viernes, 18 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Entrevista

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

David Gross, Premio Nobel de Física en 2004

“Las ondas gravitacionales han marcado un antes y un después”

 

                                   David Gross, durante su visita a Madrid. SERGIO GONZÁLEZ VALERO

De alguna manera, David Gross (Washington D.C., 1941) cerró el puzzle del modelo sobre el que descansa la Física actual. Su hallazgo en 1973, junto con Franck Wilczek y David Politzer, de la interacción nuclear fuerte, la última de las cuatro fuerzas que dirigen el Universo (junto con la gravedad, el electromagnetismo y la interacción nuclear débil), le valió el Premio Nobel de Física en 2004. Pero Gross no se ha quedado anclado en el actual Modelo Estándar. Desde hace cerca de 40 años trabaja en el desarrollo de la Teoría de Cuerdas, una de las posibles candidatas a explicar de qué forma se dan la mano la gravedad y la mecánica cuántica. Acaba de visitar Madrid para pronunciar la conferencia El perdurable legado de Albert Einstein, organizada por la Real Sociedad Española de Física conjuntamente con la Fundación Ramón Areces.

¿Hasta qué punto es importante Einstein en nuestra vida diaria?

Depende de con quién estés hablando. Las ideas de Einstein son muy importantes para los científicos, así que en la vida de un científico tendrá una gran importancia. Si me preguntas cómo nos afectan sus descubrimientos en nuestro día a día, la Relatividad General hoy en día tiene una aplicación de la que la gente está muy orgullosa, y tiene que ver con los GPS. Tu reloj funciona de una forma diferente en la primera planta de un edificio que en la última de un rascacielos, donde irá un poco más lento. Esa desigualdad, que es muy pequeña, supone una gran diferencia para los GPS. Los relojes de los satélites anotan el tiempo de llegada de las ondas electromagnéticas que llegan desde tu iPhone y usan ese tiempo para medir distancias y hacerse una idea de dónde estás. Incluso diminutos cambios en cómo el tiempo se mueve en la curvatura del espacio-tiempo que Einstein describió en su teoría de la Relatividad General afectan a los cálculos. Cuando se inventó el GPS, ya se sabía que estas correcciones se tenían que tener en cuenta. Si no hubiera sido así, tu GPS no funcionaría bien y tu posición podría estar 50 o 100 metros más allá.

¿Las recién encontradas ondas gravitacionales son la última pieza del puzzle de Einstein?

No (se ríe), el puzzle de Einstein sólo acaba de empezar… Bueno, esta ha sido la observación directa de las ondas gravitacionales, porque ya habían sido observadas indirectamente antes e incluso ese trabajo fue galardonado con el Premio Nobel. Ha sido realmente la primera vez que hemos visto la onda y es un inmenso logro experimental.

¿Será el próximo premio Nobel de Física?

Desde luego ganará el Nobel, pero no será este año, porque el hallazgo fue muy tarde en la temporada… pero el próximo año, probablemente. Es increíble que se haya podido medir con esta precisión una distancia que es un millón de veces menor que el tamaño de un protón. A lo largo de la historia, ha habido muchas dudas acerca de las ondas gravitacionales. El propio Einstein llegó a pensar en algún momento que no debían existir.

¿Para qué servirán?

El principal uso de las ondas gravitacionales será en las próximas décadas para explorar objetos astronómicos. Entre ellos los agujeros negros, así que habrá un antes y un después. Es un nuevo fenómeno que es invisible a través de la luz. Ahora podremos estudiar agujeros negros. Hay un enorme futuro para la Astrofísica usando ondas gravitacionales. Einstein sólo abrió la puerta.

Es emocionante pensar que un solo hombre ideara esta colección de teorías que han resistido el paso ya de un siglo…

Es una historia extraordinaria. Einstein era un hombre singular en muchos aspectos, pero la Relatividad General es un caso especial. Si Einstein hubiera tenido un accidente pongamos en 1905, la teoría habría emergido en algún lugar 10 años después.

¿Y quién hubiera llegado a ella?

