viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Volar a las estrellas arrugando el espacio

Autor por Emilio Silvera    ~    Archivo Clasificado en Hiperespacio    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Física

Reportaje en El Español

 

Las ondas gravitatorias recién descubiertas ilustran la deformación del tejido del universo, un concepto aplicable a los viajes más rápidos que la luz, aunque solo según la teoría.

Volar a las estrellas arrugando el espacio

 

Volar a las estrellas arrugando el espacio Ricky Brian / Patrick Montgomery Paramount

Javier Yanes
 

 

Mientras elaboraba su tesis doctoral en la Universidad de Gales, el físico mexicano Miguel Alcubierre veía un capítulo de Star Trek: La nueva generación, cuando tuvo una idea. Las naves de la serie se desplazan por el espacio a velocidades superiores a la de la luz gracias a sus warp drives o impulsores de curvatura, sistemas capaces de deformar el tejido del espacio-tiempo. ¿Sería posible proporcionar a los protagonistas de la serie un modelo teórico real que encajara con las ecuaciones de la relatividad general de Einstein?

Alcubierre, que hoy dirige el Instituto de Ciencias Nucleares de la Universidad Nacional Autónoma de México, lo consiguió. Y a la hora de poner un nombre a su hipotético propulsor, a sugerencia de su director de tesis, el físico hizo “un guiño a la ciencia ficción” y mantuvo el término warp drive, según cuenta a EL ESPAÑOL. Sin embargo, y desde la publicación de su teoría en 1994, la comunidad física se refiere a su propuesta como Alcubierre drive.

              Arrugas en la alfombra cósmica

Esta semana hemos asistido al anuncio histórico de la primera detección de ondas gravitatorias, pequeñas sacudidas en el tejido del espacio-tiempo tal como lo definió Albert Einstein en su teoría general de la relatividad. Estas ondas creadas por las masas son normalmente minúsculas e indetectables; pero las producidas por un cataclismo entre objetos inmensamente pesados, como la fusión de dos agujeros negros, pueden llegar a cazarse en la Tierra gracias a la ínfima variación de longitud que provocan en un túnel alargado, lo que modifica el tiempo que la luz tarda en recorrerlo de un extremo a otro.

En esta deformación del espacio-tiempo se basa también la idea de Alcubierre. El físico mexicano imaginó una nave rodeada por una burbuja que es capaz de contraer el espacio-tiempo por delante de ella y expandirlo por detrás, avanzando en su arruga espacio-temporal como un surfista navega sobre una ola. Así, si queremos volar a una estrella lejana, no es la nave la que se aproxima a su destino, sino este el que se acerca gracias a esos pliegues en la alfombra cósmica.

                                      Recreación de estos hipotéticos viajes. Les Bossinas NASA

 

“El objeto se mueve sin moverse en realidad”, dice el físico; “es el espacio el que hace el trabajo”. El modelo permite, según su autor, “viajar a velocidades arbitrarias, incluso mayores que las de la luz”, ya que en realidad la nave no quebranta este límite físico respecto a su entorno local. Y en un experimento mental ya clásico sobre los viajes a velocidad superluminal, si los tripulantes de la nave encendieran los faros delanteros, verían el chorro de luz proyectado hacia delante, ya que la luz emitida seguiría moviéndose más aprisa que el vehículo dentro de la burbuja.

La publicación del modelo de Alcubierre provocó a su vez una onda expansiva en su propio tejido espacio-temporal, el de la física teórica a finales del siglo XX. Desde entonces, las cinco páginas del estudio del mexicano han sido descargadas de la web de la revista Classical and Quantum Gravity más de 25.000 veces, y su trabajo ha sido citado en más de un centenar de artículos, además de haber motivado obras de ciencia ficción y locas especulaciones en la imaginación popular.

Energía negativa y materia exótica

 

 

Claro que, en física, de la teoría a la práctica a menudo media una distancia tan insalvable como la del espacio interestelar. El primer problema fundamental de la burbuja de Alcubierre es la propia burbuja. “Para producir esta distorsión del espacio se requiere de algo que llamamos energía negativa, que es esencialmente equivalente a la anti-gravedad”, apunta el físico; “y hasta donde sabemos, eso no existe”, zanja. En la física clásica, la que podemos experimentar en nuestra vida diaria, hablar de energía negativa es un concepto tan absurdo como tratar de encender la oscuridad. “Pero en el extraño mundo de la mecánica cuántica, de hecho se predice la existencia de la energía negativa”, precisa a este diario el matemático de la Universidad Estatal Central de Connecticut (EEUU) Thomas Roman.

