martes, 05 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Será único nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Multiverso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

Quinteto de Stephan

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, ralizamos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimendiones espacio-temporales, no contamos con las físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embnargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.

Es curioso como un equipo de astrónomos y cosmólogos estudiante la expansión del Universo y tratando de buscar la verdadera causa de dicho comportamiento (las galaxias se alejan las unas de las otras sin una razón aparente, toda vez que, la cantidad de materia bariónica percibida, no sería suficiente para arrastrarlas de esa manera), de manera denodada y pertinaz buscan el por qué se expande el universo de esa manera que no pueden explicar y, en dicha tarea, dicen haber percibido, más allá del supuesto “borde de nuestro Universo” la presencia de algo grande.

Lo único que se me ocurre pensar es en la presencia de otro universo que tira del nuestro por la fuerza de gravedad que genera y, al final del camino, como ocurre con las galaxias, terminiran fusionandose los dos universos. Es simplemente lo que ocurre con las galaxias pero, a escala mayor.

Imagináis la grandiosidad que está presente en una sola Galaxia como la nuestra. Así el poeta, hablando consigo mismo exclamó:

¡Oh mundo de mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, sería posible la de estrellas y como consecuencia la Vida.

En nuestras ánsias de querer saber sobre “esa verdad” que incansables perseguimos, hemos realizados innumerables excursiones por todos los senderos conocidos y otros nuevos que hemos dejado abiertos intentanto llegar a entender y explicar si, las fuerzas fundamentales de la Naturaleza y, las Constantes Universales pudieran estar presentes, en otros Universos de la misma manera que en el nuestro. La conclusión ha sido que no. Otros Universos (si existen) podrían ser iguales al nuestro y también, muy diferentes y todo dependería de su momento inicial que es el que determina la de Universo quen será cualquier universo que pudiera llegar a existir.

No es fácil imaginar cómo serían esos otros universos y como llegar

Hemos visto como los cosmólogos contemplan activamente la naturaleza de “otros mundos” en los que las constantes harían la vida imposible. Esto nos plantea la cuestión más profunda de si estos otros mundos “existen” en algún sentido y, si es así, qué los hace diferentes del mundo que vemos nosotros. También ofrece una alternatica al vijeo argumento de que el aparente buen ajuste del mundo para que posea todas aquellas propiedades requeridas para la vida es de alguna forma de un diseño especial. Pues si existen todas las alternativas posibles, debemos encontrarnos necesariamente habitando en una de las que permiten que exista la vida. Y podríamos ir aún más lejos y aventurar la conjetura de que podríamos esperar encontrarnos en el tipo más probable de Universo que sustenta la vida.

“Si pudiéramos saber que nuestro propio Universo era sólo uno entre un número indefinido de ellos, con propiedades cambiantes, quizá podríamos invocar una solución análoga al principio de la selección natural; que sólo en ciertos universos, entre los que se incluye el nuestro, se dan las condiciones apropiadas para el surgir de la vida, y a menos que se satisfaga esta condición en otros universos no podría existir observadores para advertir tal hecho.”

 

 

¡No saben lo que se pierden! ¡Pobres universos!

Una de las dificultades de concebir siquiera semejantes multiversos de todos los universos posibles es que hay muchas cosas que podrían ser diferentes. De nuestro estudio de las matemáticas sabemos que existen lógicas diferentes a la que utilizamos en la práctica, en la que los enunciados son o verdaderos o falsos. Análogamente, hay diferentes estructuras matemáticas; diferentes leyes de la Naturaleza posible ; diferentes valores para las constantes de la Naturaleza; diferentes números de dimensiones de espacio y de tiempo; diferentes de partida para el Universo; y diferentes resultados aleatorios para secuencias complejas de sucesos. Frente a ello, la colección de todos los mundos posibles tendría que incluir, como mínimo, todas las permutaciones y combinaciones posibles de estas diferentes cosas. Obtener una comprensión de todo este maremagnum sería pedirnos demasiado (al menos por el momento).

Claro que, concebir Universos con más que el nuestro…se nos hace muy cuesta arriba. Nuestras mentes son tridimensionales y, hemos al añadido de esa cuarta dimensión temporal que nos trajo la relatividad especial pero, cuando tratamos de ir más allá, no asimilamos bien y la visión de ese “mundo” de domensiones extra, no caben en nuestra cabeza. Sin embargo, los números sí lo permiten y pueden configurar mundos de 10, 11 y hasta 26 dimendiones y, en ese mundo teórico-matemático, sí pueden convivir todas las fuerzas de nuestro Universo y allí podemos respuestas que, en nuestro Universo cotidiano cuatridimensional, no podemos hallar.