Cualquiera. Había muchos buenos físicos en esa época. Y el problema estaba claro. Einstein era un físico enorme y muy constante, y tuvo la intuición de mantenerse por el buen camino para hacer la teoría de Newton de la gravedad congruente con la Relatividad especial que Einstein propuso en 1905. Había una incoherencia en las formulaciones y tenía que ser explicada. Era un reto intelectual obvio sin resolver y mucha gente lo sabía igual que Einstein. Él sólo fue el más exitoso.

Los últimos grandes descubrimientos en Física han venido de la mano de grandes instalaciones experimentales internacionales… ¿Es el fin de la era de los grandes súper genios solitarios como Einstein?

Pero Einstein no era un físico aislado y solitario. No. Einstein vivió en el centro mundial de la Física, que en aquel momento era Berlín, rodeado por el mejor grupo de físicos del mundo con el que estaba en constante y permanente contacto. Obviamente no había las comunicaciones actuales por teléfono o email, pero él escribía cinco o seis cartas postales cada día. Se acaba de reunir en una obra toda su correspondencia y son como 50 volúmenes.

Quizá sea la nueva era de las grandes instalaciones internacionales como el CERN…

El CERN o el experimento LIGO que descubrió las ondas gravitacionales son instalaciones experimentales, que han cambiado de forma dramática. Pero la física teórica ha seguido el mismo camino que en tiempos de Einstein, con la diferencia de que la comunicación entre ellos se ha multiplicado por 100. Pero a principios de siglo no había científicos solitarios, estaban todos conectados. Había algunas estrellas brillantes en medio de toda una constelación de excelentes físicos.

 

Pensamientos

Autor por Emilio Silvera    ~    Archivo Clasificado en El libre pensamiento    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Todo estadso presente de una sustancia simple es naturalmente la consecuencia de su estado anterior, de modo que se presente está cargado de su futuro.”

 

 

Marcus Aurelius Glyptothek Munich.jpg
Busto de Marco Aurelio. Gliptoteca de Múnich.

“Quien ha visto las coas presentes ha visto todo. Todo lo ocurrido desde la Eternidad y todo lo que ocurrirá en el Tiempo sin fin: Pues todas las cosas son de la misma clase y la misma forma.!

Percy Bysshe Shelley

“Espíritu de BELLEZA, que has consagrad

Con tus propios maticces todo aquello sobre lo que brillas

Del pensamiento o la forma humanos, ¿adónde has ido?

¿Por qué has desaparecido y ababdonado nuestra existencia

Este vacío valle de lágrimas vacío y desolado?

(Himno a la belleza intelectual)

“La Vida, como una cúpula de vidrio multicolor,

Mancha el blanco resplandor de la Eternidad.”

https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcTXZOICYrsC8oyfv5ZVxu5vDq7I_zQbCCHSGbKHy2prn8bZ7fSu

                   Paul Valéry

“El Universo está construido segín un plan cuya profunda simetría está presente de algún modo en la estructura interna de nuestro intelecto.”

Resultado de imagen de Thomas Carlyle

Thomas Carlyle en relación a los muchos mundos.

“Un triste espectáculo, si están habitados, ¡qué campo para el sufrimiento y la loclura! Si no están habitados. ‘Qué desperdicio de espacio!

Alguien, no recuerdo ahora quién, pero que era un hombre sabio, un d´çia dijo:

“Todas las cosas son”

Con aquellas sencillas palabras, elevó a “las cosas” a la categoría de Ser.

Es posible que una piedra, un árbol, una montaña y un océano o un Volcan o un Desierto, a su manera, pueda tener memoria, De la misma misma manera, las estrellas del cielo que viven miles de millones de años, nos podrían contar historias fascinantes, y, los poetas y pensadores, quieren reflejar, con sencilla y cortas frases, toda esa grandeza que el Universo encierra.

Por nuestra parte, gente sencilla que mira el mundo (todavía) asombrado, y, que trata de comprender lo que la Naturaleza trata de decirnos, estamos procurando superar la enorme ignorancia que nos opreime, y, despejar de una vez, esas cargas que, en formas de creencias y religiones nos inocularon desde niños.

