Mar
1
El Universo no deja de sorprendernos
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (0)
Los científicos, desconcertados ante la misteriosa señal del Cúmulo de Perseo
«Lo que encontramos no podía ser explicado por la Física conocida», dicen los investigadores
Imagen del cúmulo de Perseo y de la misteriosa línea espectral que no corresponde a ningún tipo de materia conocida – APOD/NASA
“No podía creer en lo que estaba viendo”, afirmaba Esra Bulbul, del Harvard Center for Astrophysics, tras comprobar una y cien veces sus instrumentos. Era el mes de Julio de 2014 y, según sus palabras, “lo que encontramos, a primera vista, no podía ser explicado por la Física conocida”. En el momento de su hallazgo, la investigadora se encontraba trabajando junto a media docena de colegas. Manejaba el telescopio espacial de rayos X Chandra y exploraba el cúmulo de Perseo, un gigantesco enjambre de galaxias a 250 millones de años luz de la Tierra. Imaginemos una nube de gas en la que cada átomo fuera una galaxia completa. Eso nos dará una idea del aspecto que tiene el cúmulo de Perseo, uno de los objetos más masivos del Universo conocido. Todo el cúmulo, además, está rodeado por una enorme “atmósfera” de plasma supercaliente. Y es ahí, en ese plasma, donde se originó el misterio.
A unos 250 millones de años luz de distancia, este par de cúmulos esatelares abiertos es un fácil objetivo para los prismáticos, un maravilloso campo de estrellas en la constelación septentrional de Perseo. También visible a simple vista desde zonas con cielos oscuros, fue catalogado en el año 130 a. C. por el astrónomo griego Hiparco. Ahora se los conoce como h y chi Perseo, o NGC860 (arriba a la derecha) y NGC 884.
La misma vista desde más distancia
La “atmósfera” del cúmulo está llena de iones de diversas sustancias y metales, cada uno de los cuales produce un “pico” o línea característica en el espectro de los rayos X. Esas líneas pueden ser observadas y estudiadas con el telescopio espacial Chandra, y dado que cada una de ellas corresponde a un elemento, el método se utiliza para averiguar de qué están hechos los objetos que los astrónomos observan en el espacio. “Todas las líneas -explica Bulbul-, se producen a niveles bien conocidos de energías de rayos X”.
Sin embargo, en 2012, cuando Bulbul recopilaba los datos recogidos por Chandra durante una observación de 17 días, en el espectro surgió una línea que, sencillamente, no debería existir. “Apareció una línea en el rango de los 3,56 Kev (kiloelectronvoltios) -recuerda la investigadora- que no se correspondía con ninguna transición atómica conocida. Fue una enorme sorpresa”.
Al principio, ni siquiera la propia Bulbul podía creerlo. “Me llevó mucho tempo convencerme de que esa línea no era un artefacto del propio detector -afirma-, ni tampoco una línea atómica ya conocida. Llevé a cabo análisis detallados, analicé y volví a analizar los datos, los dividí entre diferentes grupos de investigadores, y los comparé con los de otros cuatro detectores a bordo de otros dos observatorios diferentes. Pero ninguno de esos esfuerzos hicieron que las líneas desaparecieran”.
En pocas palabras, la nueva y misteriosa línea era algo muy real. Y su autenticidad volvió a ser confirmada cuando el equipo de Bulbul encontró una firma espectral idéntica en las emisiones de rayos X de otros 73 cúmulos de galaxias diferentes. Esos datos, además, fueron recogidos por el telescopio espacial europeo XMM Newton, un instrumento completamente independiente de Chandra.
Para colmo, y apenas una semana después de que Bulbul y su equipo publicaran sus resultados, otro grupo de investigadores dirigidos por Alexey Boyarsky, de la Universidad holandesa de Leiden, reportaba el mismo tipo de líneas espectrales, halladas con el telescopio XMM Newton y, esta vez, en la vecina galaxia de Andrómeda.
«Bulbulon»
Si esas líneas no corresponden a ningún tipo concido de materia, ¿De dónde proceden entonces? Las sospechas, llegados a este punto, se centran sobre otra clase de materia, por ahora desconocida: la materia oscura. “Tras publicar el artículo -recuerda Bulbul- los físicos teóricos empezaron a especular con hasta 60 tipos diferentes de materia oscura que pudieran explicar esa firma en el espectro. Algunos de ellos llegaron incluso a bromear sobre el tema, llamando ´bulbulon´a la partícula desconocida”.
Entre la gran variedad de candidatos de materia oscura capaces de producir una línea espectral como la observada se encuentran los axiones, los neutrinos estériles o los hipotéticos “módulos de materia oscura” que podrían surgir del “rizado” de dimensiones extra en el marco de la teoría de cuerdas.