Según explica Roman, en 1992 el físico Stephen Hawking demostró que la energía negativa es un elemento necesario para viajar hacia atrás en el tiempo. En física, la idea de desplazarse más rápido que la luz está íntimamente ligada a la del viaje temporal, ya que sería posible sentarnos en una posición en la que viéramos cómo una señal transmitida a velocidad superluminal llega a su destinatario antes de haber sido enviada por el emisor. La energía negativa nace de la aplicación de estas condiciones a las ecuaciones de Einstein; por lo tanto, si se coloca en las fórmulas no sólo rompe la barrera de la luz, aunque sea en el papel, sino que también nos regala un billete al pasado.

Pero aunque la física cuántica teórica permita la existencia de esta energía, no es tan fácil obligar a la realidad a que lo acepte. Según la relatividad especial de Einstein, masa y energía son dos caras de una misma moneda (la famosa E=mc2), por lo que la energía negativa equivale a un tipo de materia que no tenemos, y que los físicos denominan “exótica”. “Las curvaturas del warp drive solo pueden ser causadas por este tipo de materia hipotética”, señala a EL ESPAÑOL Carlos Barceló, físico teórico del Instituto Astrofísico de Andalucía del CSIC (IAA). Barceló expone que “la materia que conocemos no tiene estas características”; pero del mismo modo que la física de partículas predice la energía negativa, “se ha especulado que quizá podría haber situaciones cuánticas en las que se genere materia de este tipo”.

Una nave sin control

El de la energía negativa, o la materia exótica, no es el único obstáculo en el modelo de Alcubierre. Su propio autor opone una segunda gran pega, el llamado “problema del horizonte”. Dado que el frente de la burbuja se desplazaría a una velocidad aparente mayor que la de la luz, los pilotos de la nave no podrían acceder a él, y esto tendría consecuencias bastante indeseables. Por un lado, no podrían enviar señales para detener o dirigir la burbuja, por lo que continuarían viajando indefinidamente a menos que la pompa estallara o alguien desde fuera hiciera algo al respecto.

¿Cómo serían este tipo de viajes?

¿Cómo serían este tipo de viajes? NASA

Pero también, y dado que los tripulantes de la nave estarían desconectados del exterior de la burbuja, si fuera posible crear una infraestructura que permitiera el desplazamiento –como han sugerido algunos teóricos–, ésta no podría ser colocada durante el propio viaje, como hacían los constructores de los ferrocarriles que iban tendiendo las vías a medida que la locomotora avanzaba. En este caso la locomotora no tendría puertas para salir al exterior, por lo que las vías deberían ser colocadas por un equipo que viajara a pie, o en este caso en una nave convencional, y por tanto muy lenta.

“Todo apunta a que la naturaleza rechaza la formación de burbujas como las de Alcubierre”, concluye Barceló. El físico del IAA agrega que además existen “problemas de inestabilidad“: en concreto, las altas temperaturas en el interior de la burbuja no solo la destruirían, sino que incinerarían todo su contenido, nave y tripulantes. El propio Alcubierre admite que su experimento mental no tiene “ninguna aplicación práctica hasta la fecha, y no la puede haber mientras los problemas mencionados no se puedan resolver, si es que tienen solución, que pueden muy bien no tenerla”.

Imposible, pero nada lo es

 

Y a pesar de todas las objeciones en contra, la cuestión de los propulsores de curvatura continúa provocando encendidas discusiones entre los físicos. Para los teóricos es puramente una manera de explotar las posibilidades de las ecuaciones, pero las conjeturas nacidas a raíz de algunos resultados experimentales afloran periódicamente a la luz pública, para entusiasmo de unos e indignación de otros.

Hace pocos meses, un grupo heterodoxo de la NASA llamado Laboratorio de Física de Propulsión Avanzada, o Eagleworks, causó una conmoción al sugerir que había construido un tipo de propulsor llamado EmDrive que se opone a toda la lógica física y en el que algunos teóricos ven la posibilidad de crear burbujas de distorsión del espacio-tiempo. El asunto fue tan comentado en los medios como irritante para la propia NASA, que prohibió a los ingenieros de Eagleworks pronunciarse públicamente. A raíz de aquello, la agencia archivó los artículos de su web relacionados con la idea del warp drive, reemplazándolos por una declaración que afirma: “Warp Drive o cualquier otro término para viajes más rápidos que la luz aún no son más que una especulación. El grueso del conocimiento científico concluye que esto es imposible”.

