viernes, 24 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Física? ¡Un arma poderosa!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Witten con sus complejas ecuaciones que le sacan de este mundo y lo transporta a otro de 11 dimensiones, dentro de la teoría de  M. Cuando explicó a sus colegas sus ideas en las que reunificaba en una, todas las teorías anteriores sobre cuerdas, algunos no salían de su asombro por la frescuera de sus pensamientos y lo acertado de sus ideas.

Existe en la Fisica, un principio que se denomina Navaja de Occan, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, y, especialmente las alternativas que no pueden medirse nunca. Si queremos seguir ese postulado, nos encontramos con un enorme problema, ya que, con esa máxima, ¿Qué hacen perdiendo el tiempo Witten y todos los demás físicos y matemáticos con la teoría de supercuerdas?

Aquí tenemos un ejemplo claro de un principio que, al menos para mí, sólo es válido en ciertos contextos, sino experimentamos y teorizamos en cuestiones que, “de momento”, no son demostrables nos quedaríamos anclados en el tiempo del saber. El físicop Paul Davies se refirió una vez a ese tiempo futuro cuando se tenga conseguida la unificación de todas las fuerzas:

” Podremos cambiar la estructura del espacio y del tiempo, atar nuestros propios nudos en la nada, y dar orden a la materia. Controlar las superfuerzas nos permitirá crear y transmutar partículas a voluntad, generando así exóticas formas de materia. Quizá seamos capaces incluso de manipular la dimensionalidad del propio espacio, creando extraños mundos artificiales con propiedades inimaginables. Verdaderamente seremos los señores del Universo.”

 

                       Es posible. Sin embargo, esos señores del universo, ya no seremos nosotros. Nuevas técnicas y nuevos materiales, la nueva física del futuro que, junto a los avances en I.A., posibiklitaran un gran salto en la construcción de máquinas pensantes y que, según algunos, hasta podrán sentir.

Pero para que el sueño de Davies y muchos otros se pueda cumplir, tendríamos que poder dominar esas energías derivadas de la masa de Planck, o sea, la energía de Planck de 10-19 GeV, lo que supone disponer y “saber” manipular energías del orden de las que estaban presentes en la creración de nuestro Universo, cuando surgió el Big Bang ¿Será por soñar!

Claro que no debemos fiarnos del potencial de nuestra imaginación. Los seres humanos han existido en este planeta quizá durante los dos últimos millonmes de años (consideramos ya como hombres modernos) el rápido auge de la civilización moderna en los dos últimos siglos ha sido posible a que el crecimiento del conocimiento cientifico es exponencial; es decir, su tasa de expansión es proporcional a la que ya se conoce. Cuanto más conocemos más rapidamente adquirimos nuevos conocimientos, de tal manera es así que cada 10/20 años, duplicamos lo que sabemos.

Ya he explicado en muchas de mis libretas como se produce este mecanismo, hay preguntas que  ni podemos hacer, no tenemos los datos ni el conocimiento necesario para plantearla. Asi que, cuando adquirimos nuevos conocimientos hemos adquirido el poder de planterar nuevas preguntas que antes, por ignorancia, no sabíamos formular.

                     Para poder preguntar, antes tenemos qaue saber formular las preguntas

Suelo poner el ejemplo de las puertas cerradas. Hallar un nuevo conocimiento es como encontrar la llave para abrir la puerta detrás de la cual, se encuentran las respuestas a preguntas que habíamos planteado y de las que nadie tenía la respuesta. Sin embargo, cuando habrimos esa puerta cerrada, ¡Oh! sorpresa, nos encontramos con nuevas puertas cerradas que, en lo alto de sus dinteles tienen colgados letreros como: Materia Oscura, Teoría M, Partícula de Higgs, y muchas más.