Lo cierto es que, ya hemos visto lo que puede suceder si se realizaran algunos de esos otros mundos posibles, mundos con más dimensiones u otros valores de las constantes cruciales. Sin embargo, no sabemos si estos diferentes mundos son realmente posibles. Está muy bien contemplar cambios en las constantes de la Naturaleza y las cantidades que definen la forma y el tamaño del Universo. Pero ¿hay realmente universos alternativos permitidos o son tan posibles como los círculos cuadrados? Podría ser que la “Teoría de Todo” sea muy restrictiva cuando se trate de dar permiso de planificación para otros universos.

                        Por imaginar que no quede. Nuestras mentes construyen escenarios que…

El hecho de que podamos concebir muchos universos alternativos, definidos por otros valores de las constantes de la Naturaleza, quizá sea simplemente un reflejo de nuestra ignorancia acerca de “la prisión” en la quen está confinada la consistencia lógica que exige una Teoría de Todo. Cuando se trata de comntemplar otros universos tenemos dos formas de abordar el problema. Existe la aproximación conservadora que produce mundos alternativos haciendo pequeños cambios en las propiedades de nuestro mundo; pequeños cambios en los valores de algunas de las constantes de la Naturaleza, propiedades ligeramente diferentes del Universo astronómico, quizá, pero no cambios en las propias leyes de la Naturaleza. Normalmente estos muestran que si “los pequeños cambios” son demasiado grandes hay consecuencias adversas para la existencia de la vida tal como la conocemos. Nuestro tipo de vida puede seguir existiendo si hubiera un cambio de una parte en cien mil millones en el valor de la constante de estructura fina, pensamos nosotros, pero no si hubiera un cambio de una parte entre diez.

 

¿Quién sabe? Con unas constantes diferentes podríamos tener cualquir clase de Universo incluso ¿Alguno en la sombra? Claro que grandes cambios pueden alterar otras cosas como las leyes, la lógica matemática subyacente o el de dimensiones del espacio tiempo. Tiene que concebir tipos de “vida” que ni podemos imaginar, serían completamente nuevos y que podrían existir en ambientes tan diferentes al nuestro que, incluso, teniendolos a nuestro lado, no lo podríamos ver y, claro, al llegar a este punto nos suscita tener que hacer un examen más detallado de qué entendemos por vida, dado que esa vida de ese otro universo, sería tan vida como la del nuestro.

 

Ante todas estas ideas… al contemplar escenas de nuestro mundo como la que arriba contemplamos, no puedo dejar de imaginar lo que pensarían seres de otros mundos que nos pudieran estar contemplando. Fabricamos “colmenas” que nos sirven de habitad y que están adecuadas a las de nuestro mundo. En otros mundos mucho mayores, de tener presente la vida, dada su enorme gravedad, ésta tendría que ser pequeña ¿De insectos quizá?

 

No sería nada visitar otro Universo en cuyos mundos sólo vivieran insectos de dos metros, o, aquellos otros que, poblados de sofisticados robots tuvieran una Sociedad constituida sobre una continuada replicación y su único objetico sería el de poblar mundos y más mundos en los que, como sería lógico pensar, no cabrían otros seres que, como nosotros, venimos de un origen natural que serían, seguramente los seres primigenios del planeta que construyeron a los que hoy dominan esos mundos.

Haber podido conquistar algunos conocimientos que nos hablan de la inmensidad del Universo, de la diversidad de infinitas estrellas y de la multiplicidad de mundos que existen en las galaxias que pueblan el Cosmos, no podemos dejar de imaginar los mundos que, con propiedades diferentes a las de la Tierra, puedan albergar a criaturas que, unas veces habrán alcanzado la consciencia y otras no. Cuando podamos alcanzar la tecnología necesaria para visitar otros mundos que orbitan a estrellas similares y diferentes al Sol, entonces, y sólo entonces, podremos comprender que la vida en el Universo es de muchas maneras y que no estamos solos en tan vasto espacio.

cluster-galaxias

Negarlo no lo podemos negar y, hasta es muy probable que sí puedan existir esos otros Universos. Sin embargo, yo me quedo con el nuestro que, poco a poco,  se va dejando descorrer el velo que esconde sus secretos y estamos llegando a un nivel aceptable de comprensión de lo que su Naturaleza pudiera ser. Ningún Universo como el nuestro para vivir y tratar de llevar a cabo nuestros proyectos de futuro. Y, si finalmente nos vemos abocados a tener que “mudarnos” a uno de esos otros Universos, lo esencial será comprobar antes que, las son exactas o muy parecidas a las del nuestro,

Este escenario evolutivo de nuestro Universo tiene la característica clave de que las físicas en el pasado no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo y, si hemos hecho nuestra tarea, también sabremos de esos otros universos que nos pudieran acoger en ese momento final del nuestro.

¡Es todo tan complicado! ¡Sabemos tan poco!