Al menos por el momento, deberemos conformarnos con posibilidades más al alcance de la tecnología. La NASA investiga activamente en el campo de los propulsores iónicos, una opción que no permitirá los viajes interestelares pero sí romper nuestras fronteras actuales, y que para Alcubierre “son de momento los sistemas más prometedores”. En un futuro muy lejano, imagina el físico, tal vez lleguemos a construir cohetes de antimateria; “pero de momento es ciencia ficción”, concluye. Respecto a lo que pueda depararnos el futuro, nos queda el consuelo de Barceló: “En ciencia natural nunca se puede decir de nada que es imposible”.

No siempre hemos visto el Universo de la misma manera

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Se reproduce aquí, a modo de resumen, el primer párrafo de cada uno de los artículos que componen la segunda parte del libro Astronomía: De Galileo a la exploración espacial del astrónomo y divulgador Rafael Bachiller, donde se rememora los hitos más importantes de la astronomía ocurridos en lo siglos XX y principios del XXI (hasta 2009). El lector interesado puede acceder al contenido completo de los mismos a través de la obra mencionada o desde la dirección web (Lunwerg: Astronomia. De Galileo a la exploración espacial), donde fueron originalmente publicados con motivo del 400 aniversario del nacimiento de la astronomía moderna.

               Diagrama de Hertzsprung y Russell y los dos astrónomos autores del mismo

SIGLO XX-XXI

De la evolución estelar a los telescopios espaciales

Resultado de imagen de Evolución espacial de los telescopios

1913 La clasificación de las estrellas

En 1913 los astrónomos Hertzsprung y Russell establecieron, de manera independiente, un esquema para la clasificación de todas las estrellas de acuerdo con dos parámetros: temperatura y luminosidad. Lo que se conoce en el argot astronómico como diagrama H-R (por las iniciales de sus descubridores) pronto se reveló como una herramienta potentísima en el estudio de la estructura y evolución de las estrellas. De manera análoga a como la catalogación de los seres vivos condujo a Darwin a la teoría de la evolución de las especies, la clasificación H-R de las estrellas condujo a los astrónomos a establecer, en la primera mitad del siglo XX, una teoría de la evolución estelar que es considerada como uno de los mayores logros de la Astrofísica de todos los tiempos.

1915 El universo relativista de Einstein

En 1915, Albert Einstein enunció su Teoría de la Relatividad General, una nueva teoría de la Gravitación que vino a sustituir a la de Newton aportando una visión completamente revolucionaria del Universo. En la visión de Einstein, la materia, el espacio y el tiempo son tres elementos interconectados entre sí: la gravedad puede ser interpretada como una curvatura del espacio. En el espacio-tiempo la luz se mueve a velocidad constante describiendo trayectorias curvas según es desviada por la presencia de cuerpos materiales. La Teoría de la Relatividad resolvió elegantemente los problemas de la física clásica y realizó otras sorprendentes predicciones (como la curvatura de la luz en un campo gravitatorio) que fueron comprobadas experimentalmente de manera espectacular. Gracias a esta nueva teoría, el Universo pasó a describirse como un todo mediante una serie de ecuaciones que describen la íntima imbricación del espacio, el tiempo y la materia.

1925 Hubble y el universo extragaláctico

Resultado de imagen de Andrómeda

En 1925, el astrónomo norteamericano Edwin Hubble midió la distancia a Andrómeda y a otras nebulosas espirales y demostró que tales nebulosas estaban fuera, y muy lejos, de la Vía Láctea. Tales nebulosas eran por tanto galaxias independientes de la nuestra, lo que indicaba que el Universo era mucho mayor de lo que se había creído hasta entonces. Poco después, midiendo las velocidades de tales galaxias y comparándolas con sus distancias concluyó que todas ellas se alejaban entre sí. Georges Lemaître interpretó estas medidas como el resultado de la expansión del universo y, resolviendo las ecuaciones de la relatividad general de Einstein, puso los cimientos de la teoría del Big Bang.