Quiere esto decir que, por mucho que avancemos, siempre, siempre, encontraremos una puerta cerrada con algún letrero colgado de algo que no sabemos. Acordaos de lo que decía León Lederman, el premio de Nobel Física: “En todas las casas de los Fisicos, en el lugar más destacado, tendrían que tener colgado un letrero. En él se pondría un sólo número: 137. Así, cada vez que lo miraran, les recordaría lo que NO saben”

Ese es nuestro destino amigos, estamos condenados a seguir aprendiendo, es nuestra nataturaleza, en nuestra genética tenemos gravada la curiosidad, esa fuerza misteriosa que nos obliga a preguntar, a querer saber,  que nos obliga a continuar la búsqueda de los desconocido, nos empuja a desvelar los secretos de la Naturaleza, allí donde residen todas las respuestas, y, de esa manera, como decía aquel científico que antes mencionaba, llegaremos, no me cabe la menor duda, a dominar fuerzas del Universo que ahora, ni podemos imaginar.

De momento, el Universo que conocemos es el que nos permite “ver” la radiación electromagnética, la luz. Sin embargo, cuando podamos leer los mensajes que nos envían las ondas gravitatorias de los Agujeros Negros y otros cuerpos masivos, entonces, conoceremos otra cara ahora desconocida de ese inmenso Universo que nunca dejará de sorprendernos.

Todas las disciplinas científicas nos son muy necesarias pero, la Física, merece un apartado muy especial, en ella están todas las respuestas que deseamos oír, y, como es natural, siempre acompañada por las matemáticas, el lenguaje universal que se utiliza cuando las palabras dejan de tener la capacidad de expresar las complejidades de la Naturaleza.

La Física, con frecuencia se asocia a otras ramas de la Ciencia, y, mediante la energía que se generan en las estrellas dicha asociación se traduce en la unión de la física-química-biología que, finalmente, desemboca en eso que llamamos vida. Esa maravillosa aventura que comienza en el elemento más ligero y que, en los hornos nucleares de los objetos estelares mediante transformaciones de fases, se van volviendo más y más complejos hasta llevar a niveles tan valiosos como para poder alcanzar (si llegan al medio adecuado) el estadio más alto que la materia puede alcanzar…¡La Consciencia!

Pitágoras nos decía: “Todo es número” y, tampoco estaría mal decir: “Todo es Física”. La unión de la Física con otras ramas del saber nos ha traído y nos seguirá trayendo, muchas alegrías.

Nos aproximamos al siglo desde que, Albert Einstein nos legara su Teoría de la Relatividad General para incluir la gravitación en la estructura espacio-temporal. Uno de los aspectos más destacados de esta teoría es que el espacio deja de ser un simple contenedor de los fenómenos físicos para convertirse en un objeto dinámico, en el sentido que su geometría cambia conforme a los movimientos y distribuciones de masas y energía. No solo eso, al tiempo físico le sucede algo similar, de forma que su transcurso también depende de la distribución de masa y energía que determina la geometría del Universo y, a su vez, la geometría determina el movimiento de la materia y de la energía.

Antes mencionaba que llegaríamos a poder leer los mensajes de las ondas gravitatorias pero, la relativa debilidad de la gravedad es la causa de que las ondas gravitatorias tengan una amplitud relativamente pequeña y que su detección sea una empresa altamente complicada. Ondas gravitatorias producidas por fuentes galácticas, como la colisión de dos estrellas de neutrones, inducen desplazamientos del orden del tamaño de un núcleo atómico o inferiores en un detector terrestre de un kilómetro de tamaño. La gran ventaja que proporcionan las ondas gravitatorias es que por su débil interacción con la materia transportan información prácticamente incorrupta de las fuentes astronómicas que las generaron. Está claro que el reto está, en saber construir los ingenios que puedan detectar y leer sus mensajes, y, cuando ese día llegue, conoceremos otro aspecto del Universo de momento desconocido.

beta plus decay
                                                       El positrón es el beta +

el neutrino, n, escapa y el positrón, e+ (partícula similar a un electrón excepto que tiene carga positiva denominada positrón), se aniquila con un electrón, e+ + e-, produciendo radiación gamma ( de corta longitud de onda). El deuterio formado, H2, reacciona con otro núcleo de hidrógeno dando lugar a un isótopo del helio, He3, que contiene dos protones y un neutrón, cediéndose más energía en forma de rayos gamma,

