sábado, 26 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Conservación de la Energía? No siempre es así

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En un universo en expansión, la energía no se conserva

La matemática Emmy Noether demostró, a principios del siglo XX, que la conservación de la energía solo se cumple si las leyes de la Física que empleamos son independientes del tiempo

Fräulein Noether fue el genio matemático más creativo e importante desde que comenzó la educación superior de las mujeres.rn rn

Fräulein Noether fue el genio matemático más creativo e importante desde que comenzó la educación superior de las mujeres. WIKIPEDIA

Invierno de 1915, Göttingen (Alemania), la Primera Gran Guerra asola Europa, arrasando ciudades, cortando centenarias rutas de suministros y generando un odio inconcebible hasta el momento. Entre todo el caos y destrucción imperante, alguien permanece ajeno a la situación que le rodea. Su mente divaga en torno a las extrañas ecuaciones garabateadas sobre un sinfín de papeles dispersos. Emmy Noether, sentada ante su escritorio de roble, se frota los ojos, atónita ante su reciente descubrimiento. Los últimos meses los ha dedicado de manera incansable a desarrollar el simple y elegante resultado que tiene ante sí.

La respuesta ante luz incidente polarizada de los dos estados superconductores es diferente si se viola la simetría de inversión temporal.

Ella acaba de demostrar que, si existe una simetría en las leyes físicas que gobiernan un determinado sistema, hay una cantidad que se conserva. No se trata de una conclusión irrelevante, y ella es consciente de ello. Físicos, químicos e ingenieros hacen uso diariamente de cantidades conservadas para realizar cualquiera de sus cálculos. Por ejemplo, para determinar si un proyectil alcanzará a un enemigo situado a una cierta distancia, solo es necesario calcular la energía liberada por la pólvora en combustión. Esta energía se transferirá al proyectil y, usando las ecuaciones de Newton, es posible calcular exactamente si la bala alcanzará el objetivo. Noether acababa de demostrar por tanto que, para saber si se conservará la energía de un sistema (como el sistema pólvora-bala), tan solo es necesario atender a la simetría de las ecuaciones que describen dicho sistema. En concreto, la conservación de la energía solo necesita de la simetría temporal de las ecuaciones, es decir, que éstas se cumplan tanto ahora como dentro de 1.000 años u otros tantos años atrás.

 

 

 

La uniformidad del tiempo

 

Noether demostró que, para saber si se conservará la energía de un sistema, tan solo es necesario atender a la simetría de las ecuaciones que describen dicho sistema

 

 

 

 

Prácticamente en ese mismo momento, solo tres años mayor que ella, un treintañero llamado Albert Einstein repasaba asombrado las ecuaciones maestras de su teoría de la Relatividad General. Sorprende comprobar cómo en los momentos más oscuros de la humanidad afloran las mentes más brillantes. Cimentaba así una nueva forma de mirar al Universo, insólita hasta entonces, ya que el espacio y el tiempo se entrelazaban de manera inseparable con la materia, poniendo punto final a las inconsistencias que habían comenzado a aparecer en la física desarrollada durante el último siglo. Consecuencia de su abstracta teoría son fenómenos tan sorprendentes como el de la expansión del Universo (obtenida gracias a Lemaître, Friedmann, Robertson y Walker), que predice que el propio espacio se estira como un globo hinchándose, provocando que las galaxias se alejen unas de otras, algo que se observaría con precisión en 1922.

Muchos años después, los científicos serían capaces de fusionar ambas teorías, proponiendo un resultado que muchos de nosotros aún tratamos de comprender y de explorar. Si el Universo se expande, las ecuaciones que lo controlan pierden su simetría temporal, ya que las distancias entre objetos aumentan en el tiempo y nos veríamos obligados a reescalarlas. De una manera directa, podemos concluir que la energía en el universo NO se conserva. Debemos por tanto despedirnos de esa frase que tantas veces nos repitieron desde niños: “La energía ni se crea ni se destruye, solo se transforma”. Demos la bienvenida a una nueva versión de la misma: “La energía se crea y se destruye y, a veces, se conserva”.

