Mar
28
Una larga andadura… ¡¡25 Millones de Visitas!!
por Emilio Silvera ~ Clasificado en Gracias al visitante ~ Comments (2)
Hace algún tiempo que iniciamos la andadura de este Blog que, sin pretensiones de ninguna clase, y, con el sólo propósito de divulgar temas de Ciencia de manera sencilla (dentro de lo posible), nos pusimos a comentar temas de Física y de Astronomía, intercalado con algunos otros referidos al pasado, otras civilizaciones que antes que nosotros pasaron por aquí, por el planeta Tierra. Y, de la misma manera, hemos querido asomarnos a esos misteriosos lugar que llamamos Cerebro, Conciencia y Mente.
Está claro que, no podíamos dejar de lado, ese otro asombroso acontecimiento que es… ¡La Vida! Hemos dedicado a esos temas más de 5.000 páginas que hemos tratado de ir poniendo de manera intercalada para hacer más amena la visita de todos ustedes.
Está claro que, sin esas visitas, este Blog no sería nada, y, aunque sencillo en sus maneras, creemos que nuestro esfuerzo no ha caido en saco roto (como se suele decir), sino que, por el contrario, hemos tenido la acogida de muchas personas en todo el mundo, y, el que algunos comenten y otros no… ¡Qué más da! Todos formamos parte de una gran familia.
Mantedremos el farol encendido a cualquier hora, para que, al entrar en nuestra casa, no podáis tropezar.
Como regalo de aniversario os dejamos la Imagen de la Burbuja Azul conocida como ‘WR 31a’
Shalafi y emilio silvera
Mar
28
¡La Física! ¡Siempre presente!
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
¿Cuándo comprenderemos?
Miramos pero… ¿Sabemos ver?
Estar equivocados nos sorprende y, al mismo tiempo, nos enseña algo sobre nosotros mismos. No solo hay cosas que no sabemos, sino que las cosas que creemos saber pueden no ser ciertas. Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas y, si es el correcto, estaremos en esa verdad que incansables buscamos.
No resulta nada fácil descubrir los caminos por los que deambula la Naturaleza y las razones que ésta tiene para recorrerlos de la manera que lo hace y no de otra. Una cosa es cierta, la Naturaleza siempre trata de conseguir sus fines con el menor esfuerzo posible y, cuestiones que nos parece muy complicadas, cuando profundizamos en ellas como la ciencia nos exige, llegan a parecernos más sencillas y comprensibles. Todas las respuestas están ahí, en la Naturaleza.
“Este es un ensayo de Viktor Frankl neurólogo, psiquiatra, sobreviviente del holocausto y el fundador de la disciplina; que conocemos hoy como Logoterapia.
No eres Tú, soy Yo…
¿Quién te hace sufrir? ¿Quién te rompe el corazón? ¿Quién te lastima? ¿Quién te roba la felicidad o te quita la tranquilidad? ¿Quién controla tu vida?…
¿Tus padres? ¿Tu pareja? ¿Un antiguo amor? ¿Tu suegra? ¿Tu jefe?…
Podrías armar toda una lista de sospechosos o culpables. Probablemente sea lo más fácil. De hecho sólo es cuestión de pensar un poco e ir nombrando a todas aquellas personas que no te han dado lo que te mereces, te han tratado mal o simplemente se han ido de tu vida, dejándote un profundo dolor que hasta el día de hoy no entiendes.”
No veo que profesor pregunte por qué el llegar a saber también, nos puede hacer sufrir. Estamos en aquello de…, ” ojos que no ven, corazón que no siente”.
Hay historias del pasado que te hablan de pueblos y Civilizaciones que llegaron a tener una enorme visión del mundo. Sus sociedades alcanzaron cotas increibles en el saber de cuestiones que, aún hoy, nos parecen difíciles de creer y, sin embargo, ahí han quedado las huellas materiales de que, esos pueblos, mucho antes que nosotros, supieron entender el mundo y, de alguna manera, fueron incluso más prácticvos y naturales que nosotros muchos siglos después.