Bueno, la Física nos ayudará a conocer mejor el Universo. Acordaos de aquella predicción de Wolfgang Pauli cuando propuso la existencia del neutrino para reconciliar los datos de la desintegración nuclear radiactiva con la conservación de la energía. En una desintegración radiativa el núcleo atómico muta en otro núcleo diferente cuando un neutrón se transforma en un protón, que es un poco más ligero que aquel, y emite además un electrón:

neutrónprotón + electrón + antineutrino

¿Cómo pudimos llegar a saber que la predicción de Pauli era cierta?, en aquel momento hasta el mismo Pauli dudaba de que algún día se pudiera verificar tal cosa. Sin embargo, el neutrino se localizó y, de la misma manera, la Física nos dirá también donde está el Bosón de Higgs para perfeccionar el modelo estándar, y, otras muchas cuestiones que ahora, nos parecen de otro mundo y que, sin embargo, están en este nuestro.

Nos hemos acostumbrado a observar el Universo con fotones de longitudes de onda muy diversas, desde ondas de radio a rayos gamma, pasando por la luz visible, ultravioleta o infrarroja. Hemos sabido desarrollar telescopios ópticos cada vez más sofisticados, hasta el siglo XX en que se construyeron los primeros radiotelescopios y se pusieron en órbita los primeros satélites con telescopios de rayos X y rayos gamma. Hoy en día cubrimos 20 órdenes de magnitud en las frecuencias de las ondas electromagnéticas.

Hemos podido acceder al Universo profundo, hemos podido captar con bastante precisión el fondo cósmico de microondas, emitido cuando se formaron los primeros átomos en el universo, cuando éste tenía apenas 380.000 años. La información que podemos extraer hoy en día del fondo de radiación es tan completa que nos ha permitido definir por primera vez un mdodelo cosmológico estándar, cuyos parámetros se conocen con una precisión muy elevada.

                                                                                     Detectando neutrinos

Claro que, no es la luz el único mensajero que nos trae información de los confines del Universo. Desde hace una década también vemos el Sol en neutrinos gracias al Super Kamiokande y, en el Polo Sur, tenemos telescopios de neutrinos muy energéticos que nos permitirán observar el interior de los objetos más violentos del universo, como las supernovas, gracias a que los neutrinos atraviesan la materia cargada que hay a su alrededor, que es opaca a la luz.

Con todo esto quiero significar que no existen límites, y, el ingenio y la imaginación de la máquina más compleja del Universo (solo necesita tiempo para seguir evolucionando), nos llevará más allá de lo que, ahora, podemos imaginar. Seguramente que, ni esa barrera infranqueable que supone la velocidad de la luz, podrá pararnos. Alguna forma habrá de burlar ese muro, y, se me viene a la memoria eso que los físicos llaman el salto cuántico, eso que ocurre cuando un fotón energético choca con un electrón que lo absorbe y, de inmediato, desaparece para simultáneamente aparecer en otro nivel sin haber recorrido la distancia existente entre el nivel de partida y el de llegada. ¿Por donde hizo el viaje?

En fin amigos, que la Física, seguramente será el arma más poderosa con la que cuente la Humanidad cuando le llegue el momento…de partir de la Tierra hacia otros mundos.

emilio silvera

Un meteorito sobrevuela el cielo demi región

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Video: Una bola de fuego

Mi hija pequeña, Alicia, llegó muy excitada a casa con la noticia de que había visto pasar una bola de fuego por el cielo cuando, con un grupo de amigas y amigos, estaban por la Zona del Muelle del Tinto en Huelva. Algunas de las noticias que lo han comunicado dicen:

“Sobre las 19.45 horas de hoy, mucha gente en las provincias de Cádiz, Sevilla y Huelva se ha visto sorprendida por ver cruzar el cielo una bola de fuego, que muchos han denominado como un meteorito. En Twitter, ha habido multitud de comentarios de gente que afirma haber visto un meteorito. Sobre todo, se ha avistado por la zona de Cádiz, pero también ha habido avistamientos en Medina Sidonia, el Puerto de Santa María y algunos también en el Campo de Gibraltar.