 

¿Estaría programada la presencia de los seres vivos inteligentes en el Universo?

Por fuerza la cosmología conduce a cuestiones fronterizas entre ciencia experimental, filosofía y religión. No es solo el caso de los sabios antiguos. También los físicos de hoy se plantean preguntas de esa clase, sobre todo a propósito del llamado “principio antrópico”. A partir de los conocimientos actuales, este principio señala que las leyes y magnitudes físicas fundamentales parecen cuidadosamente afinadas para que la formación y el desarrollo del universo pudieran dar lugar a la vida en la Tierra y en otros planetas idóneos para acogerla.

El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. En cualquier parte del Universo podrán estar presentes los seres vivos.

El “Principio Copernicano” como habréis deducido ya, toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta.

El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Via Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.

Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.

No hemos logrado ese contacto pero…llegará

Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque nadue hasta el momento ha podido dar una explicación de estas relaciones.

        Arthur Eddintong

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el universo fue de alguna manera diseñado para hacer posible de la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, que recorre senderos muy alejados de los que están presentes en la fe.

Si la carga del electrón, la masa del protón o la velocidad de la luz, variaran tan sólo una diesmilésima parte… ¡La vida tal como la conocemos no existiría! Es decir, estamos ante el problema del ajuste fino que significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entrar en el juego virtual de ¿qué hubiera pasado si…? Ya hemos hablado aquí muchas otras veces de lo que pasaría si el valor de las constantes fueran diferentes.

                                ¿Viviríamos en un mundo de revés?

Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?

 

                 ¿Serán ellos y no nosotros los que dominen el futuro?

Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos…lo demás, por muy bello que pudiera ser, siempre será lo artificial.

Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan su mecanismo sometido a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización, además de estar supeditada al destino de nuestro planeta y de nuestro Sol, incluso de nuestro Sistema Solar y de  la Galaxia, de alguna manera,  también está en manos de los propios individuos que forman esta civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío. Fijaos hoy mismo lo que puede dar de sí esa insensata polémica (que dura ya milenios) entre los palestinos y los israelitas.

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si… Lo que en la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Cuando el Sol agote todo su combustible nuclear, estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca de la Tierra calcinada y sin vida.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

En el inmenso Universo, eso es lo que podría quedar de nuestro Sol, una insignificante Nebulosa Planetaria y, la consecuencia de tal transición de fase será, una Tierra sin vida y un Sistema solar de objetos muertos.

Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Eso daría lugar a otro Big Bang, a otro universo. Sin embargo, según los datos de que se dispone hoy, no parece que el Big Crunch pueda suceder.

     Un universo replegándose sobre sí mismo…no parece probable


El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya piensan en la manera de escapar a tan terrible futuro. Claro que, ahora no podemos saber si finalmente, nuestro Universo se fundirá con otro como consecuencia de la expansión (el otro también se expande hacia nosotros) y, como se fusionan las galaxias, también deben hacerlo los universos. Si eso es así (que no se sabe), quizá todo diera lugar a un nuevo “amanecer” para la Humanidad.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en  los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

                           ¿Quién puede saber de lo que seremos capaces mañana?


El posible escenario futuro ha sido explorado y el resultado hallado es que, podrían exisitr otros universos en cada uno de esos universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no. ¡Qué locura!

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferenta universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.

La teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdecitas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoria final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.

Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida (sin tener las herramientas matemáticas necesarias para ello).

Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca, es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.

 

Queremos llegar a manejar los mundos, las galaxias, el universo…

Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.

Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Que aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.

¿Doblar el Hiperespacio…? ¡Encontrar la manera de burlar la velocidad de la luz!

No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo:

¡El Tiempo! ¿Tendremos mucho por delante? ¿Sabremos aprovecharlo?

emilio silvera

¿Las estrellas? Sin ellas no estaríamos aquí

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

La región de formación estelar S106

 

 

Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

 

 

Eta Carinae una estrella masiva que arroja masa para no morir

 

Muchos son los ejemplos de estrellas masivas (más de 100 masas solares) que, para no morir, eyectan material al espacio interestelar y siguen viviendo.

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba teneis una estrella supermasiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que estám congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

 

 

 

 

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orion) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

 

 

 

 

El diagrama de Hertzsprung-Russell proporcionó a los astrónomos un registro congelado de la evolución de las estrerllas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucinan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.

 

 

 

 

“La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:

 

U_{coul} = k {{q_1\,q_2} \over r}={1 \over {4 \pi \e<a href=

donde:

 

k  es la constante de Coulomb = 8.9876×109 N m² C−2;
ε0  es la permeabilidad en el vacío;
q1, q2  son las cargas de las partículas que interactúan;
r  es el radio de interacción.”

Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La linea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sólo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.

 

 

 

 

(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.