1931 El nacimiento de la Radioastronomía

A pesar de que Maxwell había descrito el espectro electromagnético a mediados del XIX, el estudio del universo estuvo limitado a la luz visible hasta bien entrado el siglo XX. La atmósfera terrestre actúa como una barrera bloqueando gran parte de la radiación que es emitida más allá del ultravioleta y del infrarrojo y, por otra parte, los astrónomos no disponían de la tecnología necesaria para construir detectores en rangos del espectro electromagnético diferentes del óptico. Pero esta situación cambió radicalmente cuando, en 1931, Karl Jansky descubrió ondas de radio que procedían de la Vía Láctea.

Resultado de imagen de hacia la mitad del siglo XX aún quedaba mucho cielo por descubrir, muchas eran las estrellas desconocidas

Aunque parezca difícil de creer, hacia la mitad del siglo XX aún quedaba mucho cielo por descubrir. Es cierto que por entonces se conocían las posiciones de cientos de miles de estrellas y galaxias sobre la bóveda celeste, pero aún no se sabía bien a qué distancia se encontraban.

Además, todos los catálogos estaban basados en observaciones realizadas con los telescopios “ópticos”, estos son, los que recogen la luz que nosotros vemos. Las técnicas de observación en otros “colores que no vemos”, como en rayos X, ultravioleta, infrarrojo o radio, estaban empezando a desarrollarse. Muchas tardarían aún décadas en llegar al ser imprescindible el uso de satélites artificiales. Por ejemplo, no hasta hace unos pocos años hemos empezado a “ver” de verdad los colores infrarrojos del Universo, gracias a satélites como Spitzer (NASA) y Herschel (ESA). Pero en la década de los cincuenta del siglo pasado la Radioastronomía ya había despegado. Ciertamente muchas sorpresas llegaron entonces gracias a la observación del cielo usando ondas de radio. Así, en…

1963 Se descubrimiento de los quásares

  El Quásar escondido en la Nebulosa del Cangrejo

El rápido desarrollo de la radioastronomía tras la Segunda Guerra Mundial condujo a la identificación de unas misteriosas fuentes de ondas de radio que, en el óptico, parecían estrellas muy débiles. En 1963, el astrónomo holandés-estadounidense Marteen Schmidt estimó la distancia y luminosidad de algunas de estas radiofuentes y concluyó que se trataba de galaxias situadas en los confines del Universo conocido. Tales galaxias poseían luminosidades muy superiores a las de todas las conocidas previamente. Hoy sabemos que tales objetos, denominados quásares, obtienen su energía de agujeros negros supermasivos situados en sus regiones centrales. El agujero negro, rodeado de un disco de acreción, es el origen de chorros bipolares de altísima velocidad.

Penzias y Wilson ante su antena | Bell Labs.
Penzias y Wilson ante su antena | Bell Labs.

En los Laboratorios de la Bell Telephone en Holmdel (Nueva Jersey) otros dos jóvenes astrónomos, Arno Penzias (nacido en 1933) y Robert Wilson (nacido en 1936), habían construido una extraña antena (una especie de gran bocina receptora) de 6 metros de longitud para observar posibles microondas provenientes del halo de la Vía Láctea. En 1965, detectaron una radiación misteriosa que no parecía tener relación con nuestra Galaxia. La insistente radiación era observable en todas las direcciones del cielo y permanecía omnipresente día y noche a lo largo de todo el año. Era una señal sumamente uniforme y que correspondía a una temperatura de tan sólo unos 3 Kelvin (270 grados Celsius bajo cero). Desconcertados, Penzias y Wilson concluyeron que necesariamente tal radiación era de origen cósmico, pero no tenían idea de qué fenómeno físico podía causarla.

1965 El eco del Big Bang

Como decimos en 1965 Penzias y Wilson descubrieron una misteriosa radiación de microondas en el fondo del cielo. Tal radiación, cuya existencia había sido predicha por varios investigadores durante las dos décadas previas, pudo ser inmediatamente reconocida como una reliquia del ‘Big Bang’. Estas observaciones vinieron por tanto a confirmar la interpretación de la ley de Hubble en términos de una expansión generalizada del universo que tenía su origen una gran explosión. Gracias a la misión espacial COBE de la NASA, se detectaron en 1992 las irregularidades primigenias que debieron dar lugar a la formación de galaxias y de cúmulos de galaxias. Posteriormente, la misión WMAP contribuyó a medir parámetros importantes del universo, tales como su edad y su composición. Finalmente, el telescopio Planck lanzado por la ESA en mayo de 2009 deberá refinar todas estas medidas culminando así medio siglo de sorprendentes descubrimientos cosmológicos.