Este fenómeno se denomina bólido en astronomía. Un bólido es un meteoro muy brillante, caracterizado por parecer una bola de fuego y crear una huella luminosa, producida por la entrada en la atmósfera terrestre de un meteoroide con una masa del orden de las toneladas, que generalmente explota antes de llegar al suelo y produce un estruendo apreciable.

También pudimos ver en nuestra provincia el 6 de noviembre otro fenómeno similar. Este fenómeno es más común de lo que creemos y a pesar de que la sensación visual es que el meteorito se encuentra a muy baja altura, lo cierto es que suelen estar a miles de kilómetros.”

Lo cierto es que hasta el momento hemos tenido mucha suerte y no ha entrado en la atmósfera de la Tierra camino de la superficie, ningún gran meteorito de varios kilómetros de longitud, de los que, por otra parte, ya nos visitaron algunos en el pasado. Se ha calculado que cada millón de años (más o menos) nos ha caido uno en nuestro planeta y, según parece, ya toca. Espero que no sea pronto.

emilio silvera

¿Sabemos quien fue Newton?

Autor por Emilio Silvera    ~    Archivo Clasificado en Newton    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Observad las estrellas y aprended de ellas.                                   Ningún mortal puede acercarse a los dioses.

En honor al Maestro todas deben girar,                                                        Hedmond Halley

Cada una en su trayectoria sin un ruido,                                                     sobre los Principia de Newton

Siguiendo el principio de Newton.

Einstein

Newton elaboró una explicación cuantificada matemáticamente de la gravitación que abarcaba por igual fenómenos terrestres y celestes. Al hacerlo, demolió la división aristotélica del universo en dos ámbitos, uno por encima y otro por debajo de la Luna, y creó una base física para el Universo copernicano. La perfección y seguridad con la que realizó esta tarea fueron tales que su teoría llegó a ser considerada durante más de los dos siglos posteriores, como algo cercano a la palabra revelada por alguna divinidad. Aún hoy, cuando la dinámica newtoniana es contemplada como sólo una parte de la tela más basta pintada por la relatividad de Einstein, la mayoría de nosotros seguimos pensando en términos newtonianos, y las leyes de Newton son eficaces para guiar las naves espaciales a la Luna y los planetas.

Sin embargo, el hombre cuya explicación del cosmos viver en la mente de más de mil millones de personas era uno de los más extraños y difícilmente accesibles individuos que hayan vivido nunca. Cuando John Maynard Keynes compró en una subasta un baúl lleno de documentos de Newton, se asomnró de encontrarse con que estaba lleno de notas sobre Alquimia, las profecías biblícas y la reconstrucción, basada en textos hebreos, del plano del templo de Jerusalén, que para Newton era “un emblema del sistema del mundo”. Pero esta historia, merece ser contada con más lujo de detalles:

En 1684 tres miembros de la Royal Society, el astrónomo Edmund Halley, Christopher Wren, arquitecto de la catedral de de Londres, y el físico Robert Hooke, mantenían en Londres una animada discusión que acabó en una apuesta: ¿qué tipo de trayectoria describen los planetas alrededor del Sol? Wren ofreció 40 chelines a quien aportara la solución.

De los tres, Halley fue el que más se empeñó en encontrar una solución, hasta el punto de viajar a Cambridge para trasladar la pregunta a Newton, el excéntrico profesor de matemáticas. Allí pudo preguntarle directamente: ¿qué tipo de trayectoria describen los planetas alrededor del Sol? Sobre esta entrevista no sabríamos nada si no llega a ser por Abraham de Moivre, gran matemático y amigo de Newton, que dejó escrito lo siguiente sobre este encuentro:

Newton contestó inmediatamente que era una elipse. El doctor, lleno de alegría y asombro, preguntó cómo lo sabia. “Porque lo he calculado”, contestó. Entonces el doctor le pidió que le mostrase los cálculos. Newton buceó en su baúl, entre sus papeles, pero no lo encontró. Prometiéndole que los volvería a reproducir.

                                                                           Halley y Newton

Ese baúl lo heredó su encantadora sobrina Catherine Conduitt y a través de la descendencia, el baúl terminó en manos del vizconde de Lymington. Casi nadie había visto nunca los documentos que contenía el baúl, y una leyenda cuenta que una vez un obispo, picado por la curiosidad, examinó el contenido del baúl y lo cerró inmediatamente horrorizado. Durante mucho tiempo el contenido del baúl siguió siendo un misterio y su contenido calificado como no apto para la difusión.

