de Física de Polímeros, de Física Médica, de Física Nuclear, de Física Teórica, de Información Cuántica, de Materiales Moleculares, de Reología, de Termodinámica, etc.

Todo esto demuestra el enorme interés que la Física tiene en todos y cada uno de los apartados que la puedan afectar y, lo mismo trata de conseguir un líquido de quarks y gluones que, a temperatura ambiente se convierta en el mejor superconductor, que encontrar el Bosón de Higgs para completar y mejorar el Modelo Estándar, investigar en los campos del electromagnetismo y de la radiación con la mirada puesta en la salud con fines médicos que haga mejor nuestras vidas (tomografía por emisión de positrones computerizada: un buen uso, no un abuso, de la radiación ionizante, neuroimagen por resonancia magnética, estudio de fisiología cardíaca mediante Ecocardiografía Doppler, Radioterapia con radiación sincrotrón, radioterapia del melanoma ocular, una perspectiva de la biología y la medicina desde la teoría del caos y la geometría fractal, etc. etc.), innumerables y sustanciosas colaboraciones con la Astronomía (Astrofísica), con las ciencias de la vida (Biofísica) y, sería interminable la lista de aquellos apartados del saber de la Humanidad en los que la Física está presente.

Independientemente de los muchos proyectos en marcha (ordenadores cuánticos, energía de vacío, semiconductores magnéticos diluidos (materiales para la espintrónica), nanotecnología y nanociencia, modelos de las dinámicas de las ondulaciones en la nanoarena, materia extraña, tecnologías de la telecomunicación y de la información, capacidad de almacenar información, física de fluidos, estudios del efecto de la irradiación sobre el metano, la física de materiales, teletransportación cuántica, estudio del cristal aperiódico de la vida, interacciones fundamentales, sensores de radiación y detección de alimentos irradiados, simetrías exóticas, fibras ópticas, nanotubos… y seguir enumerando lo que la Física es y la infinidad de campos en los que interviene requeriría muchas horas y muchas páginas de las que no disponemos.

 Hemos llegado a saber desde lo muy grande hasta lo muy pequeño que, estando en este mundo nuestro, parece que están en diferentes mundos, toda vez que, lo uno se sitúa en el macro mundo, mientras que lo otro está situado en ese otro “universo” inifinitesimal de la cuántica. Sin embargo, ambos “mundos” no han dejado nunca de estar conectados y todo lo grande está hecho de cosas pequeñas. La técnica avanza y los conocimientos nuevos nos posibilitan hacia un futuro que ni podemos imaginar.

A todo esto, nos damos de bruce con problemas tan complejos que la idea que podemos tener hoy de la realidad que sea compatible con los más recientes resultados teóricos y experimentales de la mecánica cuántica. Yo tengo amigos banqueros, Ingenieros, oficinistas, constructores, camareros, mecánicos o marineros que, cuando se les habla de estos temas, miran para otro lado y silban. Poca gente se interesa por estos asuntos que, de su enorme importancia, no sólo depende nuestro bienestar, sino que, en esos conocimientos reside el futuro de la Humanidad.

Si profundizamos, por curiosidad, en los conocimientos que actualmente tenemos de la Astronomía y de la Física o la Química (siempre acompañadas de los números), veremos con admiración que las semillas se pusieron hace ya más de 2.500 años, cuando Tales, Anaximandro o Anaxímes sintieron la curiosidad de conocer y miraron el mundo desde la lógica y, dentro de sus posibilidades trataron de desvelar los secretos de la Naturaleza. Allí, en ese momento, nacio la Ciencia, o, incluso puede que antes en aquellos pensadores de Oriente que ya hablaron de vacío y de átomos y también, de sustancia cósmica.

A medida que el tiempo avanzó, nos dimos cuenta de que, nuestras experiencias cotidianas se alejaban del mundo real y, nuestro sentido común, no siempre nos guiaba en la correcta dirección para poder comprender el mundo. Con frecuencia nos preguntamos: ¿Qué es lo real? ¿Si dentro de nuestras mentes conformamos un “universo” a la medida de nuestras limitaciones –por falta de los datos que nos impide ver la realidad-, cómo podremos llegar a saber la clase de Universo que nos acoge? Aquí nos topamos con el determinismo.