¿Cómo podríamos ensamblar una explicación científica de la génesis de la vida? A simple vista nos puede parecer una tarea sin esperanzas. No creo que buscar fósiles en las rocas más antiguas sea suficiente y nos ofrezca todas las claves necesarias. La mayoría de las delicadas moléculas prebióticas que dieron lugar a la vida habrán sido erradicadas por el inexorable paso del tiempo y la destructora entropía que todo en polvo lo convierte. Es posible, que podamos esperar el hallazgo de algún residuo químico ya degradado de aquellos organismos ancestrales a partir de los cuales evolucionó la vida celular que conocemos.
Claro que, aparte de los fósiles que podamos encontrar en las rocas, existe otra línea de evidencia que, de la misma manera, se remonta al pasado lejano y oscuro, pero que existe aquí y ahora, dentro de las formas de la vida presente. Los biólogos están convencidos de que ciertas reliquias de organismos antiguos siguen viviendo en las estructuras y procesos bioquímicos de sus descendientes, incluyéndonos a nosotros, los seres humanos.
Todo comienza siendo una cosa y con el tiempo, se transforma en otra diferente: Evolución por la energía. En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible que podemos contemplar a nuestro alrededor con el paso inexorable del tiempo se van cumpliendo las fases y los ciclos, y, no necesarimente siempre son de desgaste y envejecimiento, sino que, otras son de creación y resurgimiento. Cuando las estrellas masivas viejas esplotan en Supernovas, el espacio interetelar queda ocupado, en grandes regiones, por una nube enorme que, a veces, abarca varios años luz. El tiempo transcurre y, de esos restos de estrella “muerta”, con ayuda de la gravedad, nacen nuevas estrellas. Es la entropía negativa que lucha contra aquella otra que todo lo quiere destruir. Nosotros, de alguna manera, hacemos lo mismo con la descendencia y creamos entropía negativa que hace que lo nuevo, de alguna manera, esté venciendo a ese destino irreversible que nos habla de que la Eternidad… ¡No existe, para nada ni para nadie!
El gas y el polvo se transforma en una brillante estrella que vive diez mil millones de años y termina en Nebulosa planeta con una enana blanca en el centro. Entonces la estrella que tenía un diámetro de 1.500 km, se reduce hasta unas pocas decenas, 20 0 30 Km y, su densidad, es inmensa, emitiendo radiación ultravioleta durante mucjho tiempo hasta que se enfría y se convierte en un cadáver estelar.
En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura posible la fusión de los protones y, en ese instante, nace la estrella que brillará miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.
Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar el común de los mortales.
La singularidad con su inmensa fuerza gravitatoria atrae a la estrella vecina
La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita , y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.
La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.793’458 km/s.
Sí, se pudo confirmar que los neutrinos respetan la supremacía el fotón y la luz, sigue siendo la más rápida del Universo. Y sin embargo, no escapar de la atracción de un Aguero Negro.
Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre de agujero negro, la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.
Las singularidades ocurren en el Big Bang, en los agujeros negros y en el Big Crunch (que se podría considerar una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin que será el comienzo).
Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.
La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el de agujero negro se debe a Johb Wheeler.
Señalamos la singularidad del Big Bang pero… ¿fue así?
Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada la singularidad, donde desaparece siempre sumándose a la masa del agujero cada vez mayor.
En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.
Después de todo, la velocidad de la luz, la máxima del universo, no vencer la fuerza de gravedad del aujero negro que la tiene confinada para siempre.
En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?
Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros.
Llegará un momento que el de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros que todo el universo se convierta en un inmenso Agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad.
Esa fuerza de la naturaleza que está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.
Esa reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch, que como sabéis, es sólo una de las variadas teorías del final del universo.
Claro que, antes de que eso llegue, tendremos que resolver el primer problema: La visita de Andrómeda, la salida de la Tierra de la Zona habitable, o, la muerte del Sol que se convertirá en una gigante roja primero y en una nebulosa planetaria con una estrella enana blanca en el centro después.
Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.
Carl Sagan pinta el cuadro siguiente:
“Dentro de miles de millones de años a partir de , habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”
En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.
Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a unos 500 km/s, y chocarán en un periodo de entre 3 y 4 mil millones de años. Como ha dicho el astrónomo Lars Hernquist de la California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“. Aunque, lo cierto es que aunque en el choque algo se detruya, lo cierto es que todo quedará en forma de una galaxia mucho mayor.
Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil. Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.
Por todas estas catástrofes anunciadas por la ciencia, científicos como Kip S. Thorne y Stephen Hawking sugieren a otros universos paralelos a través de agujeros de gusano en el hiperespacio. Sería la única puerta de salida para que la Humanidad no se destruyera.
Si lo alcanzaremos o no, es imposible de contestar, no tenemos los necesarios para ello. Incluso se podría decir que aparte de estas catástrofes futuras que sabemos a ciencia cierta que ocurrirán, seguramente existan otras que están ahí latentes en la incertidumbre de si finalmente ocurren o no, sólo pendiente de decidir lo uno o lo otro por parámetros ocultos que no sabemos ni que puedan existir.
En esta situación de impotencia, de incapacidad física e intelectual, nos tenemos que dar y admitir que, verdaderamente, comparados con el universo y las fuerzas que lo rigen, somos insignificantes, menos que una mota de polvo flotando en el haz de luz que entra, imparable, por la ventana entre-abierta de la habitación.
Sin embargo, tampoco es así. Que se sepa, no existe ningún otro grupo inteligente que esté capacitado tratar de todas estas cuestiones. Que la especie humana sea consciente de dónde vino y hacia dónde va, en verdad tiene bastante mérito, y más, si consideramos que nuestro origen está a partir de materia inerte evolucionada y compleja que, un día, hace probablemente miles de millones de años, se fraguó en estrellas muy lejanas.
A finales de los 60, un joven físico italiano, Gabriele Veneziano, buscaba un grupo de ecuaciones que explicara la fuerza nuclear fuerte. Este pegamento tan fuerte que mantenía unidos los protones y neutrones del núcleo de cada átomo. Parece ser que por casualidad se encontró con un libro antiguo de matemáticas y en su interior encontró una ecuación de más de 200 años de antigüedad creada por un matemático suizo llamado Leonhard Euler. Veneziano descubrió con asombro que las ecuaciones de Euler, consideradas desde siempre una simple curiosidad matemática, parecían describir la fuerza nuclear fuerte. Después de un año de de profundos estudios, experimentos, intuición e imaginación, se podría decir que elaboraron la Teoría de Cuerdas de manera fortuita.
Tras circular entre compañeros, la ecuación de Euler acabó escrita frente a Leonard Susskind, quien se retiro a su ático para investigar. Creía que aquella antigua fórmula describía matemáticamente la fuerza nuclear fuerte, pero descubrió algo nuevo. Lo primero que descubrió fue que describía una especie de partícula con una estructura interna que vibraba y que mostraba un comportamiento que no se limitaba al de una partícula puntual. Dedujo que se trataba de una cuerda, un hilo elástico, como una goma cortada por la mitad. Esta cuerda se estiraba y contraía además de ondear y coincidía exactamente con la fórmula. Susskind redactó un artículo donde explicaba el descubrimiento de las cuerdas, pero nunca llegó a publicarse.
Muchos buscaron la 5ª dimensión… ¡sin fortuna! Aquí sólo hay tres y el espacio.
Claro que, ya he comentado otras veces que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y , y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”. Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría“.
La Gravedad cuántica está en algunas mentes , ¿Estará en la Naturaleza?
La característica más notable de la teoría de cuerdas ( ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. , de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.
Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas“.
No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de diferente.
Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.
En conclusión, las simetrías que vemos a nuestro alrededor, el arcoiris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.
La teoría de cuerdas, a partir del descubrimiento Veneziano-Suzuki, estaba evolucionando atrás buscando las huellas de Faraday, Riemann, Maxwell y Einstein poder construir una teoría de campos de cuerdas. De hecho, toda la física de partículas estaba basada en teoría de campos. La única teoría no basada en teoría de campos era la teoría de cuerdas.
De la teoría de cuerdas combinada con la supersimetría dio lugar a la teoría de supercuerdas. La cuerda es un objeto unidimensional que en nueva teoría se utiliza remplazando la idea de la partícula puntual de la teoría cuántica de campos. La cuerda se utiliza en la teoría de partículas elementales y en cosmología y se representa por una línea o lazo (una cuerda cerrada). Los estados de una partícula pueden ser producidos por ondas estacionarias a lo largo de esta cuerda.