               1968 El misterio de los púlsares

Los astrónomos Antony Hewish y Jocelyn Bell anunciaron, en 1968, el descubrimiento de unos objetos astronómicos nuevos. Los denominaron radiofuentes pulsantes, o simplemente púlsares, por tratarse de emisores de rapidísimas ráfagas de microondas que alcanzaban la Tierra con sorprendente regularidad. Por otro lado, desde varios años antes, astrónomos teóricos habían barajado la posibilidad de que algunas estrellas acabasen sus vidas en la forma de densísimos residuos estelares constituidos por neutrones. Cotejando las propiedades, pronto se concluyó que estas estrellas de neutrones predichas teóricamente eran los mismos objetos que los púlsares recién descubiertos.

                            1990 El lanzamiento del telescopio espacial Hubble

La atmósfera terrestre impone severas limitaciones a las observaciones astronómicas. Algunos rangos del espectro electromagnético, como la luz ultravioleta o la del lejano infrarrojo, quedan completamente bloqueados. Incluso la radiación que consigue llegar a la superficie terrestre es alterada, en mayor o menor medida dependiendo de su longitud de onda, por los movimientos turbulentos de las diferentes capas de nuestra atmósfera. La forma más directa de escapar a estos efectos, tan perjudiciales para la observación astronómica, consiste en instlar el telescopio por encima de la atmósfera, en una plataforma espacial. En 1990, tras numerosos estudios y experimentos con telescopios espaciales menores, la NASA puso en órbita el telescopio Hubble. Equipado con un espejo de 2,4 m de diámetro, el Hubble ha proporcionado resultados espectaculares y se ha convertido en un fenómeno que ha rebasado ampliamente los ámbitos de la astronomía.

                                                1995 ¡Planetas extrasolares!

En 1995 los astrónomos Michel Mayor y Didier Queloz anunciaron la detección de 51 Pegasi b, un planeta que orbita en torno a una estrella de tipo solar a 50 años luz de la Tierra. Confirmado prontamente por los norteamericanos Geoffrey Marcy y Paul Butler, este descubrimiento inauguró una intensa carrera que ha conducido a la detección de un total de más 400 planetas extrasolares contenidos en unos 300 sistemas planetarios. Aunque todos estos planetas son significativamente más masivos que la Tierra, la instrumentación que está siendo específicamente diseñada para la búsqueda y detección de planetas de tipo terrestre debería conducir en pocos años a la detección de otras tierras.

Imagen óptica-infrarroja-X del Centro Galáctico. | NASA, ESA, SSC, CXC, STSci.

Imagen óptica-infrarroja-X del Centro Galáctico. | NASA, ESA, SSC, CXC, STSci.

           El centro galáctico señalado con los detalles y objetos allí presentes

2002 Un agujero negro en el centro de la Vía Láctea

En el año 2002, un equipo internacional de astrónomos liderado desde el Instituto Max Planck de Física Extraterrestre de Munich presentó los resultados de un patrullaje de diez años de duración de la estrella S2 que orbita en torno al Centro de la Vía Láctea. Sus medidas indicaban que nuestro centro galáctico está ocupado por un agujero negro supermasivo de unos 4 millones de masas solares. Observaciones posteriores en un amplio rango de longitudes de onda (visibles, infrarrojas, radio, X y gamma) han confirmado este resultado ofreciendo más y más detalles. Se piensa hoy que la presencia de agujeros negros supermasivos no sólo tiene lugar en galaxias extremas, sino que puede ser un fenómeno habitual en la mayor parte de las galaxias espirales y elípticas.

Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

   Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

2009 Diseño y construcción de telescopios extremadamente grandes

La aventura de la construcción de telescopios que comenzó en 1609 con aquella primera observación realizada por Galileo está lejos de llegar a su fin. En el año 2009, simultáneamente con el lanzamiento de tres potentes telescopios espaciales, Kepler, Herschel y Planck, se estaban definiendo las características esenciales de tres Telescopios Extremadamente Grandes (ELT), dos norteamericanos y uno europeo. Se espera que estos telescopios entren en operación en la segunda mitad de la década de los 2010. En Radioastronomía hay que destacar dos proyectos colosales: la construcción del Atacama Millimeter Array (ALMA) que deberá finalizar hacia 2013, y el diseño del Square Kilometer Array (SKA) que está previsto hacia 2022. La observación con estos instrumentos revolucionará completamente la Astronomía en tan sólo dos décadas.