 

 

Sorprende comprobar cómo en los momentos más oscuros de la humanidad afloran las mentes más brillantes

No obstante, esta última afirmación la tenemos que repetir con cautela, ya que lo técnicamente correcto es decir que la energía de la materia del Universo no se conserva. Esto es debido a que en el Universo no hay únicamente materia, sino materia y espacio-tiempo. Las ecuaciones de Einstein contienen otras simetrías que conllevan conservaciones de cantidades que se parecen a la energía, pero contienen términos extra. Estos términos pueden asociarse a la energía propia del espacio-tiempo, pero dista de proporcionar una interpretación clara, ya que conduce a preguntas que no somos capaces de contestar aún, tales como: ¿cómo medimos esta energía? ¿de qué tipo es? ¿podemos usarla para, por ejemplo, viajes espaciales?

Mayo, 1935. Estados Unidos. Albores de la Segunda Guerra Mundial, Emmy Noether muere tras ser expulsada en 1933 de su puesto de trabajo en la Universidad de Göttingen y obligada a abandonar el país por un nazismo que no veía con buenos ojos su ascendencia judía. Albert Einstein, temiendo que la muerte de la mejor matemática del siglo XX pasara inadvertida para el mundo, escribe las siguientes palabras en el New York Times:

 

 

 

            La energía se crea y se destruye y, a veces, se conserva”

 

“[…] En el transcurso de los últimos días, la distinguida matemática Emmy Noether, anteriormente de la Universidad de Göttingen y durante los dos últimos años vinculada a la Universidad de Bryn Mawr, ha fallecido a los 53 años. A juicio de los matemáticos vivos más competentes, Fräulein Noether fue el genio matemático más creativo e importante desde que comenzó la educación superior de las mujeres. En el campo del álgebra […] descubrió métodos de enorme relevancia para el desarrollo de actuales generaciones de matemáticos más jóvenes. La Matemática pura es, a su modo, la poesía de las ideas lógicas. Uno busca las ideas más generales con las que formar de una manera simple, lógica y unificada, el círculo más grande posible de las relaciones formales. En este esfuerzo hacia la belleza lógica, se descubren fórmulas espirituales necesarias para una penetración más profunda en las leyes de la Naturaleza.[…]”

 Fuente: El Pais.

Marcos Pellejero Ibáñez es estudiante de doctorado en el Instituto de Astrofísica de Canarias (IAC). Se licenció en la Universidad de Zaragoza y ha estudiado posteriormente en el Imperial College de Londres teorías alternativas al modelo estándar cosmológico. El tema de su tesis es la estructura de las más grandes escalas cósmicas.

Rafael Tapia Rojo es investigador postdoctoral en la Universidad de Columbia, NYC. Se licenció y doctoró en la Universidad de Zaragoza, estudiando métodos de energía libre para comprender modelos de biomoléculas. Actualmente trabaja en el estudio de las propiedades mecánicas de proteínas con técnicas de molécula individual y paisajes de energía libre.

Siempre serán antagónicas: Ciencia y Religión

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia y religión    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para ser llamado científico, un método de investigación debe basarse en lo empírico y en la medición, sujeto a los principios específicos de las pruebas y el razonamiento, hay que demostrar con certeza la teoría. Y, desde luego, detrás de todo ello, estará siempre la intuición y las buenas ideas.