En teoría se trata de unificar a todas las fuerzas fundamentales incorporando simetría y en la que los objetos básicos son objetos unidimensionales que tienen una escala de 10-35 metros y, como distancias muy cortas están asociadas a energías muy altas, este caso la escala de energía requerida es del orden de 1019 GeV, que está muy por encima de la que hoy en día pueda alcanzar cualquier acelerador de partículas.
antes expliqué, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De , inalcanzables.
Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías ( ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.
Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad, lo que en efecto ocurre en las interacciones débiles.
Extrañas configuraciones a las que, algunos físicos le quieren sacar lo que seguramente no se encuentra en ellas
Estoy convencido de que la teoría de supercuerdas será finalmente corroborada por los hechos y, ello, se necesitará algún tiempo; no se puede aún comprobar ciertos parámetros teóricos que esas complejas matemáticas a las que llaman topología nos dicen que son así.
Habrá que tener siempre a mano las ecuaciones de Einstein, las funciones modulares de Ramanujan y el Supertensor métrico de ese genio matemático que, al igual que Ramanujan, fue un visionario llamado Riemann.
Las historias de estos dos personajes, en cierto modo, son muy parecidas. Tanto Riemann como Ramanujan murieron antes de cumplir los 40 años y, también en ambos casos, en difíciles. Estos personajes desarrollaron una actividad matemática sólo comparable al trabajo de toda la vida de muchos buenos matemáticos.
¿Cómo es posible que, para proteger la simetría conforme original por su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas, que precisamente son las identidades de la función modular de Ramanujan?
En este he expresado que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debo corregir algo esta afirmación, y para decirlo correctamente debería decir: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. Al añadir la palabra coherentemente hemos señalado un punto crucial. ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez de dimensiones del espacio-tiempo. Esto a su vez, puede facilitarnos la clave decisiva para explicar el origen del universo.
emilio silvera
Mar
27
¿Llegará la I.A. a superar a los Humanos?
por Emilio Silvera ~ Clasificado en I. A. ~ Comments (0)
Literatura y ciencia
La novela de un robot, finalista en un premio literario
Los algoritmos de la Inteligencia Artificial triunfan entre los escritores: ya son capaces de emocionar al jurado de un concurso.
Cuenta el documental Gonzo que Hunter S. Thompson se sentó un día frente a su máquina de escribir y copió una y otra vez El gran Gatsby hasta que fue capaz de reproducir “la música” de Fitzgerald, el ritmo de su prosa en base a las teclas. Ahí había un algoritmo, dado que el estilo siempre requiere de repetición. Lo mismo hizo el PC Writer 2008, un programa informático al que se le incorporó el vocabulario, el lenguaje y las herramientas narrativas de trece escritores, además de los datos que perfilaban a los personajes de la obra, una trama y un tiempo y un lugar en los que desarrollar la historia.
En tres días, voilà: ya había parido una novela. Eso sí: la máquina imitaba la forma de escribir de Haruki Murakami (Tokio Blues o Crónica del pájaro que da cuerda al mundo) y sus personajes se parecían sospechosamente a los de Anna Karenina. El título tampoco era muy original: Amor verdadero. Tras el proceso de corrección -el mismo que se lleva a cabo cuando el texto procede de la mano humana-, la novela fue publicada por la editorial rusa Astral Spb.
La máquina imitaba la forma de escribir de Haruki Murakami y sus personajes se parecían sospechosamente a los de Anna Karenina. El título tampoco era muy original: Amor verdadero
Ya en 2007, la revista Discovery Channel hablaba de MEXICA, un programa informático que escribía sus propios relatos de ficción basándose en representaciones computerizadas de emociones y tensiones entre diversos personajes. Aunque ambos sistemas necesiten de una revisión humana al final de su trabajo, es indiscutible que sus capacidades dan miedo. Ya lo decía la tercera ley de Clarke: toda tecnología lo suficientemente avanzada es indistinguible de la magia. La creación artificial no da los quebraderos de cabeza de la humana, al menos a ojos de la industria: es más obediente a las características requeridas por el editor y sus honorarios son más bajos.