Hasta aquí y resumido, algunos de los descubrimientos y avances que hemos podido ir realizando a lo largo del tiempo, todos esos descubrimientos astronómicos producidos desde las primeras décadas del siglo XX que vinieron a modificar de raíz la imagen que teníamos del Universo como algo estático. Claro que no siempre ha sido así, nada es tan simple y todo tiene su historia, como nos decía Shakespeare:

“Y esta nuestra vida, libre de frecuentación pública,

Halla lenguas en los árboles, libros en los arroyos que fluyen,

Sermones en las piedras y bien en todas partes.”

 

Antes de llegar nosotros que ahora nos creemos los amos, “los que lo saben todo”, estuvieron aquí otros pueblos, otras civilizaciones que, a su manera y con los medios que tenían, también hicieron sus contribuciones para que ahora nosotros estémos en el nivel alcanzado con el esfuerzo de muchos que se podría remontar a la noche de los tiempos, es decir, hasta las civilizaciones antiguas sumerias, babilonicas, egipcias, chinas, hindúes, griegas, árabes, mayas… Contemos alguna parte de todo aquello y de cómo entramos en la actualidad.

Por aquel entonces, predominaba en la antigua Grecia una concepción del Tiempo que era cíclica, y tan cerrada como las esferas cristalinas en las que Aristóteles aprisionaba el espacio cósmico. Platón, Aristóteles, Pitágoras que crearon escuela junto a una pléyade de seguidores, todos ellos, soteníam la idea, heredada de una antigua creencia caldea, de que la historia del universo consistía en una serie de “grandes años”, cada uno de los cuales era un ciclo de duración no especificada que finalizaba cuando todos los planetas estaban en conjunción, provocando una catástrofe de cuyas cenizas comenzaba el ciclo siguiente. Se pensaba que este proceso tenía lugar desde siempre. Según el razonamiento de Aristóteles, con una lógica tan circular como los movimientos de las estrellas, sería paradójico pensar que el tiempo ha tenido un comienzo en el tiempo, de modo que los cielos cósmicos deben producirse eternamente.

La concepción cíclica del Tiempo no carecía de encantos. Expresaba un hastío del mundo y un elegante fatalismo del género que a menudo atrae a las personas con inclinaciones filosóficas, un tinte conservado en forma indeleble por el historiador islámico Ahmad ibn ‘Abd al-Ghaffar, al-Kazwini al-Ghifari, quien relató la parábola del eterno retorno.

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

                            El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad. Como Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornorá con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente bis bang.

Según Penrose (físico teórico de la Universidad de Oxford), el Big Bang no fue el inicio del tiempo y el espacio, sino uno de tantos inicios, pero de fases o etapas dentro de un universo mucho más viejo, y en el que cada Big Bang marca el inicio de un nuevo eón en su historia. Es tanto como decir que los 13.700 millones de años de nuestro tiempo, en los que han surgido estrellas, planetas y la vida; son una pequeña fracción de la vasta historia del universo.

Por supuesto, semejante afirmación viniendo de un físico tan prestigioso, ha de estar respaldada por algún tipo de observación empírica, y en este caso, se basa en los resultados obtenidos de la sonda WMAP de la NASA por el físico Vahe Gurzadyan del Instituto de Física Yerevan en Armenia, quien analizó datos de microondas de siete años procedentes de la sonda, así como datos del experimento de globO BoomeranG de la Antártida.

Claro que, todas estas ideas de un Tiempo repetitivo y eterno en su “morir” y “renacer”, a mí me produce la sensación de una excusa que se produce por la inmensa ignorancia que, del universo tenemos. Fijémonos en que, los pueblos antiguos desde los hindúes, sumerios, babilonios, griegos y mayas, todos ellos, tenían esa idea cosmológica del tiempo cíclico. Pero, pese a todos sus aspectos de aventura cósmica, esa vieja doctrina de la historia infinita y cíclica tenía el pernicioso efecto de tender a desalentar los intentos de sondear la genuina extensión del pasado. Si la historia cósmica consistía en una serie interminable de repeticiones interrumpidas por destrucciones universales, entonces era imposible determinar cual era realmente la edad total del universo.

Un pasado cíclico infinito es por definición inconmensurable, es un “tiempo fuera de la mente”, como solía decir Alejandro Magno. El Tiempo Cíclico tampoco dejaba mucho espacio para el concepto de evolución. La fructífera idea de que pueda haber innovaciones genuínas en el mundo.