El vizconde de Lymington, acuciado por algunos problemas financieros, un divorcio y algunos problemas de impuestos, decide poner a la venta el conjunto de documentos de Newton que su familia poseía desde hacía más de doscientos años.

En 1936, se subasta en Sotheby’s (Londres) el contenido de un baúl metálico lleno de manuscritos de Isaac Newton. Casi todo el lote fue adquirido por John Maynard Keynes, el famoso economista, al que gustaba coleccionar textos científicos antiguos.

Cuando Keynes pudo leer los documentos, quedó muy sorprendido, ya que lo que encontró fue un volumen de manuscritos equivalente a todos sus anteriores trabajos científicos, pero casi todos trataban sobre alquimia. Repuesto de la sorpresa inicial, y después de estudiar los manuscritos, dio una conferencia en la Royal Society de Londres en 1942 y dijo sobre Newton lo siguiente:

“Desde el siglo XVIII, Newton ha sido considerado el primero y más grande de los científicos de la era moderna, un racionalista, alguien que nos enseñó a pensar de acuerdo con los dictados de la razón fría y carente de emoción. Yo ya no puedo verlo bajo esa luz. Y no creo que pueda hacerlo nadie que haya estudiado con detenimiento los documentos contenidos en esa caja que guardó al partir de Cambridge en 1696 y que, pese haber sido en parte dispersados, han llegado hasta nosotros. Newton no fue el primer hombre de la Edad de la Razón, fue el último de los magos, el último de los babilonios y de los sumerios, la última gran mente que contempló el mundo visible e intelectual con los mismos ojos que lo hicieron quienes empezaron a construir nuestra herencia cultural hace casi diez mil años”.

      Círculos de transmutación de diferentes tipos

Hasta ahora, ese aspecto de la personalidad de Newton ha sido deliberadamente ocultado y Newton aparece en la mayoría de los libros como un racionalista puro, y con esa etiqueta es con la que ha pasado a la historia. Creo que cualquier persona que haya leído algunos de esos documentos, o algunas de las cartas que Newton escribió al Dr. Bentley, estará de acuerdo con Keynes al considerar que Newton no fue el primer racionalista sino el último mago, el último de los babilonios. Newton quedó aislado, también,  por la singular potencia de su intelecto. Richard Westfall paso veinte años escribiendo una biografía sumamente perpicaz y erudita de Newton, pero confesó, en el promer párrafo del prefacio.

“Cuanto más lo he estudiado, tanto más Newton se ha alejado de mí. He tenido el privilegio, en diversas ocasiones, de conocer una serie de hombres brillantes, hombres a quirnes conozco sin vacilación como intelectualmente superiores a mí. Sin embargo, nunca he conocido a ninguno con el que no estuviese dispuesto a medirme, de modo que fuese razonable decir que mi capacidad era la mitad de la persona en cuestión, o la tercera o la cuarta parte, pero en tofos los casos una fracción finita. El resultado final de mi estudio de Newton ha servido para convencerme que con él no hay comparación posible. Se ha convertido para mí en otro hombre totalmente diferente, en uno de un puñado de genios supremos que han modelado las categorias del intelecto humano, un hombre que, finalmente, no es reducible a los criterios con que comprendemos a nuestros semejantes.”

Fotografía de la casa natal de Isaac Newton  en la localidad de Woolsthorpe , en Lincolnshire, donde nació prematuramente aquel 4 de enero de 1643 (aunque en algunas referencias se menciona que esta es la casa donde vivió en Grantham años después)  . Newton era hijo único, el hijo póstuno de un pequeño terrateniente analfabeto. Era tan pequeño al nacer que su madre ,  Hannah Ayscough, diría que cabía en una botella de cuarto. Su padre había muerto unos meses antes y con sólo tres años tuvo que abandonar la casa materna cuando Hannah se casó por segunda vez y su nuevo marido no quiso hacerse cargo del niño.Durante el resto de su infancia viviría en casa de su abuela materna , a dos kilómetros de distancia de su madre , algo que seguramente influiría en el carácter silencioso, reservado y poco sociable de Newton a lo largo de su vida. De todas formas es difícil juzgar la personalidad de una mente tan poderosa como la del gran matemático inglés , porque su forma de ver el mundo no puede ser igual a la que tenemos los demás, muy por debajo de su capacidad intelectual.