Sucedió en Japón
Claro que las secuencias sintácticas se pueden generar -emulando estilos, seleccionando léxicos-, pero ¿y el sentido literario-poético humano? ¿Podemos clonar o reproducir algo que no sabemos definir exactamente? Aquí el tradicional problema de la inteligencia artificial: el humor. ¿Cuáles son los mecanismos de la risa? Se han dado pasos en esta dirección -a principios de este año, el equipo de investigación de Virginia Tech, en EEUU, aseguró haber encontrado un algoritmo que entiende y predice el humor en imágenes-, pero no se ha conseguido lo propio con la herramienta del lenguaje.
Quedaba ahí un consuelo: la sensación que nos da de que la máquina está creando es sólo eso, una sensación, porque en realidad está uniendo extractos de cosas que le han enseñado previamente. Sólo eso: las organiza de forma nueva, distinta. Y se le nota: igual que se notan las influencias feroces de algunos autores que les llevan a una imitación más o menos descarada. Menos mal que las máquinas -aún- no se han sofisticado tanto.
La sensación que nos da de que la máquina está creando es sólo eso, una sensación, porque en realidad está uniendo extractos de cosas que le han enseñado previamente
Cuando el ser humano -y el escritor- volvían a sentirse imprescindibles, estalla la noticia: según The Japan News, una novela coescrita por seres humanos y un programa de inteligencia artificial ha llegado a la segunda fase del proceso de selección de un premio literario nacional. Aunque no alcanzó el premio final, el jurado se quedó francamente sorprendido al enterarse de que la historia había sido producida por una máquina.
La novela finalista la había presentado un equipo de investigadores encabezado por Hitoshi Matsubara, profesor de la Universidad del Futuro-Hakodate, e imitaba el estilo de Shinichi Hoshi, un escritor japonés reconocido por sus obras de ciencia ficción. Ésta no fue la única de elaboración artificial: este mismo equipo había presentado otro relato más, y el grupo científico liderado por el profesor de la Escuela de Ingeniería de la Universidad de Tokio, Fujio Toriumi, había enviado otras dos historias.
Describir a un personaje
La cuadrilla de Matsubara estableció los parámetros de la novela, como la trama y el sexo de los personajes, y dejó al artefacto actuar: no lo hizo mal, claro, pero, según las palabras de un miembro del jurado, el novelista Satoshi Hase: “Aunque me sorprendió el trabajo -era una novela muy bien estructurada-, este sistema tiene todavía algunos problemas para ganar el premio, por ejemplo, la descripción de los personajes”.
Es curioso: la inteligencia artificial entiende de códigos, de relaciones, de lógica verbal y aritmética, pero no tiene capacidad de imaginar. De crear de la nada. De fabular. Se acerca al hemisferio cerebral izquierdo a pasos agigantados, pero el derecho -sensaciones, sentimientos, habilidades visuales y sonoras…- ni lo roza. Puede dividir un texto en capítulos ordenados y coherentes, pero no puede dotar de alma a sus personajes ni a sus espacios. Es un alivio -por ahora-.
Aunque la novela artificial pudo pasar una etapa del proceso del premio, no convenció el hecho de que no describiese a sus personajes
El Premio Hoshi Shinichi es conocido por aceptar solicitantes que no sean seres humanos -esto es, programas de inteligencia artificial y variantes-, pero según la secretaría del concurso, este año ha sido la primera vez que una historia de este tipo supera una etapa. El profesor ha hecho saber que inició este proyecto hace cuatro años y que no va a rendirse hasta perfeccionar su programa.
La máquina que le hace los guiones a Friends
Otras aplicaciones están tomándole la delantera: en octubre del año pasado apareció Wordsmith, que es capaz de escribir artículos -ya está siendo usada por Associated Press para crear 3000 artículos cada trimestre sobre resultados fiscales de compañías-; y en enero de 2016, Andy Herd creó una red neuronal que puede generar diálogos de la famosa serie Friends a partir de los diálogos originales de la serie.
La inteligencia artificial ya puede escribir discursos políticos -siguiendo perfectamente una línea ideológica con palabras claves- e incluso pasar las pruebas de acceso de universidades japonesas. La última que ha liado es conseguir derrotar a un ser humano en una partida de Go, como se demostró en el programa AlphaGo.