¡Seámos libres pensadores! ¡Dejémos a un lado las teorías! ¡Dejemos que nuestras mentes vaguen solitarias y libres!

¿Qué podemos perder?

emilio silvera

 

Hitos de la Ciencia

Autor por Emilio Silvera    ~    Archivo Clasificado en Hacia el futuro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Los 10 últimos grandes descubrimientos de la NASA

El hallazgo de agua líquida en Marte es uno de los últimos hitos de la agencia espacial, pero no es el único

 

 

El descubrimiento de agua en Marte de los últimos días ha llevado a la NASA a convertirse de nuevo en el centro de atención. La agencia estadounidense sigue a la cabeza mundial en cuanto a misiones espaciales, pero este descubrimiento no ha sido el único, ni tampoco el más relevante.

1. Agua en Marte
La existencia de agua salada en Marte es, con total seguridad, el descubrimiento más relevante de la NASA de los últimos años. Los surcos lineales presentes en las laderas de algunos cráteres en el planeta confirman la presencia de este líquido, requisito fundamental para la existencia de vida.

 

 

 

2. El aspecto real de Plutón


Este verano la nave ´New Horizons´ de la NASA hacía historia al volar con éxito hasta las proximidades de Plutón. Desde ese día, las imágenes que la sonda ha tomado del planeta enano no han dejado de sorprender a los científicos. El último descubrimiento de la agencia gracias a esas imágenes ha sido que Plutón podría tener agua congelada y cielos azules como la Tierra.

3. ¿Otra Tierra a la vista?
La NASA confirmó, a finales del pasado julio, que había hallado el planeta más parecido a la Tierra registrado hasta la fecha: Kepler 452-B. La agencia espacial sigue investigando si este “primo mayor de la Tierra” contiene agua y oxígeno.

 

4. El océano de Encélado
La nave espacial Cassini y la Red de Espacio Profundo de la NASA descubrieron evidencias de que Encélado, la luna de Saturno, alberga un gran océano subterráneo de agua líquida, fomentando el interés científico en esta luna como un hogar potencial de vida extraterrestre.

5. El aterrizaje sobre Rosetta.
En noviembre de 2014 la NASA, junto con la ESA (Agencia Espacial Europea), volvía a hacer historia al conseguir que la sonda Philae aterrizase sobre el cometa Rosetta. Este hito confirmó la existencia de compuestos orgánicos considerados precursores de la vida en la superficie del cometa.

 

6. Planetas potencialmente habitables
Kepler 452-B no es el único planeta similar a la Tierra encontrado por la NASA. Después de tres años de búsqueda, la misión Kepler de la agencia espacial ampliaba a 29 mundos el catálogo de planetas potencialmente habitables, todos ellos fuera del sistema solar.

7. ¿A que sabe la primera lechuga espacial?
El pasado agosto la agencia estadounidense daba un gran salto al conseguir cultivar los primeros vegetales íntegramente en el espacio. El estadounidense Scott Kelly, el japonés Kimiya Yui y el estadounidense Kjell Lindgren fueron los afortunados que pudieron degustar este manjar.

8. El agujero negro más joven
El telescopio espacial Chandra de la NASA, hallaba en 2013 un remanente de supernova muy distorsionada que podría contener el agujero negro más reciente formado en la Vía Láctea. Este agujero se encontraba rodeado del producto de una explosión poco común en el cual la materia es expulsada a alta velocidad a lo largo de los polos de una estrella que gira.

9. Seres vivos en la profundidad de la Antártida
En 2010 la NASA confirmaba que había detectado la existencia de dos seres vivos a casi 200 metros bajo la capa de hielo de la Antártida, en plena oscuridad. Un descubrimiento que altera las teorías sobre las condiciones en las que se puede desarrollar la vida.

 

 

10. ¿Plancton marino en la atmósfera?
En agosto de 2014, un responsable de la Estación Espacial revelaba algo insólito. Durante una recogida de muestras en las ventanas exteriores de la ISS se había detectado plancton marino. La noticia fue difundida por varios medios pero el presunto hallazgo aún no ha sido confirmado por la NASA.

Hasta aquí algunos de los descubrimientos que se han realizado en los últimos Tiempos. Poco a poco pero sin descanso, nuestra especie está sabiendo desvelar los grandes secretos de la Naturaleza al mismo Tiempo que los adelantos en Ciencia y nuevas Teccnologías son imparables para posibilitar que así sean las cosas-

Publica: emilio silvera

¡Fisica! Siempre la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La Escala del UniversoVentana nueva.

 

 

Como nunca dejaremos a aprender cosas nuevas, de desvelar secretos de la Naturaleza, de seguir investigando en busca de “otras verdades”, de elaborar nuevos modelos y nuevas Teorías que nos acerquen, cada vez más a la realidad del mundo (ese es, de momento, nuestro cometido), estamos abocados a tratar de saber lo que no sabemos y que, no pocas veces, creemos que sabemos. Ya lo dijo Popper:

 

Cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos , mi ignorancia, es infinita“.

 

Lo que nos lleva a la versión antigua del dicho:  “Sólo se que no se nada” de Sócrates.

 

 

 

Las sustancias formadas por una sola clase de átomos se llaman elementos químicos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.

La revolución de la mecánica cuántica empieza a materializarse, y el qubit es el principal protagonista. Siendo la unidad mínima de información de extraño mundo, permitirá procesar toda la información existente en segundos.” El futuro que nos aguarda es inimaginable y cada día que pasa aparecen nuevos logros tecnológicos que nos sitúan en otro mundo, otra sociedad, otras nuevas formas de vivir y de comprender.

                             Sí, son los electrones los que dan al átomo su forma esférica

A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.

átomos ultrafríos

Un experimento realizado por científicos del Centro de Viena para la Ciencia y Tecnología Cuánticas ha demostrado que, en el mundo cuántico, la transición hacia el equilibrio térmico es más interesante y más complicada de lo que se pensaba.

Según destaca el , publicado en ‘Science’, entre un ordenado inicial y un estado final estadísticamente mixto, puede emerger un “cuasi-estacionario estado intermedio”. Este estado intermedio ya exhibe algunas propiedades como el equilibrio, pero parte de las características del estado inicial permanecen visibles durante un período de tiempo muy largo.

El fenómeno se denomina “pre-termalización” y desempeña un papel importante en diversos procesos de no equilibrio en la física cuántica. Podría, por ejemplo, ayudarnos a comprender el estado del universo temprano.

http://webdelprofesor.ula.ve/ciencias/labdemfi/electrostatica/fotos/carga_globo_g.gif

La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

Sincronización perfecta, ¡es una sinfonía!

No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.

Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

El espectro electromagnético se extiende la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = h \nu \,\!

 

donde h es la constante de Planck (cuyo valor es 6,626 × 10−34 J·s). Sólo los fotones con una frecuencia alta (por encima de un valor umbral específico) podían provocar la corriente de electrones. Por ejemplo, la luz azul emitía unos fotones con una energía suficiente para arrancar los electrones del metal, mientras que la luz roja no. Una luz más intensa por encima del umbral mínimo puede arrancar más electrones, pero ninguna cantidad de luz por debajo del mismo podrá arrancar uno solo, por muy intenso que sea su brillo.

             El esquema del Efecto fotoeléctrico nos muestra como la luz arranca electrones de la placa.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

Imagen ilustrativa de la dualidad onda-partícula, en el cual se ver cómo un mismo fenómeno puede tener dos percepciones distintas. Estas son las cosas que hacen de la mecánica cuántica un “mundo” extraño.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió escribir la teoría ondulatoria de Debroglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.

Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza, al mismo tiempo que nos aleja de nuestra propia realidad.

Sí, están ahí pero, en realidad, no sabemos, a ciencia cierta, ni cómo se formaron las galaxias

¿Qué encontraremos cuando sea posible verificar la Teoría de cuerdas? ¿Qué hay más allá de los Quarks? ¿Sabremos alguna vez lo que es una singularidad? ¿Será verdad la existencia de esa materia oscura de la que tanto se habla? ¿Podremos al fín, encontrar esa fuente de energía que tanto necesita la Humanidad para dar ese segundo paso el futuro? ¿Tendremos, acaso, algún destino que no sea el de la irremisible extinción?

¡Preguntas! Preguntas y más preguntas que no podemos contestar. Es desesperante estar inmersos en  inmenso océano de ignorancia. ¿Cuándo sabremos? El el epitafio que Hilbert ordenó esculpir en su Tumba, nos lo prometía: “Tenemos que saber, sabremos”. Si, ¿pero cuándo?

Lo cierto es que, las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

         Los bosones tienen un angular n h / 2p, donde n es cero o un entero y h es la constante de Planckbosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

http://farm5.static.flickr.com/4140/4745204958_afd02b2486.jpg

La mejor teoría explicar el mundo subatómico nació en 1928 cuando el teórico Paul Dirac combinó la mecánica cuántica con la relatividad especial para explicar el comportamiento del electrón. El resultado fue la mecánica cuántica relativista, que se transformó en un ingrediente primario en la teoría cuántica de campos. Con unas pocas suposiciones y ajustes, la teoría cuántica de campos ha probado ser suficientemente poderosa para formar la base del modelo estándar de las partículas y las fuerzas que rigen el universo.

La relación el espín y la estadística de las partículas está demostrada por el teorema espín-estadística. En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones.  Estas partículas se conocen con el de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1.  Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli no es imposible que dos fermiones ocupen el mismo espacio cuántico (al contrario de lo que ocurre con los bosones). Y, precisamente por eso, se degeneran electrones y neutrones dando lugar a la formación de estrellas enanas blancas y de neutrones que, encuentran la estabilidad frenando la fuerza de gravedad.

La condensación de Bose-Einstein es de importancia fundamental explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1.894-1.974) y de Albert Einstein.

condensado-bose-einstein

Más reciente es la obtención del Condensado de Bose-Einstein (BEC); en este caso las bases teóricas se postularon en la década de los 20 en manos de Satyendra Nath Bose y Albert Einstein. El primero describe ciertas reglas para determinar si dos fotones deberían considerarse idénticos o diferentes (Estadísticas de Bose) y Einstein aplica dichas reglas a los átomos intentando averiguar como se comportarían. Así, halla los efectos de que a muy bajas temperaturas los átomos están al mismo nivel cuántico produciendo fenómenos como la superfluidez o la superconductividad.

Distribución de momentos que confirma la existencia de un estado de agregación de la materia, el condensado de Bose-Einstein. obtenidos en un gas de átomos de rubidio, la coloración indica la cantidad de átomos a cada velocidad, con el rojo indicando la menor y el blanco indicando la mayor. Las áreas blancas y celestes indican las menores velocidades. A la izquierda se observa el diagrama inmediato anterior al condensado de Bose-Einstein y al centro el inmediato posterior. A la derecha se observa el diagrama luego de cierta evaporación, con la sustancia cercana a un condensado de Bose-Einstein puro. El pico no es infinitamente angosto debido al Principio de indeterminación de Heisenberg: dado que los átomos están confinados en una región del espacio, su distribución de velocidades posee necesariamente un cierto ancho mínimo. La distribución de la izquierda es para T > Tc (sobre 400 nanokelvins (nK)), la central para T < Tc (sobre 200 nK) y la de la derecha para T << Tc (sobre 50 nK).

… del sistema binario descubierto a 7,000 años luz de la Tierra, que está formado por una estrella de neutrones (el círculo más grande) y enana blanca (el …

 

Las estrellas enanas blancas, de neutrones y los púlsares existen, precisamente, por el principio de exclusión de Pauli que, degenera electrones y neutrones cuando las estrellas masivas, al final de su existencia, explotan como Supernovas y´su masa  se contraen sobre sí misma más y más. Si la estrella es demasiado masiva, entonces ni ese principio de exclusión puede frenar a la Gravedad y se convierte en un Agujero negro.

         Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.  Si nos fijamos en todo lo que estamos hablando aquí, nos daremos de que la mecánica cu´çantica es extraña y siendo fácil comprender como forma un campo magnético la partícula cargada que gira, no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado.

        Lo cierto es que ocurre así. La prueba directa más evidente de ello es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma que lo haría si el hierro no estuviese magnetizado.  El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalentes a cero, aunque por alguna razón desconocida, lograr crear un campo magnético cuando gira la partícula.

emilio silvera

Sigma Orionis

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ha escenarios en el Esoacio Interestelar que son dignos de un profundo estudio por las cosas que allí están presentes y, también, por las historias que nos pueden contar, además de la belleza que sus configuraciones conponen debido a la fuerza de gravedad, los empujes de los fuertes vientos estelares y la ionización de los materiales allí presentes por la rediación ultravioleta de las estrellas jóvenes. En el último Boletín recibido desde la Real Sociedad Española de Física, una pequeño artículo me llamó la atención.

Sigma Orionis es un sistema estelar múltiple complicado, con una distancia medida-Hipparcos de 350 pc. Los componentes primarios y secundarios medidos aquí sólo están separados por 0,25 segundos de arco (87,5 UA a 350 pc). Se cree que es parcialmente responsable de la ionización de la  Nebulosa Cabeza de Caballo. Su período es de alrededor de 155 años. Componentes D y E son dos estrellas B2, con separaciones angulares de 12,9 y 41,6 segundos de arco.

La constelación tiene 7 estrellas principales las 3 del centro que conocemos como el Cinturón de Orión, y las otras cuatro que forman una especie de figura geométrica bien definida-

Pero veamos que dicen en un artículo  enviado en el Boletín de la Real Sociedad Española de Física:

“Hace unos tres millones de años, cientos de estrellas se formaron a partir de una densa nube de polvo y gas en la Constelación de Orión (El Cazador”), la estrella que atrajo la mayor parte de la masa fue Sigma Orionis, hoy la cuarta estrella más brillante del Cinturón de Orión y la que ilumina la celebre nebulosa Cabeza de Caballo. A la vez que Sigma Orionis, se formó a su alrededor una gran cantidad de estrellas de diferentes masas, enanas marrones y planetas aislados.

 

http://www.iac.es/proyecto/vlmbd/images/prensa_orion_2.jpg

 

 

“Un equipo iinternacional de Astrónomos liderados por los investigadores españoles Sergio Simón-Díaz, del Instituto de Astrofísica de Canarias  (IAC)/Universidad de la Laguna (ULL), José Antonio Caballero, del Centro de Astrobiología (CAB, CSIC.INTA), y Javier Lorenzo, de la Universidad de Alicante, han estudiado con detalle la estrella Sigma Orionis. Los resultados de este estudio se publican en Astrophysical Journal.

Se puede ver la hora completa y la animación en http://www.iac.es/divulgación.op1=168.id=911 y la versión en inglés en http://www.iac.es/divulgacion php?op1=168.id=9118ιang-en.”

 

 

Sigma Orionis (σ Ori / 48 Orionis)1 es un sistema quíntuple en la constelación de Orión Su magnitud aparente conjunta es +3,66. Representa el pináculo de un cúmulo —llamado Cúmulo de Sigma Orionis—situado a unos 1150 años-luz del Sistema sola-, que a su vez forma parte de la Asociación estelar  Orión OB1.

La componente dominante del sistema es una estrella binaria:  Sigma Orionis AB, cuyas componentes, de magnitudes +4,2 y +5,1, están separadas 0,25 segundos de arco. Ambas son estrellas azules de la secuencia principal; la más brillante es de tipo espectral O9.5 y 32.000 K de temperatura, mientras que su compañera es de tipo B0.5 y 29.600 K. Es una de las binarias visuales de mayor masa, con 18 masas solaresla estrella más caliente y 13,5 masas solares su compañera. Separadas unas 90 UA, el período orbital. de esta binaria es de 170 años.