Pero lo cierto es que el misterio continúa, y que para resolverlo habrá que esperar, probablemente, a disponer de nuevos instrumentos de observación. Los investigadores esperan que el telescopio avanzado de rayos X Astro H, lanzado hace unos meses por la agencia espacial japonesa, pueda ayudar a esclarecer la cuestión. En efecto, el instrumento cuenta con una nueva clase de detector, desarrollado por la NASA y la Universidad de Wisconsin, que podría ser capaz de medir la misteriosa línea con mucha más precisión de lo que ha sido posible hasta ahora.
Mar
1
Nuevas maneras de mirar el Universo
por Emilio Silvera ~
Clasificado en Futuro ~
Comments (0)
Quedó, hace algún tiempo, instalado el espectrógtafo de Infrarrojo Cercano en el Telescopio James Webb. Veremos que maravillas nos depara.
02.04.14.- En Marzo, el Espectrógrafo de Infrarrojo Cercano (NIRSpec) del Telescopio Espacial James Webb fue instalado en el módulo de instrumentos. El NIRSpec se une a la cámara de infrarrojo cercano (NIRCam), un sensor de guiado de precisión y una cámara en el infrarrojo cercano y un espectrógrafo sin ranura (FGS-NIRISS), y una cámara y espectrógrafo en el infrarrojo medio (MIRI), que ya se encuentran integrados en el Módulo de Instrumentos Científicos, por lo que el módulo de intrumentos está completo.
![]() |
Instalación de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb. Image Credit: NASA/Chris Gunn
El Telescopio Espacial James Webb es un gran telescopio espacial, optimizado para longitudes de onda infrarrojas. Su lanzamiento está previsto a finales de esta década. Webb encontrará las primeras galaxias que se formaron en el universo temprano, conectando el Big Bang a nuestra propia galaxia la Vía Láctea. El telescopio espacial James Webb y sus instrumentos están optimizados para captar la luz infrarroja y así poder estudiar la radiación emitida por galaxias remotas y observar a través del denso velo de polvo que envuelve a algunos objetos, como los embriones de estrellas.
PR 30-2013. Europa ha finalizado la construcción del Espectrógrafo para el Infrarrojo Cercano, uno de los dos instrumentos con los que participa en el Telescopio Espacial internacional James Webb, que se pondrá en órbita a bordo de un lanzador Ariane 5 en el año 2018.
Este telescopio alcanzará un nivel de sensibilidad sin precedentes, ya que se encontrará a 1.5 millones de kilómetros de la Tierra en dirección opuesta al Sol y protegido por un parasol del tamaño de una cancha de tenis, que le mantendrán alejado de las influencias de la atmósfera terrestre, a baja temperatura, y en la más absoluta oscuridad. El Telescopio Espacial James Webb es un proyecto conjunto de la ESA, la NASA y la Agencia Espacial Canadiense diseñado para tomar el relevo del exitoso telescopio espacial Hubble.
El Telescopio Espacial James Webb (en inglés James Webb Space Telescope o JWST), es un observatorio espacial en fase de desarrollo que estudiará el cielo en frecuencia infrarroja, sucesor científico del telescopio espacial Hubble y del Spitzer. Las principales características técnicas son un gran espejo de 6,5 metros de diámetro, una posición de observación lejos de la Tierra, en órbita alrededor del punto L2 del sistema Sol- Tierra, y cuatro instrumentos especializados. La combinación de estas características le dará una resolución sin precedentes y sensibilidad de larga longitud de onda visible al infrarrojo medio, permitiendo sus dos principales objetivos científicos –estudiar el nacimiento y evolución de las galaxias y la formación de estrellas y planetas.
Si ellos pudieran contemplar hasta donde hemos llegado en la sostificación de los ingenios que podemos fabricar y que son capaces de captar galaxias y estrellas situadas al filo de su nacimiento, hace ahora más de 12.000 millones de años-luz… ¡Se morían del susto!
Paso a paso, sin que apenas nos demos cuenta, cada día nos acercamos un poco más al futuro que vendrá y, aunque nosotros seguimos instalados en el presente, estamos haciendo todo lo preciso para que ese futuro sea muy diferente al hoy, y, en relación al Universo y a la Naturaleza misma (también la nuestra), estamos avanzando de manera imparable. Cada nuevo conocimiento conquistado, nos posibilitan la apertura de nuevas puertas, antes cerradas, y, detrás de ellas, encontramos respuestas nuevas.
¿Que nos dira el James Webb Space Telescope?
Esperémos que mucho de lo que ahora no sabemos.