Newton, que había nacido en el mismo año de la muerte de Galileo Galilei, sustituyó el telescopio refractor de Galileo , que tenía una gran lente en la parte delantera para recoger la luz pero que Newton, por su experiencia con la refracción de la luz, sabía que distorsionaba los colores. Así desarrolló el telescopio reflector que empleaba un espejo en lugar de una lente para recoger la luz lo que lo hacía más barato y más eficiente. La Royal Society le pediría que construyese un segundo telescopio y viendo que funcionaba a la perfección le admitieron inmediatamente en la sociedad científica. Sin embargo, Newton no estaría contento con la fama que había ganado con este invento, ya que recibía muchas cartas. Escribiría al secretario de la Royal Society quejándose porque había “sacrificado mi tranquilidad, una cuestión de verdadera importancia” Así era Newton, siempre huyendo de la fama para que no interrumpieran su trabajo, aunque no estaba exento de ambición.

La vida de Newton, sobre todo su infancia, estuvo rodeada de una serie de circunstancias que le hicieron algo especial. El casamiento de su madre, vivir con su abuela y alejado de ella que vivía con su usurpador padrasto…El producto de todo aquello: haber nacido sin padre el día de Navidad, haber sobrevivido en contra de las probabilidades, la separación de la madre y una mente tan poderosa que él mismo era tanto su vasallo como su amo, le hicieron ser un muchacho reflexivo, tenso, hosco, brillante y propenso a la colera. El jopven Newton era sensible a los ritmos de la Naturaleza e insensible a los de los hombres. De niño construía relojes mecánicos y de sol, y era conocido por saber decir la hora por el Sol, pero habitualmente, olvidaba presentarse a comer, rasgo que persistió durante toda su vida. Podía pasarse días sin aparecer a la hora de la comida y sin dormir, enredado en su escritos sobre asuntos de la filosofía natural que encerraba los secretos de la naturaleza.

Durante un tiempo se inspiró en los libros de René Descartes, un espíritu afín al suyo. Ambos tenían mucho en común: criados por sus abuelas, niños frágiles y solitarios y con una vida interior muy fuerte que modeló sus caractéres. descartes le hablaba de lo que era el conocimiento humano y, muchos de aquellos pensamientos pervivieron en su intelecto.

La teoría cartesiana del torbellino del sistema solar se convirtió en el estímulo para la demostración de Newton de que los torbellinos no podían explicar las leyes de Kepler del movimiento planetario. La importancia que asignó Descartes a la descripcion algebraica del movimiento alentó a Newton a elaborar una dinámica escrita en una fórmula alternativa del algebra, la geometría. Como esto aún no era matemáticamente factible, Newton halló necesario inventar una nueva rama de la matemática, el cálculo infinitesimal. Éste puso la geometría en movimiento . Las parábolas e hipérbolas que Newton trazó en el papel podían ser analizadas como resultado de un punto en movimiento como la punta del palillo con el que Arquímedes trazaba figuras en la arena. En palabras de Newton: “Se describen líneas, y por ende se generan, no por la oposición de partes, sino por el movimiento continuo de puntos.”

Resultado de imagen de La época de Newton en el Campo

Poco después de su graduación, la Universidad fue cerrada y Newton se marchó al campo. Allí tuvo mucho tiempo para pensar. Un día (y parece muy probable que se le haya ocurrido de repente) dio con la grandiosa teoría que no habían logrado concebir ni Kepler ni Galileo: una explicación única y general de cómo la fuerza de la gravitación causa el movimiento de la Luna y los planetas.

En la ausencia de fuerzas exteriores, todo cuerpo continúa en su estado de reposo o de movimiento rectilíneo uniforme a menos que actúe sobre él una fuerza que le obligue a cambiar dicho estado.

– La variación de momento lineal de un cuerpo es proporcional a la resultante total de las fuerzas actuando sobre dicho cuerpo y se produce en la dirección en que actúan las fuerzas. La fuerza que actúa sobre un cuerpo es directamente proporcional al producto de su masa y su aceleración.

Por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el cuerpo que la produjo. Dicho de otra forma: Las fuerzas siempre se presentan en pares de igual magnitud y sentido opuesto y están situadas sobre la misma recta.

Alrdedor de todo esto han salido a la luz diversas anécdotas que, como la manzana que vio caer del manzano mirando a traes de la ventana de su cuarto, le dio la odea seminal de su teoría de la gravitación. Vaya usted a saber como sucedió, o como le llegó a su mente, la idea de la Gravitación Universal.

Esto es mucho más largo y, desde luego, no podemos despacharlo de un plimazo, así que, dejaremos para una segunda parte la historia que nos relata como era y quien fue este grandioso personaje de la Historia de la Ciencia y que posibilitó para que la Humanidad, diera un gran paso en el conocimiento del mundo.

emilio silvera

La Ciencia no duerme

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia ABC

Hallan, por vez primera, la forma de teletransportar un organismo vivo. Científicos proponen cómo pasar la memoria de un microorganismo a otro en un experimento que parece sacado de Star Trek

La investigación puede ser un espectacuar primer avance en el teletransporte de seres vivos completos

La investigación puede ser un espectacuar primer avance en el teletransporte de seres vivos completos – Archivo

JOSÉ MANUEL NIEVES – Madrid

 

 

Nunca hasta ahora habíamos estado tan cerca de Star Trek y el impresionante teletransportador que permitía a la tripulación de la nave Enterprise desmaterializarse en un punto y reaparecer instantaneamente en otro. Un equipo mixto de investigadores de las Universidades de Purdue, en Estados Unidos, y Tsinghua, en China, ha elaborado, en efecto, el primer esquema realizado hasta ahora para teletransportar el estado cuántico interno (la memoria) de un microorganismo vivo a otro. La investigación constituye un espectacular avance en el camino, hoy propio de la ciencia ficción, del teletransporte de seres vivientes completos.

El esquema propuesto por Tongcan Li y Zhang-qi Yin prevé el uso de osciladores electromecánicos y circuitos superconductores para lograr su ambicioso objetivo. En un artículo publicado en Science Bulletin, los investigadores proponen también un esquema para crear un estado de “Gato de Schrodinger” en el que un microorganismo puede estar en dos lugares al mismo tiempo.

En 1935, Erwin Schroedinger propuso un experimento imaginario que consistía en encerrar un gato vivo dentro de una caja en la que se había introducido también una probeta con gas venenoso y un dispositivo, de una sola partícula radiactiva y que tenía una probabilidad del 50% de desintegrarse en un tiempo dado. Al desintegrarse la partícula, el veneno quedaría liberado y el gato moriría sin remedio. Una vez pasado el tiempo establecido, tendríamos un 50% de probabilidades de que la partícula se haya desintegrado y encontrar que el gato está muerto, y otro 50% de que no haya sido así y el gato siga vivo. En el idioma de la Física Cuántica, estaríamos ante una superposición de dos estados posibles (vivo o muerto) que no se concretará hasta el instante en que se abra la caja. Hasta ese momento, en efecto, podríamos decir sin miedo a equivocarnos que el gato está vivo y muerto al mismo tiempo. Sólo abriendo la caja modificaremos el estado de Superposición y haremos que se concrete una de las dos posibilidades.

Realidades «imposibles»

La idea de Schroedinger sirvió para revelar por primera vez al gran público las profundas implicaciones de la Mecánica Cuántica, en cuyo reino la superposición de estados de las partículas está a la orden del día y es pura rutina para los investigadores, que han tenido que acostumbrarse a realidades “imposibles”, como electrones que están en varios lugares a la vez, partículas que se comunican de forma instantánea sin importar la distancia o que, incluso, son capaces de viajar en el tiempo. Desde el hipotético experimento de Schroedinger, los físicos han dedicado décadas de estudio y esfuerzo para tratar de averiguar si las extrañas leyes que rigen en el universo cuántico pueden trasladarse también al mundo macroscópico. Y es que, después de todo, tanto nosotros como todo lo que nos rodea está hecho de partículas.