Por lo que se refiere al Universo, caben dos posibilidades: o existe desde siempre o ha tenido un comienzo. ¿Tendría sentido pensar que existió desde siempre? Y, si no ha existido desde siempre, quiere decir que ha tenido un comienzo. ¿Qué había antes? Tal vez nada. Sin embargo, la Física nos dice que la “NADA” no existe y, en ese caso, lo único que podemos hacer es preguntarnos, ¿De dónde salió? Y si había algo que lo formó, ¿Cómo podemos hablar de un comienzo?, ¿No habría que tratar de ir hacia atrás y, buscar el verdadero origen que lo formó? Ante todo esto volvemos al hecho de que el determinismo se refiere a dos cosas a la vez:

  1. si todo acontecer natural y
  2. si todo acontecer humano

Deben estar previamente determinados por unos antecedentes y, el determinismo  debe quedar, en su caso, circunscrito al acontecer natural. Si así fuera, tendríamos libertad en nuestras decisiones, pero esto implicaría que entre nuestros constituyentes debería haber una “sustancia” que se sustrae el determinismo, lo cual introduciría el interesantísimo problema del dualismo materia-mente, en la tradición de Platón, Descartes y sobre todo Kant. Aunque, finalmente, tiendo a pensar que no existe nada que no esté escrito en las leyes de la Física y de la Química. Además, si la vida es diferente en este aspecto, ¿Dónde está el borde o el final de lo que el Universo pueda o no pueda hacer? ¿En el Homo Sapiens? ¿Es la propia vida la que pone límites a la creación?

Saber para poder responder estas preguntas, la verdad, no sabemos y, es precisamente por eso, por nuestra enorme falta de conocimientos por lo que no paramos de buscar esas respuestas a preguntas que bullen dentro de nuestras mentes y, tengo la esperanza de que, un día, lejano aún en el futuro, si no al completo, si obtendremos una respuesta satisfactoria que, al menos, sacie nuestra curiosidad y, llegados a ese punto o alto nivel del saber, las cosas serán más tranquilas, los conocimientos nos llegaran escalonados y en los momentos precisos en los que la Naturaleza sepa que, ese saber, ya no nos podrá hacer daño alguno, pues, nuestra capacidad para entonces podrá manejar fuerzas y energías que hoy por hoy, nos destruirían.

Bueno, está claro que para describir de manera literal el título de este trabajo, y, explicar cada uno de sus apartados (conexionados), se necesitaría escribir un libro, y, en tan poco espacio, tal cosa es imposible. Sin embargo, las actividades aquí mencionados en el campo de la Física, están hechas por nosotros, y, estamos en el Universo… ¡Démos por bueno el título!

emilio silvera

La Física de Partículas y el Modelo Estándar

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El hombre se ha preguntado durante largo tiempo, “¿de qué está hecho el mundo?” Demócrito de Abdera nos hablaba del “átomo” y Empédocles de “elemenmtos”, otros, se referían a la sustancia cósmica a la que llamaban Ylem, aquella “semilla” primera que daría lugar a la venida de la materia. ¿No será el Ylem, lo que hoy llaman materia oscura?

Ahora sabemos que, no sólo nuestro mundo, sino todo el inmenso Universo, está hecho de pequeños objetos infinitesimales a las que hemos denominado partículas subatómicas y que forman varias familias. Unas son más elementales que otras y según, a qué familia pertenezcan, atienden o se rigen por una u otra fuerza elemental.

Son los constituyentes fundamentales de toda la materia del Universo (por lo menos de toda la materia conocida y que podemos detectar formando estrellas y mundos, galaxias o seres vivos). Hemos podido llegar a saber que, de esas briznas de materia se forman los núcleos que, rodeados de electrones conforman los átomos de la materia.