La inteligencia artificial ya puede escribir discursos políticos e incluso pasar las pruebas de acceso de universidades japonesas
El espectador de Her, la película de Spike Jonze, entendió en la escena de ‘sexo’ entre Phoenix y la voz de Johansson -trufada de un negro orgasmático- que el ser humano es lenguaje: que la imaginación, a remolque de la palabra, trasciende a lo físico y es capaz de excitar. La intención, el juego, el guiño de la inteligencia, ensanchan la sintaxis hacia campos donde la máquina no llega. Además, los programas de inteligencia artificial necesitan de información que procesar para seguir “viviendo”: si no la reciben, pierden su propósito y dejan de existir. El ser humano sí tiene eso de inagotable. No puede desconectarse del recuerdo, de la propia experiencia -que es la fuerza motor de la escritura-. No puede. Por ahora.
Mar
25
Las Leyes del Universo… ¿Serán las mismas en todas partes?
por Emilio Silvera ~ Clasificado en Física ~ Comments (3)
Llamamos Mente a eso inmaterial que surge del cerebro, algo que ni la filosofía ha sabido explicar, y, como hacemos siempre, se acude a la metafísica para tratar de dar una torpe explicación de lo que, en realidad, no hemos llegado a comprender.
Está claro que el tiempo pasa y cada generación trata de saber lo que hicieron las que las precedieron. Los vestigios del pasado son muchos y, no siempre sabemos traducir sus mensajes pero, los estudiamos y procuramos llegar a explicaciones lógicas de lo que aquello pudo ser, y, para ello, nos transportamos a aquellos contextos del pasado, a las mentalidades de los pobladores que dejaron monumentos que, con una mezcla de lo religioso-astronómico, quería simbolizar lo que ellos creían.
Desde el Parque Nacional del Teide se puede conseguir una buena vista de nuestra Vía Láctea
La “infinitud” de la Vía Láctea, inconmensurable para nosotros, es sólo una más, de decenas de miles de millones que pueblan nuestro Universo. Así, nuestra Galaxia para nosotros “infinita”, es, sencillamente, un objeto más de los muchos que pueblan las regiones del Cosmos. Cientos de miles de millones de estrellas que brillan por todas partes, asombrosos enjambres de planetas repartidos por cientos de miles de sistemas planetarios, cuásares y púlsares, estrellas enanas blancas, marrones y negras, gigantes rojas, Nebulosas de increíbles dimensiones en las que nacen nuevas estrellas y mundos, explosiones supernovas y aguejros negros gigantes que engullen todo el material que pueda capturar… ¡El Universo! nunca dejará de asombrarnos, ni por su inmensidad, ni por su diversidad.
Utilizando una cámara nueva y más poderosa, el Telescopio Espacial Hubble, ha descubierto lo que parece ser el objeto más distante jamás observado, una proto galaxia pequeña a 13.200 millones -luz de distancia, que se remonta a tan sólo 480 millones de años después del nacimiento del universo o Big Bang. Es decir, nos ha traído una galaxia en formación a escaso tiempo del comienzo del tiempo.
Immanuel Kant llegó a la conclusión de que las galaxias eran universos-islas pero, él escribió primero que las nebulosas elípticas, ofrecían una visión que se podía asimilar a un “sistemade muchas estrellas” que se hallan a “enormes distancias”. Aquí, por primera vez se hizo un retrato del universo formado por galaxias a la deriva en la vastedad del espacio cosmológico. El libro de Kant, titulado Historia general de la naturaleza y teoría del cielo, fue publicado -si esta es la palabra apropiada- en 1755, pero su editor quebró, los libros le fueron confiscados para sus deudas y la obra de Kant, cayó en el olvido.
Los entusiasmos galácticos de Kant, a pesar de todo, contribuyeron a sensibilizar la mente humana a la riqueza potencial y la vastedad del universo. Pero el arrobamiento por sí solo por muy perspicaz que sea, es, un fundamento inadecuado para fundamentar una cosmología científica. Determinar si el universo está constituido realmente por galaxias requería hacer un mapa del universo en tres dimensiones, mediante observaciones muy exactas, si no menos arrobadoras, que la contemplación meditativa de Lambert y Kant.
Entró en escena William Herschel, el primer astrónomo que llevó a cabo observaciones agudas y sistemáticas del universo más allá del Sistema solar, donde está la mayor parte de lo que existe. De hecho, en la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.