Empecé a estudiar física hace ahora unos 50 años. Y poco a poco he ido viendo  que una parte de la física iba dejando de ser ciencia, olvidando el método de Galileo, y avanzando hacia un sistema dogmático, místico e iniciático.  Recordemos que el método dogmático es aquel en el cual se exige aceptar una afirmación que no esta apoyada en ningún hecho comprobable: La afirmación de que las tablas de la ley las había entregado una deidad, por ejemplo.  Hoy es imposible, en el campo de la física, no aceptar la afirmación incomprobable, de que el mundo empezó en un Big-Bang, con una cierta energía que no se sabe que era, y moviéndose de una forma que exige un razonamiento circular que pasa de energía a frecuencias de algo que se desconoce,  a energías de caracter desconocido a frecuencias de ….., y así indefinidamente. Claro que, la Cosmología se asinta ahí, en el Big Bang, porque es el Modelo mejor que tiene y, desde luego, el que más se ajusta a los datos que se pueden observar. Sin embargo, nadie sabe nada de aquellos primeros momentos y, desde luego, tampoco nadie puede asegurar que el Big Bang sea la realidad de los hechos.

Pero como con las tablas de la ley, nadie puede subir a la montaña a verificar las afirmaciones expresadas, que sin embargo hay que creer bajo pena de excomunión. Nadie puede volar en el tiempo hacia atrás hasta hace unos miles de millones de años, para verificar la hipótesis.

El sistema avanza hacia el misticismo: ¿Que otra cosa  es la idea de las supercuerdas, una idea que para Steven Weinberg, padre de la Gran Unificacion, era ilusionante, pero se ha revelado incapaz de tener algo que ver con la realidad?  O la SUSY, la supersimetría que postula que, por ejemplo, los electrones, con spin fraccionario, tengan simétricos con spin entero, selectrones que nadie ha medido ni de lejos.

Y se está convirtiendo en iniciático. Para ”descubrir” el Higgs, el CERN cerró las puertas y aisló a sus dos equipos durante años, en un sistema indigno de la idea de la ciencia, que había sido pública y abierta para todos hasta ese momento. El CERN ha publicado los resultados de sus dos equipos pero, o estoy muy equivocado, no ha distribuido los datos originales, las fotografías de las trazas de los productos de desintegración de los productos de desintegración (si, dos veces, pues si hay Higgs), Particularmente no tengo nada claro que el Higgs exista, al menos a mí, las explicaciones que dieron no me han convencido de ello.

Solo vemos los productos de los productos de la desaparición, de la partícula buscada.  En las sociedades místicas, tras un periodo de iniciación para los elegidos, las verdades se revelaban siempre en ceremonias secretas bajo la terrible promesa de no revelar los ritos nunca fuera de la institución.

Otro de los padres de la Gran Unificación, el físico Abdus Salam, daba como razón poderosa para la búsqueda de la misma su fé en un único dios. Según él, la naturaleza debería tener una única fuerza, correspondiente a esa única deidad.

El padre de la mecánica cuántica, Niels Bohr, apremiado por Einstein, entre otros, llegó a decir que de esa forma de analizar el mundo atómico y sub-atómico,  de esa mecánica cuántica había que tomar las reglas de cálculo, pero que había que renunciar a entender lo que pasaba en él.  Esto dicho por un supuesto científico que había renunciado a entender la naturaleza, pero que controló, hasta su muerte, la concesión de los premios Nobel de física.

Es tremendamente importante considerar esto que he escrito aquí, en todos los caminos de la ciencia. Hoy la presión es publicar, aunque lo que se publique sea mera copia no entendida de otros trabajos publicados anterior o simultáneamente.  Esos trabajos se acumulan en las revistas científicas, de donde no salen a las empresas ni hacia la técnica. Los resultados de un enorme tanto por ciento de la investigación no son aprovechados por aquellos que la han financiado, que dejan que esos resultados caigan en el olvido.

Mientras que un científico como Avelino Coma desarrolla hasta sus úlñtimos extremos la Ciencia, en su trabajo de laboratorio, y sus resultados se aprovechan para la sociedad,  y lo mismo hacen otros cientos de miles de ellos, inmensas cantidades de dinero (esfuerzo) se tiran en desarrollos místicos sin utilidad alguna (por ejemplo, las investigaciones sobre la fusión del hidrógeno) o abiertamente carentes de relación con la naturaleza (las supercuerdas).