                         Todo lo grande está hecho de “cosas” pequeñas

Los grupos de  átomos conforman las moléculas que son las unidades fundamentales de los compuestos químicos pero, comencemos por los núcleos atómicos:

Muchas son las veces que aquí mismo he podido explicar, que los quarks u y d se hallan en el interior de los nucleones y, por tanto, su habitat está en los núcleos atómicos donde se encuentran confinados y, en realidad, no intervienen directamente  en las propiedades de los núcleos. Sin embargo, no podemos olvidar que la fuerza nuclear fuerte está ahí reteniendo a los quarks por medio de los gluones y, eso hace que, el núcleo sea estable.

Los núcleos atómicos constituyen un tipo de materia que, aisladamente, de forma individual (si exceptuamos el protón), siempre están en ambientes muy energéticos, por ejemplo, en el interior de las estrellas. En nuestro entorno terráqueo, es raro encontrar núcleos aislados, sino parcial o totalmente confinados dentro de los átomos.

Sabemos que el número de especímenes atómicos es limitado, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya señalé en otros escritos que, el número de especies atómicas, naturales y artificiales, es de unos pocos miles, en cambio, el número de moléculas conocidas hasta ahora comprenden unos pocos millones de especímenes, aumentando continuamente el número de ellas gracias a la síntesis que se lleva a cabo en numerosos laboratorios repartidos por todo el mundo.

Resultado de imagen de molécula de dióxido de carbono

                                                                 Molécula de Dióxido de Carbono

Una molécula es una estructura, con individualidad propia, constituida por un conjunto de núcleos y sus  electrones. La molécula más sencilla es la de Hidrógeno que tiene dos electrones, hasta las más complejas como las de las proteínas, con muchos miles de ellos, existen toda una gama de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares o atómicas. Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a los electrones más débilmente ligados. Concretando un poco más, se podría admitir que la citada información la aportan los orbitales atómicos, pues son precisamente estos orbitales los que introducen diferencias “geométricas” entre los diferentes electrones “corticales”.

Las partículas forman átomos, los átomos moléculas y las moléculas sustancias y cuerpos que están hechos por la diversa variedad de elementos que conforma la materia conocida y que, en definitiva, sólo son Quarks y Leptones.

 
Equilibrio y estabilidad: El resultado de dos fuerzas contrapuestas

Demos una vuelta por el Modelo Estándar.

Standard Model Particles and their interactions

 

Me quiero referir al Modelo estándar de la física de partículas y de las interacciones fundamentales y, algunos,  han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada. Tenemos un modelo que engloba todo lo que deseamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear? Los pobres ilusos no caen en la cuenta de que el tal Modelo, al que no podemos negarle su valía como una herramienta muy valiosa para la física, no deja de estar incompleto y, además, ha sido construido con algunos parámetros aleatorios (unos veinte) que no tienen justificación. Uno de ellos era el Bosón de Higgs y, según nos han contado los del LHC, ha sido hallado. Sin embargo, esperamos que nos den muchas explicaciones que no han estado presente en todas las algaradas y fanfarrias que dicho “hallazgo” ha producido, incluidos los premios Principe de Asturias y el Nobel. ¡Veremos en que queda todo esto al final!

 

 

Resultado de imagen de El Modelo Estándar

 

 

Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entrecijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así. Muchos son los flecos sueltos, muchas las incognitas, múltiples los matices que no sabemos perfilar.

Es cierto que, el Modelo estándar, en algunos momento, nos produce y nos da la sensación de que puede ser perfecto. Sin embargo, esa ilusoria perfección, no es permanente y en algunas casos efímera. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.

 

 

 

¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo,  tal como el proncipio de la relatividad,  pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que ha posibilitado a todos los físicos del mundo para poder construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.

 

 

 

Con esta imagen nos decían:
“Colisión del Bosón de Higgs desintegrándose en fermiones”. Primeras evidencias de un nuevo modo de desintegración del bosón de Higgs. Las primeras evidencias de la desintegración del recién descubierto bosón de Higgs en dos partículas denominadas tau, pertenecientes a la familia de partículas que compone la materia que vemos en el Universo. Hasta ahora los experimentos del LHC habían detectado la partícula de Higgs mediante su desintegración en otro tipo de partículas denominadas bosones, portadoras de las fuerzas que actúan en la Naturaleza, mientras las evidencias de desintegraciones en fermiones no eran concluyentes. Esta es la primera evidencia clara de este nuevo modo de desintegración del bosón de Higgs.”