 

 

Fusión de deuterio con tritio,  por la cual se producen helio 4,   se liberan un neutrón y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.

Hasta ese punto, todo iba bien, la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande  para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.

tunnel

Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecia la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficit restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades. En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas partículas veloces bastqaban para compensar la diferencia. Finalmente se hizo claro como podía romperse la Barrera de Coulomb suficientemente a menudo para que la fusión nuclear se produjese en las estrellas.

Physicist Hans Bethe

Pero la figura clave en todos estos desarrollos fue Hans Bhete, un refugiado de la Alemania nazi que había estudiado con Fermi en Roma y fue a enseñar en Cornell en EE. UU. Como su amigo Gamow, el joven Bhete era un pensador efervescente y vivaz, con tanto talento que parecía hacer su trabajo como si de un juego se tratara. Aunque no preparado en Astronomía, Bhete era un estudioso de legendaria rapidez. En 1938 ayudó al discipulo de Gamow y Edward Teller, C.L. Critchfield, a calcular una reacción que empezase con la colisión de dos protones podía generar aproximadamente la energía irradiada por el Sol, 3,86 x 1033 ergios por segundo. Así, en un lapso de menos de cuarenta años, la humanidad había progresado de la ignorancia de la existencia misma de los átomos a la comprensión del proceso de fusión termonuclear primaria que suministra energía al Sol.

Pero la reacción protón. protón no era bastante energética para explicar la luminosidad muy superior de estrellas mucho más grandes que el Sol, estrellas como las supergigantes azules de las Pléyades, que ocupan las regiones más altas del diagrama de Herptzsprung-Russell. Bhete puso remedio a esto antes de que terminase aquel el año 1938.

En abril de 1938, Bhete asistió a una conferencia organizada por  Gamow y Teller que tenía el objeto de que físicos y astrónomos trabajaran juntos en la cuestión de la generación de energía en las estrellas. “Allí, los astrofísicos nos dijeron a los físicos todo que sabían sobre la constitución interna de las estrellas -recordoba Bhete-. esto era mucho (aunque) habían obtenido todos los resultados sin conocimiento de la fuente específica de energía.” De vuelta a Cornell, Bhete abordó el problema con celeridad y, en cuestión de semanas logró identificar el ciclo del Carbono, la reacción de fusión crítica que da energía a las estrellas que tiene más de una vez y media la masa del Sol.

Bhete que estaba falto de dinero, retiró el artículo que escribió sobre sus hallazgos y que ya tenía entragado en la Revista Physical Review, para entregarlo en un Concurso postulado por la Academía de Ciencias de Nueva York  sobre la producción de energía en las estrellas. Por supuesto, Bhete ganó el primer Premio uy se llevó los 500 dolares que le sirvieron para que su madre pudiera emigrar a EE UU. Después lo volvió a llevar a la Revista que lo publicó y, finalmente, se lo publicaron y tal publicación le hizo ganar el Nobel. Por un tiempo, Bhete había sido el único humano que sabía por qué brillan las estrellas.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Cuando miramos al cielo y podemos contemplar extasiados esas maravillas que ahí arriba, en el espacio interestelar están brillando, y, nos da la sensación de que están haciéndonos guiños, como si quisieran mandarnos un mensaje, decirnos algo y nosotros, no pensamos en todo lo que ahí, en esos “puntitos brillantes” se está fraguando. De lo que allí ocurre, depende que los mundos tengan los materiales que en ellos están presentes y, de entre esos materiales, se destacan aquellos que por su química biológica, permiten que se pueda formar la vida a partir de unos elementos que se hicieron en los hornos nucleares de las estrellas.

Y sí, es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas y qué materiales se están forjando allí, al inmenso calor de sus núcleos. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir:

“Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”.

El hombre se vistió de gloria con la (desde entonces) famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

A nuestro planeta sólo llega una ínfima fracción del calor que se genera en el Sol y, sin embargo, es más que suficiente para mantener aquí la vida. El Sol tiene materia que supone la misma que tendrían 300.000 Tierras. Nuestra estrella madre está situada a una UA (150 millones de kilómetros de nosotros) y, todas esas circunstancias y otras muchas, hacen que todo sea tal como lo vemos a nuestro alrededor. Si cualquiera de esos parámetros fuera diferente o variara tan sólo unas fracciones, seguramente la Tierra sería un planeta muerto y, nosotros, no estaríamos aquí. Sin embargo… ¡Estamos! y, gracias a ello, se pueden producir descubrimientos como los que más arriba hemos relatado y han podido y pueden existir personajes de cuyas mentes surgen ideas creadoras que nos llevan a saber cómo son las cosas.

Lo cierto es que, cada día sabemos mejor como funciona ma Naturaleza que, al fin y al cabo, es la que tiene todas las respuestas que necesitamos conocer.

emilio silvera