The region of Orion’s Belt and the Flame Nebula.jpg

Sigma Orionis es la estrella más brillante en la esquina inferior derecha, las estrellas más brillantes son Alnitak y Alnilam que, junto a Mintaka, forman el Cinturón de Orión. Como se pued ever en la figura superior, las tres estrellas qiue forman el Cinturón de Orión son mucho mayores que nuestro Sol, tienen más masa que éste.

Comparación de las estrellas del Cinturón de Orión respecto al Sol

Las siguientes estrellas en cuanto a brillo son Sigma Orionis D y Sigma Orionis E. Las dos son estrellas de tipo B2V con una masa de 7 masas solares. El brillo de ambas es muy semejante —magnitudes +6,62 y +6,65—, pero Sigma Orionis E se distingue por ser una estrella rica en Helio. En su superficie, el helio parece estar concentrado en manchas concretas que implican una combinación del eje de rotación y del eje del campo magnético estelar.

La quinta estrella que completa el sistema, Sigma Orionis C, es una estrella blanca de la secuencia principal de tipo A2V. De acuerdo a su separación proyectada —3900 UA— es la más próxima al par AB. Sigma Orionis D y Sigma Orionis E se encuentran, respectivamente, a 4600 UA y 15.000 UA de la binaria AB.

Descripción del cinturón de Orión

Orión, (el Cazador),  es una constelación  prominente, quizás la más conocida del cielo. Sus estrellas brillantes y visibles desde ambos hemisferios hacen que esta constelación sea reconocida mundialmente. La constelación es visible a lo largo de toda la noche durante el invierno en el hemisferio norte, verano en hemisferio sur; es asimismo visible pocas horas antes del amanecer desde finales del mes de agosto hasta mediados de noviembre y puede verse en el cielo nocturno hasta mediados de abril. Orión se encuentra cerca de la constelación del río Eridanus y apoyado por sus dos perros de caza Canis Maior y Canis Minor  peleando con la constelación del Tauro.

cinturon

Aparte de las muchas estrellas que aquí podríamos destacar y que están presentes en Orión, otros muchos objetos son dignos de estudio, y, entre ellos, destacamos: El Complejo de Nubes Moleculares de Orión. Es una gigantesca estructura de hidrógeno, polvo, plasma y estrellas nacientes que abarca la mayor parte de la constelación. El complejo ubicado a una distancia de 1.500 años luz de la Tierra está formado por nebulosas de emisión, nebulosas de reflexión, nebulosas oscuras y regiones HII. Destaca especialmente por ser una región de intensa formación estelar y por las extraordinarias nebulosas que la forman.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

                                                                                M42 La Nebulosa de Orión

La Gran Nebulosa de Orión, también conocida como M42, es una de las nebulosas más famosas del cielo. Brillantes nubes de gas de la región de formación estelar y estrellas jóvenes y calientes están a la derecha de esta imagen nítida y colorida que incluye la nebulosa M43 pequeño cerca del centro y polvoriento, azulada nebulosa de reflexión NGC 1977 y los amigos de la izquierda. Situado en el borde de un gigante complejo de nubes moleculares de otro modo invisible, estas nebulosas llamativos representan sólo una pequeña fracción de la riqueza de este vecindario galáctico de material interestelar. Dentro de la guardería estelar bien estudiado, los astrónomos también han identificado lo que parecen ser numerosos sistemas planetarios infantiles. El magnífico paisaje celeste se extiende por casi dos grados o unos 45 años-luz en la distancia estimada de la Nebulosa de Orión de 1500 años luz.

[orion_discos_protoplanetarios_hst.jpg]

                          Se han localizado sistemas planetarios en formación en la Nebulosa de Orion

Lo cierto amigos, es que cuando nos sumergimos en las fascinantes distancias del Espacio Interestelar, nos podemos encontrar con maravillas como éstas que, lo mismo tienen una rica variedad de estrellas de distintas clases y matewriales que, nos pueden enseñar mundos nuevos y nuevos sistemas planetarios, y, además, en esas nubes moleculares gigantes surgen estrellas masivas que serán al final de sus vidas agujeros negros. También, en esas grandiosas regiones, están presentes moléculas y aminoácidos que son precursores de la Vida.

emilio silvera