La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructurtas cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeñas que las que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciopna de la misma manera en nuestro ámbirto macroscópico  que ante ese otro “universo” cuántico de lo infinitesimal.

 

¿Podeis imaginar conseguir colisiones a 70.000 TeV? ¿Que podríamos ver? Y, entonces, seguramente, podríamos oir en los medios la algarada de las protestas de algunos grupos:  “Ese monstruo creado por el hombre puede abrir en el espacio tiempo agujeros de gusano que se tragará el mundo y nos llevará hacia otros universos” Comentarios así estarían a la orden del día. Los hay que siempre están dispuestos a protestar por todo y, desde luego, no siempre llevan razón, toda vez que, la mayoría de las veces, ignoran de qué están hablando y juzgan si el conocimiento de causa necesario para ello. De todas las maneras, sí que debemos tener sumo cuidado con el manejo de fuerzas que… ¡no siempre entendemos! Cuando el LHC se vuelvsa a poner en marcha, se utilizarán energías que llegan hasta los 14 TeV, y, esas son palabras mayores.

En el CERN quieren ahora, con la nueva portencia disponeble, detectar partículas de la “materia oscura”.

¿Justifica el querer detectar las partículas que conforman la “materia oscura”, o, verificar si al menos, podemos vislumbrar la sombra de las “cuerdas” vibrantes de esa Teoria del Todo, el que se gasten ingentes cantidades de dinero en esos artilugios descomunales? Bueno, a pesar de todos los pesares, la respuesta es que SÍ, el rendimiento y el beneficio que hemos podido recibir de los aceleradores de partículas, justifica de manera amplia todo el esfuerzo realizado, toda vez que, no solo nos ha llevado a conocer muchos secretos que la Naturaleza celosamente guardaba, sino que, de sus actividades hemos tenido beneficios muy directos en ámbitos como la medicina, las comunicaciones y otros que la gente corriente desconocen.

Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas. Cuando tenemos la posibilidad de llegar más lejos, con sorpresa podemos descubrir que aquello en lo que habíamos creído durante años, era totalmente diferente. El “mundo” cambia a medida que nos alejamos más y más de lo grande y nos sumergimos en ese otro “mundo” de lo muy pequeño, allí donde habitan los minúsculos objetos que conforman la materia desde los cimientos mismos de la creación.

       ¿Será el final de todo, un Universo de Luz?

Encendamos nuestro supermicroscopio imaginario y enfoquemosló directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del supermicroscopio, el modelo estándar que contiene veinte constantes naturales, describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadas para conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.

 

¿Implica el ajuste fino un diseño con propósito? ¿Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión?

Antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”.  Es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.

¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:

 

           Es cierto que nuestra imaginación es grande pero… No pocas veces ¡la realidad la supera!

¿Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las moficiaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.

¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar? La respuesta puede estar en el hecho cierto de que no disponemos de la energía necesaria para poder llegar más lejos de lo que hasta el momento hemos podido viajar con ayuda de los aceleradores de partículas.

Foto de El hallazgo de una nueva partícula abre un nueva era para la física

Los asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs, Una base del modelo estándar de física.

La pregunta: “¿Qué hay más allá del Modelo estándar”? ha estado facinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que no necesariamente tiene que coincidir con el mundo real que no hemos podido alcanzar.

O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!

 

                                       Siempre hay más de lo que el ojo ve

No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora,  no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.

 

Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal lo conocemos actualmente, que básicamente se caraterizan así:

– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y

– nuevas partículas pesadas y nuevas estructuras a muy altas energías.

Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desapaercibidas hasta. La primera partícula adicional en la que podríamos  pensar es un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas, pero… ¡esa sería otra historia!

http://4.bp.blogspot.com/-HfR7qGN039Q/T5w_3J0KeKI/AAAAAAAABcY/fcJMR0S7tIw/s1600/Experimento-con-neutrinos.jpg

Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.

En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión  supernova de una estrella. sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.

http://latabernaglobal.com/wp-content/uploads/2012/02/NEUTRIN1.jpg

En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.

Aquí lo dejar´ñe por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.

Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

emilio silvera