  Todo, con el paso del Tiempo, se distorsiona y deteriora

Los griegos sabían que el mundo cambia y que algunos de sus cambios son graduales. Al vivir como vivían, con el mar a sus pies y las montañas a sus espaldas, se daban cuenta de que las olas erosionan la tierra y estaban familiarizados con el extraño hecho de que conchas y fósiles de animales marinos pueden encontrarse en cimas montañosas muy por encima del nivel del mar. Al menos dos de los hallazgos esenciales de la ciencia moderna de la geología -que pueden formarse montañas a partir de lo que fue antaño un lecho marino, y que pueden sufrir la erosión del viento y del agua- ya eran mencionados en épocas tan tempranas como el siglo VI a. C. por Tales de Mileto y Jenófanes de Colofón. Pero tendían a considerar estas transformaciones como meros detalles, limitados al ciclo corriente de un cosmos que era, a la larga, eterno e inmutable. “Hay necesariamente algún cambio en el mundo como un todo -escribió Aristóteles-, pero no en el sentido de que nazca o perezca, pues el universo es permanente.”

Para que la Ciencia enpezace a estimar la antigüedad de la Tierra y del universo -situar el lugar de la Humanidad en las profundidades del pasado, lo mismo que establecer nuestra situación en el espacio cósmico-, primero era necesario romper con el círculo cerrado del tiempo cíclico y reemplazarlo por un tiempo lineal que, aunque largo, tuviese un comienzo definible y una duración finita. Curiosamente, este paso fue iniciado por un suceso que, en la mayoría de los otros aspectos, fue una calamidad para el progreso de la investigación empírica: el ascenso del modelo cristiano del universo.

Inicialmente, la cosmología cristiana disminuyó el alcance de la historia cósmica, asó como contrajo las dimensiones espaciales del universo empíricamente accesible. La grandiosa e impersonal extensión de los ciclos temporales griegos e islámicos fue reemplazada por una concepción abreviada y anecdótica del pasado, en la que los asuntos de los hombres y de Dios tenían más importancia que las acciones no humanas del agua sobre la piedra. Si para Aristóteles la historia era como el girar de una gigantesca rueda, para los cristianos era como una obra de teatro, con un comienzo y un final definidos, con sucesos únicos y singulares, como el nacimiento de Jesús o la entrega de la Ley a Moisés.

Los cristianos calculaban la edad del mundo consultando las cronologías bíblicas de los nacimientos y muertes de los seres humanos, agregando los “engendrados”, como decían ellos. este fue el método de Eusebio, que presidió el Concilio de Nicea convocado por el Emperador Constantino en 325 d. C. para definir la doctrina cristiana, y quien estableció que habían pasado 3.184 años entre Adán y Abrahan; de san Agustín de Hipona, que calculó la fecha de la creación en alrededor del 5500 a. C.; de Kepler, que la fechó en 3993 a.C.; y de Newton, que llegó a una fecha sólo cinco años anterior a la de Kepler. Su apoteosis llegó en el siglo XVII, cuando James Ussher, obispo de Armagh, Irlanda, llegó a la conclusión de que el “comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a. C.”

La espuria exactitud de Ussher le ha convertido en el blanco de las burlas de muchos eruditos modernos, pero, a pesar de todos sus absurdos, su enfoque -y, más en general, el enfoque cristiano de la historiografía-hizo más para estimular la investigación científica del pasado que el altanero pesimismo de los griegos. Al fifundir la idea de que el universo tuvo un comienzo en el tiempo y que, por lo tanto, la edad de la Tierra era finita y medible, los cronólogos cristianos montaron sin saberlo el escenario para la época de estudio científico de la cronología que siguió.

La diferencia, desde luego, era que los científicos no estudiaban las Escrituras, sino las piedras. Así fue como el naturalista George Louis Leclere expresó el credo de los geólogos en 1778:

http://www.ojocientifico.com/wp-content/052.jpg

Así como en la historia civil consultamos documentos, estudiamos medallones y desciframos antiguas inscripciones, a fin de establecer las épocas de las revoluciones humanas y fijar las fechas de los sucesos morales, así también en la historia natural debemos excavar los archivos del mundo, extraer antiguas reliquias de las entrañas de la tierra [y] reunir sus fragmentos…Este es el único modo de fijar ciertos puntos en la inmensidad del espacio, y de colocar una serie de señales en el camino eterno del tiempo.