Por supuesto, se han hecho ya importantes avances. Y en las últimas dos décadas diversos grupos de investigadores han conseguido cada vez mejores resultados a la hora de “teletransportar” estados cuánticos, primero de partículas individuales (un único fotón, en 1997), después de átomos completos, y últimamente de conjuntos cada vez más numerosos de átomos. Recientemente, por ejemplo, un equipo de la Universidad de Colorado logró llevar al estado cuántico toda una membrada de aluminio de 15 micrómetros de diámetro (un micrómetro es la milésima parte de un milímetro), y “teletransportar” sus características y su movimiento a una serie de fotones aislados.

Pero nadie ha conseguido hacer lo mismo con un organismo vivo. Y todos los experimentos llevados a cabo hasta ahora están aún muy lejos de conseguir teletransportar un organismo, o su estado cuántico.

Bacteria cuántica

 

En su estudio, Tongcang Li y Zhang-qi Yin proponen colocar una bacteria sobre un oscilador electromecánico integrado en un circuito superconductor para conseguir un estado cuántico de superposición en el organismo y teletransportar después ese estado. En principio, el microorganismo es mucho más pequeño que la membrana del oscilador y no debería, por lo tanto, afectar a su funcionamiento. La bacteria, junto a la membrana, serían llevados a un estado cuántico. Después de lo cual, ese estado se podría teletransportar hasta otro organismo distante por medio de circuitos superconductores de microondas. Dado que los estados internos del organismo contienen información, la propuesta de los investigadores supone, en realidad, un esquema para teletransportar esa información, o memoria, de un organismo vivo a otro.

Este es el esquema propuesto por Tongcan Li y Zhang-qi Yin para teletransportar un organismo

 

Este es el esquema propuesto por Tongcan Li y Zhang-qi Yin para teletransportar un organismo- Science China Press
 

La configuración propuesta por Tongcang Li y Zhang-qi Yin constituye también un poderoso microscopio, ya que no solo es capaz de detectar la existencia del spin de electrones individuales (que puede asociarse a determinados defectos genéticos), sino que puede también manipular y detectar sus estados cuánticos, permitiendo su uso como “memorias cuánticas”.

En palabras de Li, “proponemos un método sencillo para poner un microorganismo en dos lugares al mismo tiempo, y facilitamos un esquema para teletransportar el estado cuántico de un organismo completo. Espero que nuestro trabajo inspire a otros investigadores para que piensen seriamente sobre la posibilidad de la teleportación cuántica de microorganismos y en sus posibilidades futuras. Nuestro trabajo también proporciona pistas para futuros estudios sobre los efectos de las reacciones bioquímicas en los estados de superposición cuántica de los organismos vivientes”.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Artist's rendering ULAS J1120+0641.jpg

Una composición artísdtica del quásar más brillante descubierto hasta el momento: ULAS J1120+064. Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negro supermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.

Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negros supermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

                    Fuerzas de marea de irresistible poder que arrastran todo cuanto a su paso encuentran

La imagen de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías  que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

File:3C273 Chandra.jpg

              Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las dos imágenes, aunque sean tan distitnas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

un estudio que recoge la revista The Astrophysical Journal, se ha descubierto un cuásar con dos agujeros negros centrales girando el uno sobre el otro en la galaxia Markarian 231 que se encuentra tan solo a 600 millones de años luz de distancia de la Tierra. El descubrimiento ha sido posible gracias al telescopio Hubble, que orbita en el exterior de la atmósfera a 593 km sobre el nivel del mar desde abril de 1990.

Lo asombroso de los quásares está en una pregunta que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negro. Crédito: A. Simonet, Universidad Estatal de Sonoma, NASA.

Según todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.

Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agfujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene ahora más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.

Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio,  el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.

Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.

Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Resultado de imagen de Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4.

Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc  (780 millones de años luz) y el más lejano a 6 Gpc  (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aún teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?

emilio silvera