El observatorio espacial Herschel ha facilitado a un grupo de astrónomos observar cinco galaxias muy lejanas gracias al efecto lente gravitatoria. Así, de alguna manera, y en memoria de Herschel, el Telescopio que lleva su nombre continñua su que fue fundamental
En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de , parece que ésto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica. Si es así, el Universo se expandirá para siempre y tendrá una muerte térmica: El frío desolador del Cero Absoluto (–273 ºC) donde ni los átomos se mueven.
Es curioso como Herschel, encontró en su camino la plenitud siguiendo las huellas de Kepler y Galileo a través del puente que lo llevó de la Música a la Astronomía. La habilidad de Herschel como observador era también muy refinada; sabía utilizar los telescopios. Él decía: “Ver es un arte que es necesario aprender”.
“La luz de las estrellas fijas es de la misma naturaleza [que] la luz del Sol” nos decía Newton, mientras que E. Hubble, comentaba que: “Las observaciones siempre involucran una teoría”. Ambos llevaban razón. Surgieron dos escuelas de pensamiento sobre la naturaleza de las “nebulosas elípticas” que predominaron en el siglo XIX. Una de ellas, la teoría del universo-isla de Kant y Lambert- la expresión es de Kant-, sostenía qwue nuestro Sol es una de las muchas estrellas de una Galaxia, la Vía mLáctea, y que hay otras muchas galaxias, que vemos a través de grandes extensiones de espacio nebulosas espirales y elípticas. (como eran llamadas en aquel tiempo a las galaxias que, no se podían ver con la nitidez que nos proporcionan nuestras modernos telescopios.)
Einstein entra en escena. Nació en Ulm, donde Kepler antaño había deambulado en busca de un impresor, con el manuscrito de las Tablas Rudolfinas Bajo el brazo. Einstein como sabemos, fue un niño aislado y encerrado en sí mismo. No habló los tres años. Daremos un salto hasta 1905, año en el que comenzaron a cristalizar sus pensamientos pudiendo escribir cuatro artículos memorables que lo situaron en ese lugar de privilegio de los verdaderos maestros.
N0, Einstein no llegó a la Física y la Cosmología en bicicleta, él cogió una autopista mayor, esa que está conformada por los pensamientos y que nos pueden llevar más lejos, de lo que cualquier vehículo nos podrá llevar nunca. El primero de aquellos -ahora famosos- artículos, fue publicado tres días después de cumplir los veintiseis años, contribuiría a poner los fundamentos de la física cuántica. Otro modificó el curso de la teoría atómica y la mecánica estadística. Los otros dos enunciaron lo que se conoció como la teoría de la relatividad especial.
Cuando Planck, por aquel entonces director editorial de la Revista científica Annalen der Physik, levantó la mirada después de leer el artículo sobre la relatividad especial, sabiendo inmediatamente que el mundo había cambiado. La era Newton había terminado y había surgido una nueva ciencia reemplazarla.
La odisea que llevó a Einstein hasta la relatividad especial -y de ella a la relatividad general, que expresaría la cosmología de los espacios curvos- empezó cuando tenía cinco años y su padre le mostró una brujula de bolsillo para que estuviera entretenido pero, aquello, le fascinó y, no podía saber qué magia hacia que la aguja señalara siempre hacisa el mismo lugar sin tener en el movimiento. Al preguntar, le dijeron que la Tierra está envuelta dentro de un campo magnético que era el responsable de tal “milagro” y, aquello, al joven Einstein, le maravilló y despertó su curiosidad que nunca le dejó entonces. Él decía que detrás de las cosas debe haber algo profundamente oculto, que nos podría explicar el por qué se comportan de ciertas maneras.
Como antes decía, en el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, también, que la masa y la energía eran una misma cosa, así como que, ¡el Tiempo!, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.
Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido. Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que se diga, quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.
Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la universal de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.
Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.
“La ecuación que gobierna la aceleración de la expansión del Universo, incluyendo la constante cosmológica. El aspecto de la gravedad incluye densidad (p) y presión (ρ) de la materia y la enegía, el signo negativo significa que este aspecto ralentiza la expansión. La constante cosmológica, representada con Λ, tiene signo positivo, por lo tanto contribuye a la aceleración. El parámetro “a” es un factor de escala que mide el tamaño del Universo, y los puntos dobles indican la segunda derivación (aceleración) con respecto al tiempo.”
Más tarde, Einstein comentaría que la introducción de constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo antes de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión. Sin embargo, estudios posteriores han venido a confirmarla.
La Cruz de Einstein
Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia hasta que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfadado, expresándose en términos sencillos y muy distintos ( estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas pero, que nadie hasta entonces, había sabido contestar.
El astrónomo holandés Willem de Sitter obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.
Lo cierto es que Einstein, ha dado en el “blanco” con muchas de sus Ideas y, si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que – el vaticinó-, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, nuevos mundos y, muy probablemente… nuevas formas de vida.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos.
Arriba Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. Abajo los científicos chinos comandados por Juan Yin crearon fotones entrelazados mediante la estimulación de un cristal con luz ultravioleta, que produjo un par de fotones con la misma longitud de onda, pero opuestos. Por separado, ambas teorías funcionan muy bien y se pueden medir y comprobar límites excepcionales. Sin embargo, si las juntamos…
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas. Y, entonces, en eso estamos pero, el casamiento, no se consuma.
Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad que, inmersa en lo cotidiano de un mundo macroscópico, nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que con su comportamiento, me obligan a pensar y me transportan este mundo material nuestro a ese otro fascinante, donde residen las maravillas del universo, sus cimientos infinitesimales en los que residen las “ladrillos” de las estrellas y galaxias…también de los mundos y de los seres vivos. La materia es tan compleja que aún no hemos podido llegar a comprenderla…del todo.
emilio silvera
Mar
25
El futuro está con nosotros
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (2)
Ray Kurzweil
Director de ingeniería de Google, experto en inteligencia artificial
“EN 20 AÑOS AMPLIAREMOS NUESTRA EXPECTATIVA DE VIDA INDEFINIDAMENTE”
Alcanzar el puesto de director de Ingeniería en Google, tener un puñado de importantes patentes tecnológicas registradas a tu nombre, ser doctor honoris causa por 15 universidades, o que Forbes te defina como “la máquina de pensar suprema”, debería ser suficiente para sentirse satisfecho. A no ser que se quiera más. Mucho más. Que el objetivo de tu vida sea alcanzar la inmortalidad. Literalmente, no en el plano metafórico. Y esa es precisamente la aspiración de Ray Kurzweil quien, a sus 67 años, continúa pleno de actividad y con la misma energía que cuando creo su primer programa de ordenador en 1963.
Escucharle afirmar con vehemencia que la suya es la última generación que deberá cuidarse a la vieja usanza porque en diez años seremos capaces de revertir los efectos de la edad y mantenernos jóvenes eternamente, resultaría poco menos que increíble si sus predicciones anteriores no le otorgaran, cuanto menos, el beneficio de la duda. Además de un ingeniero brillante, un extraordinario inventor (fue el creador del primer OCR, del primer escáner para ordenador y del primer sintetizador de texto a voz) y un músico pionero (su trabajo con Stevie Wonder se tradujo en un sintetizador capaz de reproducir los sonidos de cualquier instrumento de forma fidedigna), Kurzweil es un reconocido futurista. O, lo que es lo mismo, un teórico de los caminos que seguirá en los próximos años el ser humano en su relación con la tecnología. Sus ideas han sido plasmadas en tres libros La era de las máquinas inteligentes, La era de las máquinas espirituales y La singularidad está cerca, en los que aventura cómo será el desarrollo tecnológico en un futuro (incluso tan lejano como el 2099) y qué influencia tendrá en nuestras vidas. Alguna de las predicciones realizadas en su primera obra, publicada en 1990, como el crecimiento exponencial de Internet, resultaron ciertas, por lo que cuando Kurzweil habla lo mejor es escucharle atentamente.
No está lejos entonces el día en que seamos capaces de hacer una copia de seguridad de nuestro cerebro y subirla a la nube, o que podamos crear un avatar prácticamente idéntico de alguien ya fallecido. Así de radical es Kurzweil en sus ideas: no sólo quiere conseguir la inmortalidad, sino que se atreve a resucitar a los muertos.
Fuente: El País