Bueno, hemos dado una vuelta por las ideas del pasado y de épocas antiguas en las que, los humanos, confunduidos (como siempre), trataban de fijar el modelo del mundo, del Universo. Ahora, mirando hacia atrás en el tiempo, con la perspectiva que nos otorga algunos miles de años de estudio e investigación, nos damos cuenta de que, la mayor parte de nuestra historia, está escrita basada en la imaginación y, los hechos reales, van llegando a nuestra comprensión muy poco a poco para conocer, esa realidad, que incansables perseguimos.

Para terminar, os recomendaré que nunca dejéis de lado la lectura:

¿Qué duda nos puede caber?

¿Acaso no es un libro el mejor compañero de viaje?

No molesta, te distrae y te enseña.

Si alguna vez viajas,

Recuerda esta reseña.

Claro que, de todo ese recorrido del que podemos hablar, debemos ir añadiendo cositas nuevas y nuevos sdescunbrimientos que nos harán conocer el universo de manera más completa y también familiarizarnos con los objetos que lo pueblan.

Resultado de imagen de Ligo y las ondas gravitacionalesResultado de imagen de Ligo y las ondas gravitacionales

Sofisticados artilugios tecnológicos que detectan las ondas gravitatorias producidas por colisiones descomunales de agujeros negos situados a miles de millones de nosotros, harán posible que vayamos conociendo otros aspectos nuevos de un universo vasto e inmenso.

emilio silvera

¿Vida solo en la Tierra? ¡Qué disparate?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La vida (a partir de su primer paso, del primer individuo de cada especie) viene de la vida. Ha surgido en el Universo de manera expontánea y, el Azar, bajo ciertas circunstancias muy especiales que estaban presentes en lugares privilegiados del Universo, dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada.

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

Así se expresaba Fred Hoyle.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

¿Quien puede negar la presencia de agua en este lugar en el remoto pasado, o…, puede que no tan lejos

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

 

Encélado se confirma como candidato a albergar vida extraterrestre
 

Imagen de Encédalo, la luna de Saturno (Equipo de imagen Cassini, SSI, JPL, ESA, NASA) –

 

“Encélado, la luna de Saturno, tiene un océano global bajo su corteza exterior de hielo, según una nueva investigación basada en datos arrojados por la misión Cassini de la NASA y publicada en la revista digital Icarus. Descubrimientos anteriores ya habían señalado que debía poseer una masa de agua líquida subterránea en el hemisferio sur, pero los científicos no sospechaban que pudiera extenderse por todo el núcleo del planeta. Tras este hallazgo, este satélite, geológicamente activo, se ha convertido en el primer mundo que conocemos con un océano subterráneo en contacto con la superficie y también en el candidato número uno en el Sistema Solar a albergar vida extraterrestre.”

 

 

europa satelite bde venuseuropa satelite de venus

La superficie de Europa no tiene montañas ni valles profundos, ni grandes impactos de meteoritos lo que podría indicar que es una luna joven o que en realidad su superficie está expuesta a procesos que la regeneran. La atmósfera que tiene es muy ligera y compuesta de oxígeno. Si pudiéramos ver de cerca su superficie, como la sonda Galileo, veríamos que el hielo se parece mucho al que existe en los polos de la Tierra, hielo a la deriva.

titan_thumb.jpg

La luna Titán tiene una atmósfera muy parecida a la de la Tierra primigenia y, las posibilidades de que puede albergar alguna clase de vida… ¡No son nulas!

La forma de vida autónoma más sencilla es una célula, ¿y qué es una célula sino una membrana rellena de agua, material genético y orgánulos? Los microorganismos terrestres se basan en una membrana con estructura de bicapa lipídica para separar el medio interno del externo, pero una membrana de este tipo resulta imposible en Titán. Mientras que el agua es una molécula polar -y, por tanto, buen disolvente de otras sustancias polares e iones-, el metano es apolar. Sin embargo, en principio podríamos pensar que una membrana bicapa inversa es posible en el metano. Esto es, con los extremos fosfolípidos apolares e hidrófobos dirigidos hacia el exterior y el interior de la membrana -es decir, hacia el metano- y las cabezas hidrófilas hacia la sección media de la membrana.

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

Interior de Europa pq

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

                                        Tenemos motivos -también- para estar orgullosos

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

No estaría nada mal construir un Hotel en Titán y, por la venta, ver todas las mañanas la magnificencia de Saturno y todo el entorno que con el camino por el espacio interestelar.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió.

                                                                             La sonda Huygens

De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera