viernes, 03 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

File:Artist's rendering ULAS J1120+0641.jpg

 

           Una composición artísdtica del quásar brillante descubierto hasta el momento: ULAS J1120+064.

Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negro supermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.

Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negros supermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

La imagen  de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías  que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

File:3C273 Chandra.jpg

                        Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las dos imágenes, aunque sean tan distitnas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

Lo asombroso de los quásares está en una pregunta  que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe una estrella en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negro. Según todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.

Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agfujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.

Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio,  el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.

Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.

Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …

Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc  (780 millones de años luz) y el más lejano a 6 Gpc  (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?

emilio  silvera

La Ciencia sólo cuenta la verdad

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El Nobel de Química Harold Kroto confiesa en esta entrevista que sufre “la misma enfermedad que Stephen Hawking” y que “pronto” ya no podrá habla. Veámos que nos dice este gran científico en el presente reportaje.
Harold Kroto, después de la entrevista
                                     Harold Kroto, después de la entrevista / Carmen Valiño

Hace algo más de un año, en medio de una rueda de prensa durante el festival científico Starmus, un brioso Harold Kroto se lanzó a una discusión acalorada con dos astronautas del programa Apolo. Los dos héroes de la carrera espacial negaban que los humanos estuviesen acelerando el cambio climático y eso fue más de lo que este acérrimo defensor de la ciencia como forma de comprender el mundo podía soportar. Aunque nada en su actitud lo delataba, ese día Kroto ya sabía que padecía una enfermedad de la neurona motora, un grupo de dolencias neurodegenerativas.

“Tengo la misma enfermedad que sufre Stephen Hawking”, explicó Kroto a El País hace dos semanas, durante la presentación en Londres de la Medalla Stephen Hawking, a la que acudió en una silla de ruedas para sorpresa de muchos asistentes. “Ahora no puedo andar y mi voz se está yendo”, detalló.

El científico británico ganó el Nobel de Química en 1996 por descubrir los fullerenos junto a los estadounidenses Robert Curl y Richard Smalley. Estas moléculas esféricas de carbono muy parecidas en estructura a un balón de fútbol eran interesantes por su potencial aplicación en nuevas terapias, aunque su hallazgo surgió de la más pura curiosidad por la formación de estos compuestos en las estrellas.

Kroto (Wisbech, Reino Unido, 1939) ha sido siempre una mente inquieta. De no haber descubierto los fullerenos podría haberse dedicado al diseño gráfico, otra de sus pasiones. También ha hecho importantes apuestas por la divulgación científica, en especial entre niños y jóvenes, y ha mantenido una activa vida política que le ha llevado a criticar públicamente a papas y presidentes. Ahora está jubilado. “Lo que hago es trabajar en mi página web, publicando en ella todo lo que he hecho, pero pronto no podré hablar”, reconoce. En esta entrevista, breve por el visible cansancio que le produce hablar, el científico discurre sobre la importancia del hallazgo que hizo en 1985 y sobre la necesidad de redirigir la investigación hacia los verdaderos problemas de la humanidad.

Hay que dirigir la investigación hacia criterios de interés humanitario

Pregunta. ¿Qué ha sido lo más excitante en su campo de trabajo?

Respuesta. Lo más excitante es que la predicción que hice hace 27 años se ha hecho realidad, que las moléculas de C60 [el fullereno hecho de 60 átomos de carbono] están por todo el universo.

P. ¿Qué implicaciones tiene eso?

R. Puede que sea esta la molécula que transporta carbono al lugar en el que se forman los planetas. La implicación es que el C60 puede sobrevivir y después romperse en moléculas más pequeñas

P. ¿Cree que hay vida en otros planetas?

R. Supongo que hay bacterias, formas primitivas de vida.

P. ¿Y vida inteligente?

R. Bueno, no hay vida inteligente aquí. Creo que ese es el problema. El mismo impulso que ha hecho que lleguemos hasta donde estamos actualmente puede ser autodestructivo. A medida que se desarrolla la tecnología, la gente puede usarla para destruirnos. Ahora mismo estamos mandando señales por toda la galaxia y aún no hemos visto nada. Tenemos radiotelescopios muy sensibles, pero por ahora no hay nada obvio de que haya formas de vida tan avanzadas desde el punto de vista tecnológico como nosotros.

P. En 1996 dijo que sin educación científica la humanidad no durará más allá del siglo XXI ¿Cree que han mejorado las cosas?

R. Es cierto. Mira por ejemplo el uso de combustibles fósiles. Necesitamos un gran descubrimiento rompedor en ciencia y tecnología para evitar una catástrofe. No estamos lo suficiente preparados en ese aspecto. Un montón de gente se cree falacias. La ciencia es como es y la gente no la quiere reconocer. La ciencia es una forma de pensar, mantiene que solo lo que es verdad merece ser contado. La gente que inventa cosas puede ser muy mala. Es lo que vemos hoy cada día, la gente se cree cosas y hace cosas horribles. Por ejemplo, el terrorismo. Antes tenías que matar a la gente de uno en uno, ahora puedes matar a 90 de una vez y serán posibles armas que podrán destruirnos a todos.

Si tu móvil fuese tan efectivo como rezar no lo comprarías

P. La crisis económica ha empujado a muchos gobernantes, incluidos los españoles, a reducir el presupuesto para investigación ¿Qué les diría?

R. Deberían reconocer que nuestra única esperanza es la tecnología, pero esta debe estar guiada por criterios humanitarios y no por el beneficio económico. Yo no quiero que se desarrollen aviones de combate. Tenemos que pensar en este asunto y dirigir a la sociedad y a la investigación hacia criterios de interés humanitario.

P. ¿Cuál cree que será la próxima revolución científica?

R. Soy un científico, no tengo ni idea. Pero una cosa es segura, la próxima será una gran sorpresa y vendrá a través de la ciencia básica, la fundamental, no la que usa la ciencia para hacer dinero. Mi descubrimiento se hizo gracias al interés por las estrellas, no en la nanotecnología, y ese es el problema.

P. Hace unos años firmó una carta de condena del Papa Benedicto XVI ¿Qué piensa del nuevo?

R. Bueno, ha hecho cosas buenas. El anterior era antagonista de lo secular. Por ejemplo, no reconocía que el 50% de la gente en Reino Unido declara no tener religión. No podía simplemente ignorarlos. Por eso gente como yo, que solo aceptamos la validez de la verdad, de la evidencia, reconocemos que lo que la gente inventa, las religiones, pueden ser peligrosas. Como podemos ver en Oriente Medio. El papa actual es mucho mejor que el anterior pero, aún así, se puede hacer mucho con el humanismo. El humanismo reúne todo lo bueno que hay en la religión y nada de lo malo.

P. ¿Hay algún lugar para Dios en la ciencia?

R. Yo creo que no. Nueve de cada diez científicos de élite son escépticos, solo aceptan evidencias, pruebas. Depende de a qué llames Dios. Si dices que es la naturaleza entonces sí, pero si quieres que sea el concepto de la iglesia, no hay ninguna prueba. La ciencia se basa en probar si las cosas funcionan y, si lo hacen, entonces tu móvil funciona. Si fuese tan efectivo como rezar, no lo comprarías. Las ecuaciones de Maxwell están probadas y funcionan cada vez que enciendes tu teléfono, cada vez. Billones y billones y billones de pruebas a favor de esas ecuaciones.

P. ¿Por qué le gustaría ser recordado?

R. No me importa mucho. Creo que he sido un tipo bastante decente. Intento ayudar a la gente a través de la educación, con mi web, a través de unos cuantos proyectos humanitarios, como por ejemplo escribir cartas a favor de Raif Badawi, un bloguero que está en prisión en Arabia Saudí, o hace ya tiempo escribir a Bush y Blair para que no invadieran Irak. Ese tipo de cosas son las más importantes. Ya que gané el premio Nobel, lo usé para intentar mejorar un poco las cosas.

¿La Física? ¡Una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala.

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals. Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue “simplemente” que la radiación sólo podía ser emitida en paquetes de un tamaño dado. Ni más ni menos que la cantidad de energía de uno de esos paquetes, o cuantos, eran inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse en una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida del espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal manera que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta formalidad. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

emilio silvera

¡Fluctuaciones de vacío! ¿Que son?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un fuerte campo gravitatorio puede inducir un efecto desbocado en las fluctuaciones cuánticas que se producen en el espacio, aparentemente vacío, …

En física cuántica, la fluctuación cuántica es un cambio temporal en la cantidad de energía en un punto en el espacio como resultado del Principio de Incertidumbre que imaginó Werner Heisenberg. De acuerdo a una formulación de este principio energía y tiempo se relacionan de la siguiente forma:

\Delta E\Delta t\approx {h \over 2\pi }

Esto significa que la conservación de la energía puede parecer violada, pero sólo por breves lapsos. Esto permite la creación de pares partícula-antipartícula de partículas virtuales. El efecto de esas partículas es medible, por ejemplo, en la carga efectiva del electrón, diferente de su carga “desnuda”. En una formulación actual, la energía siempre se conserva, pero los estados propios del Hamiltoniano no son los mismos que los del operador del número de partículas, esto es, si está bien definida la energía del sistema no está bien definido el número de partículas del mismo, y viceversa, ya que estos dos operadores no conmutan.

Imagen que representa las fluctuaciones del vacío entre una esfera y una superficie plana.

                      Las fluctuaciones del vacío entre una esfera y una superficie plana

En un estudio realizado por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:

La materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.

Cada protón (o neutrón) se compone de tres quarks – véase ilustración – pero las masas individuales de estos quarks apenas comprenden el 1% del total de la masa del protón ¿Entonces de dónde sale el resto? La teoría sostiene que esta masa es creada por la fuerza que mantiene pegados a los quarks, y que se conoce como fuerza nuclear fuerte.  En términos cuánticos, la fuerza fuerte es contenida por un campo de partículas virtuales llamadas gluones, las cuales irrumpen aleatoriamente en la existencia para desaparecer de nuevo. La energía de estas fluctuaciones del vacío debe sumarse a la masa total del neutrón y del protón.

 

 

En nuestras mentes se acumulan signos y fórmulas que quieren ser los exponentes de la verdadera razón y origen de la materia pero… ¡Estaremos acertando!

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen, su esencia,  lo que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está?

Claro que hemos llegado a saber que las llamadas fluctuaciones del vacío son oscilaciones aleatorias, impredecibles e ineliminables de un campo de fuerza (electromagnético o gravitatorio) que son debidas a un “tira y afloja” en el que pequeñas regiones del espacio toman prestada, momentáneamente, energía de regiones adyacentes y luego las devuelven. Pero…

– ¿Qué regiones adyacentes?

Acaso universos paralelos, acaso defomraciones del espacio-tiempo a escalas microscópicas, micros agujeros negros que pasan a ser agujeros blancos salidos de estas regiones o campos de fuerza que no podemos ver pero sí sentir, y, en última instancia, ¿por qué se forman esas partículas virtuales que de inmediato se aniquilan y desaparecen antes de que puedan ser capturadas? ¿Qué sentido tiene todo eso?

Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado campo de punto cero.

Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del , y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

                       Son muchas  las preguntas que no tienen respuestas

Parece que las fluctiuaciones ocurren en cualquier lugar, pero que, son tan minúsculas que ningún observador o experimentador las ha detectado de una manera franca hasta la fecha y, se sabe que están ahí por experimentos que lo han confirmado. Estas fluctuaciones son más poderosas cuanto menos escala se considera en el espacio y, por debajo de la longitud de Planck-Wheeler las fluctuaciones de vacío son tan enormes que el espacio tal como lo conocemos “pareciera estar hirviendo” para convertirse en una especie de espuma cuántica que parece que en realidad, cubre todo el espacio “vacío cuántico” que sabemos que está ahí y es el campo del que surgen esas partículas virtuales que antes menccionaba.

     ¿Espuma cuántica? Si profundizamos mucho en la materia… Podríamos ver otro universo distinto al nuestro. Las cosas miles de millones de veces más pequeñas que en nuestro mundo cotidiano, no parecen las mismas cosas.

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro. ¡Qué locura!

En el complejo general, por ahí, en alguna parte, permanece oculta esa teoría cuántica de la gravedad que incansables (pero sin ningún éxito hasta el momento) buscamos. Cuando sepamos unir las dos teorías de lo pequeño y lo grande, lo tendremos todo.

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

En física como en todas las demás disciplinas científicas, los conocimientos avanzan y las teorías que sostuvieron los cimientos de nuestros conocimientos se van haciendo viejas y van teniendo que ser reforzadas con las nuevas y más poderosas “vigas” de las nuevas ideas y los nuevos hallazgos científicos que hacen posible ir perfeccionando lo que ya teníamos.

Recientemente se han alzado algunas voces contra el Principio de Incertidumbre de Heisenberg. He podido leer en un artíoculo de la prestigiosa Revista Nature, un artículo del premio Nobel de Física Gerald ´t Hoofft, en el que propone que la naturaleza probabilistica de la mecánica cuántica, desaparecería a la escala de Planck, en la que el comportamiento de la materia sería determinista; a longitudes mayores, energías más pequeñas.

El mundo de lo muy pequeño (el micro espacio), a nivel atómico y subatómico, es el dominio de la física cuántica, así nunca podríamos saber, de acuerdo m con el principio de incertidumbre, y, en un momento determinado, la posición y el estado de una partícula. Este estado podría ser una función de la escala espacio-temporal. A esta escala tamaños todo sucede demasiado deprisa para nosotros.

cuerdascuantica.jpg

El “universo cuántico” nada es lo que parece a primera vista, allí entramos en otro mundo que en nada, se parece al nuestro

 Cuando hablamos de la mecánica cuántica, tenemos mirar un poco hacia atrás en el tiempo y podremos darnos del gran impacto que tuvo en el devenir del mundo desde que, en nuestras vidas, apareció el átomo y, más tarde, sus contenidos. Los nombres de Planck, Einstein, Bohr, Heisenberg, Schrödinger, Pauli, Bardeen, Roentgen, Dirac y muchos otros, se pudieron a la cabeza de la lista de las personas más famosas. Aquel primer premio Nobel de Física otorgado en 1900 a Roentgen por descubrir los rayos X, en el mismo año llegaría el ¡cuanto! De Planck que inspiró a Einstein para su trabajo sobre el Efecto fotoeléctrico que también, le valdría el Nobel, y, a partir de ese momento, se desencadenó una especie de alucinante por saber sobre el átomo, sus contenidos, y, de qué estaba hecha la materia.

epr

          La conocida como Paradoja EPR y los conceptos de Tiempo y , presente, pasado y futuro.

La Mecánica Cuántica es incompleta (conclusión EPR).  Dos posibles conclusiones enfrentadas:
La Mecánica Cuántica es completa, pero el realismo local no se cumple. Entonces… ¿Cómo se comporta la Naturaleza en realidad? Bueno, no siempre lo sabemos y, no hace mucho me encontré con el comentario de un científico que decía:
“Nadie ha resuelto la paradoja del gato de Schroedinger, ni la paradoja de Einstein-Podolsky-Rosen. El principio de incertidumbre no se ha explicado y se asume como un dogma, lo mismo pasa con el spin. El spin no es un giro pero es un giro.  Aquí hay un desafío al pensamiento humano. ¡Aquí hay una aventura del pensamiento!”

Fueron muchas las polémicas desatadas a cuenta de las aparentes incongruencias de la moderna Mecánica Cuántica. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.

A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas.

Por otro lado, en un entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene paralaje en el mundo de nuestras experiencias cotidianas. Cabe enfatizar pues que cuando se mide el estado de una partícula, enseguida sabemos el estado de la otra, lo cual aparentemente es instantáneo, es decir, sin importar las distancias a las que se encuentren las partículas, una de la otra, ambas saben instantáneamente el estado de la otra.

El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

File:O2 MolecularOrbitals Anim.gif

Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental. Las nubes de color representan los orbitales atómicos. Los orbitales 2s y 2p de cada átomo se combinan para formar los orbitales σ y π de la molécula, que la mantienen unida. Los orbitales 1s, más interiores, no se combinan y permiten distinguir a cada núcleo. Lo que ocurre a escalas tan pequeñas es fascienante.

Si nos pudiéramos convertir en electrones, por ejemplo, sabríamos dónde y cómo estamos en cada momento y podríamos ver asombrados, todo lo que estaba ocurriendo a nuestro alrededor que, entonces sí, veríamos transcurrir a un ritmo más lento del que podemos detectar en los electrones desde nuestro macroestado espacio temporal. El electrón, bajo nuestro punto de vista se mueve alrededor del núcleo atómico a una velocidad de 7 millones de km/h.

A medida que se asciende en la escala de tamaños, hasta el tiempo se va ajustando a esta escala, los objetos, a medida que se hacen mayores se mueven más despacio y, además, tienen más duración que los pequeños objetos infinitesimales del micro mundo cuántico. La vida media de un neutron es de unos 15 minutos, por ejemplo, mientras que la vida media de una estrellas se puede contar en miles de millones de años.

En nuestra macroescala, los acontecimientos y ,los objetos se mueven a velocidades que a nosotros nos parecen normales. Si se mueven con demasiada lentitud nos parece que no se mueven. Así hablamos de escala de tiempo geológico, para referirnos al tiempo y velocidad de la mayor parte de los acontecimientos geológicos que afectan a la Tierra, el tiempo transcurre aquí en millones de años y nosotros ni lo apreciamos; nos parece que todo está inmóvil. Nosotros, los humanos, funcionamos en la escala de años (tiempo biológico).

El Tiempo Cosmológico es aún mucho más dilatado y los objetos cósmicos (mundos, estrellas y galaxias), tienen una mayor duración aunque su movimiento puede ser muy rápido debido a la inmensidad del espacio universal en el que se mueven. La Tierra, por ejemplo, orbita alrededor del Sol a una velocidad media de 30 Km/s., y, el Sol, se desplaza por la Galaxia a una velocidad de 270 km/s. Y, además, se puede incrementar el tiempo y el espacio en su andadura al estar inmersos y ligados en una misma maya elñástica.

Así,  el espacio dentro de un átomo, es muy pequeño; dentro de una célula, es algo mayor; dentro de un animal, mayor aún y así sucesivamente… hasta llegar a los enormes espaciosa que separan las estrellas y las galaxias en el Universo.

Distancias astronómicas separan a las estrellas entre sí, a las galaxias dentro del cúmulo, y a los cúmulos en los supercúmulos.

Las distancias que separan a los objetos del Cosmos se tienen que medir con unidades espaciales, tal es su inmensa magnitud que, nuestras mentes, aunque podamos hablar de ellas de manera cotidiana, en realidad, no han llegado a asimilarlas.Y, a todo ésto, los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.

gran-muralla-galaxias

Una cosa nos ha podido quedar clara: Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

Y después de todo ésto, sólo una caso me queda clara: ¡Lo poco que sabemos! A pesar de la mucha imaginación que ponemos en las cosas que creemos conocer.

emilio silvera

Nunca estaremos seguros

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Astronomía

 

Cráter hallado en el Ártico resultado del meteorito que extinguió a los dinosaurios

 

 

Para los asteroides, aún somos dinosaurios

 

¿Estamos preparados para el posible impacto devastador de un meteorito? Existe un interés creciente en la localización y la prevención de un evento que podría causar una extinción masiva, como ya ha pasado antes.

Recreación artística de la misión AIDA

 

 

 

Recreación artística de la misión AIDA NASA/ESA
Reportaje de Prensa: El Español

 

 

 

 

Hace unas semanas el astrónomo aficionado Gerrit Kernbauer se encontraba realizando una de sus habituales observaciones astronómicas desde el pintoresco pueblo austriaco de Mödling cuando detectó un repentino cambio en la superficie de Júpiter. El posible impacto fue observado de manera simultánea por otros astrónomos y estaciones repartidos por todo el mundo, aunque a día de hoy no está claro que dimensiones tenía aquel objeto o si se trataba de un cometa o de un asteroide.

Una vez más debemos agradecer al gigante gaseoso que recibiese el golpe, y es que esa especie de hermano mayor a la que llamamos Júpiter sigue siendo la mayor y más efectiva defensa con la que contamos frente a impactos indeseados. No obstante, y como todo hermano mayor, no siempre estará dispuesto a salvarnos y servirnos de sparring por lo que sería conveniente desarrollar nuestras propias soluciones a un problema que, no por improbable, debería dejar de ser importante.

 

Cada día recibimos el impacto de más de 100 toneladas de objetos procedentes del espacio. Por supuesto suelen ser pequeños objetos que no representan dificultades para nuestra atmósfera que los volatiliza durante su entrada. Aun así, este escudo natural para metralla de bajo calibre no resulta muy efectivo contra cuerpos de mayores dimensiones y es aquí donde comienzan las preguntas incómodas: ¿Qué probabilidad hay de que un asteroide de gran tamaño se acerque peligrosamente a la Tierra? ¿Qué ocurriría si nos enfrentásemos a uno de ellos? ¿Estamos preparados?

El doctor en Astrofísica Josep Trigo Rodriguez, uno de los expertos internacionales más reconocidos en el tema y que actualmente desarrolla sus investigaciones desde el Instituto de Ciencias del Espacio (IEEC-CSIC), trata de responder a estas cuestiones.

Poca gente puede mirar al cielo nocturno, señalar una zona concreta y afirmar con gesto picarón y cierto tono de orgullo: “Por ahí anda mi asteroide… el 8325 Trigo-Rodríguez”. “Y cuidado porque no es una piedrecita cualquiera, como venga para acá os vais a acordar de mí”, reconoce entre risas.

Captura del bólido de Chelyabinsk en 2013. EE

 

¿Qué necesitaríamos para defendernos de algo así? La respuesta es doble pero simple: Detectarlo a tiempo y contar con la tecnología adecuada para desviarlo. En la actualidad, la ciencia no cubre ninguno de esos dos requisitos: a efectos cósmicos somos auténticos dinosaurios.

Acerca de la detección, el investigador pone un ejemplo clarificador. A principios de septiembre de 2013, el astrónomo amateur Terry Lovejoy detectó por primera vez el cometa C/2013 R1 en noviembre de ese mismo año, apenas dos meses después ya era visible a simple vista. Y eso que los cometas son mucho más brillantes y fáciles de detectar que otros cuerpos: si nos enfrentásemos a un asteroide no tendríamos tiempo material para hacer nada.

La gran calabaza

 

 

Si se nos viene encima un pequeño mundo… ¿Cómo podremos evitarlo?

 

2015 TB145 es la denominación astronómica de uno de los mayores sustos que el planeta Tierra ha recibido en los últimos tiempos. Fue descubierto por el telescopio Pan-STARRS de Hawái unas pocas horas antes de la noche de Halloween por lo que se le apodó cariñosamente La gran calabaza. Se trataba de un asteroide de 400 metros de diámetro que terminó pasando a poco más de la distancia Tierra-Luna, solamente tres semanas después de avistarlo por primera vez.

El investigador del CSIC reflexiona: “Desde el momento en el que lo detectamos hasta que lo tuvimos encima pasaron solo veinte días. No nos hubiera dado tiempo a hacer nada”.

Los astrofísicos clasifican como “potencialmente peligroso” cualquier objeto mayor de 100 metros de diámetro que se aproxima a menos de 7.5 millones de kilómetros de la Tierra, pues bien… La Gran Calabaza tenía el tamaño de cuatro campos de fútbol y pasó a 480.000 kilómetros de nuestras cabezas.

Asteroide 2015 TB145.

Asteroide 2015 TB145. NASA

 

Otro ejemplo reciente es el gran bólido de Chelyabinsk. Se aproximó desde una geometría prácticamente solar, desde un ángulo de entrada con el que fue imposible detectarlo ya que en esas zonas es de día y, por tanto, desde tierra no se puede hacer este tipo de monitorización.

En el espacio no existiría ese problema y se podría ampliar el arco observacional. Sin embargo, y aunque existen más de 3.000 satélites y telescopios activos en estos momentos, apenas contamos con un par de instrumentos ópticos que puedan resultarnos de alguna utilidad.

Pocos ojos mirando

 

 

 

 

Cada año, unos 20 o 30 objetos de un diámetro aproximado de un metro bombardean nuestro planeta. No representan un problema grave para la atmósfera, que se encarga de ellos sin mayores dificultades. Objetos de 100 metros de ancho llegan cada 10.000 años, aproximadamente, y los asteroides de un kilómetro de diámetro suelen alcanzarnos cada millón de años. Los registros históricos y las estadísticas son tranquilizadores. Pero todo es relativo, no estamos ante un reloj exacto.

“No es preocupación sino precaución”, afirma Josep Trigo, que recuerda que, según los estudios más recientes, el bólido que estalló en Tunguska la mañana del 30 de junio de 1908 no medía más de 60 metros y asoló 2.200 kilómetros cuadrados de taiga y bosque en Siberia. Hoy en día, la globalización y la expansión de las zonas habitadas convertirían un impacto como el de Tunguska en un evento realmente devastador.

Ni siquiera estamos mirando debidamente. Actualmente no contamos con ningún telescopio específicamente diseñado para detectar estos objetos potencialmente peligrosos. Podemos aprovechar el telescopio solar SOHO para detectar cometas, pero sólo para determinadas zonas. Además, no sirve para la vigilancia de asteroides.

También se ha reutilizado el telescopio WISE para localizar cuerpos cercanos pero es insuficiente, sobre todo si tenemos en cuenta que muchos de estos objetos poseen albedos -brillo- inferiores al 15%, por lo que son extremadamente oscuros y difíciles de observar.

Fuente: Noticias de Prensa

Efectos del bólido de Tunguska en 1908

Efectos del bólido de Tunguska en 1908 DP

 

Desarrollar un telescopio específico en infrarrojo sería el primer escalón para completar esa tarea doble de defensa ante rocas cósmicas no deseadas. La segunda fase ya es algo más complicada, aunque hay que reconocer que empezamos a dar algunos pasos interesantes.

Cómo desviar un asteroide

 

 

Además de sus amplios conocimientos sobre asteroides, Josep Trigo lidera un equipo en el Instituto de Ciencias del Espacio (IEEC) preseleccionado por la NASA para formar parte del primer intento en el espacio de desviar realmente un asteroide.

La misión, que encabezan las agencias espaciales estadounidense y europea, se conoce como AIDA (Asteroid Impact and Deflection Assessment misión) y, si todo marcha como está previsto, se lanzará en 2020 y llegará a su destino en 2022.

El proyecto tiene un objetivo bastante simple: evaluar qué consecuencias tiene el impacto de una nave contra un asteroide. Para ello los ingenieros han desarrollado una misión doble con dos sondas: AIM (Asteroid Impact Monotoring) y DART (Double Asteroid Redirection Test).

El objetivo se llama Didymos y es un asteroide de unos 800 metros de diámetro que viaja acompañado de otro cuerpo rocoso, denominado “Didymoon” con unos 170 metros. La diana se situará en esta pequeña luna que será golpeada por la sonda DART, mientras que AIM monitoriza, graba y recoge todos los datos del impacto.

El proyecto de Josep Trigo se llama PALS y se está desarrollando en colaboración con la agencia espacial alemana DLR y una empresa sueca especializada en cubesats, o satélites de tamaño reducido. El plan consiste en desplegar dos pequeños satélites alrededor de Didymoon, observar el impacto de la misión DART contra el asteroide secundario, analizar el previsible cambio en la trayectoria y órbita de ambos cuerpos y, de paso, estudiar su composición.

Una arriesgada y compleja misión que representa el primer paso tecnológico para dejar de ser dinosaurios cósmicos..