Edward Witten revisita la teoría de supercuerdas perturbativa en Strings 2012

Aún hay ciencia. Pero hay disciplinas que se están, tristemente, alejando de ella aunque se consideran públicamente, y así lo afirman, como los que marcan el camino del futuro de la misma. Terminarán olvidadas, como ha ocurrido con toda la mística iniciática. Pero de momento aún nos dicen, como los sufíes, que son los únicos que están cerca de la verdad.

La Ciencia es una cosa de la que todos sabemos como andan sus caminos y cuando se puede considerar digna de su nombre, otra cosa muy distinta será el especular y aventurar “teorías” que no llegan a ninguna parte, toda vez que tienen la imposibilidad de ser demostradas y, eso, amigos míos, es como hablar de la existencia de Dios, cuando ya sabemos que Ciencia y religión… ¡Siempre llevarán caminos divergentes”! La primera cree en lo que está comprobado, la segunda sólo cree mediante el ingrediente de la fe, no necesita demostrar nada.

Como empedernido curioso que soy, no dejo de echar alguna mirada a todos los ámbitos del saber humano, y, desde luego, la Religión no es ninguna excepción. Se puede comprobar que los padres de la Iglesia se quieren adaptar a los tiempos modernos y a los descunbrimientos científicos de la manera más suave y desapercibida posible, se van aceptando concepto que, en pasados tiempos, eran motivo de muerte para queienes lo pregonaban (Giordano Bruno es un buen ejemplo).

Claro que, al final del camino… ¡La verdad resplandece!

emilio silvera

Los del LHC quieren encontrar partículas de la “Materia...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Hace unos días, cerca de Cessy (Francia), una mujer paseaba con su perro ajena a lo que se cocía bajo sus pies. Era un entorno idílico. Campos verdes con nieve en las umbrías, granjas de vacas y los Alpes recortados en el horizonte. Mientras, a 100 metros bajo tierra, cientos de operarios, ingenieros y físicos hacían los últimos ajustes para encender la mayor máquina del mundo, capaz de reproducir lo que pasó en el universo poco después del Big Bang.

                             Vista lateral del experimento CMS, uno de los mayores del CERN

El Gran Colisionador de Hadrones, o LHC, en la frontera entre Francia y Suiza, intenta localizar partículas de la “materia oscura”. Entre sus muchos logros aún está en la memoria de todos el famoso Bosón que según nos dicen da masa a las partículas. En esa ocasión ya se consiguió todo un récord mundial con el descubrimiento del bosón de Higgs. Lo que deparará esta segunda etapa, que durará hasta 2018, no lo sabe nadie. Tras un tiempo de reparación y acondicionamiento el acelerador se puso a funcionar al doble de potencia y cruzará una frontera de la física nunca antes traspasada. ¡Veremos que nos encontramos! Incluso podría ser alguna sorepresa ¿desagradable? Bueno, si las cosas se hacen bien, no tiene por que producirse ningún acontecimiento negativo (aunque hace unos días el LHC “fue atacado” y se paralizaron los trabajos, ¡una ardilla tuvo la osadía de introducirse en la máquina!

El Large Hadron Collider (LHC) hace tres años nos sorprendía con la confirmación de la existencia del bosón de Higgs, Después de aquello volvió a tener una parada para revisiones hasta que de nuevo, los protones volvieron a circular por este túnel de 27 kilómetros de longitud, preparados para ofrecernos nuevos hallazgos científicos. Bueno, eso dicen los del LHC que se empeñan en buscar partículas de materia oscura que llaman WIMPs, cuando no sa sabe ni si la “materia oscura” existe en realidad. Es toda una paradoja el que una maquinaria tan enormemente grande que dispone de tan descomunal energía, se disponga a realizar experimentos en busca de la “nada”, ya que, lo cierto es que no saben ni si encontraran alguna cosa.

      Nuevos detectores nos darán mucha más información

El último parón ha servido para que los ingenieros a cargo del CERN hayan realizado importantes mejoras en esta estructura, y la nueva puesta en funcionamiento con el doble de la energía de lo que lo había hecho en el pasado ciclo de experimentos, seguramente, dará alguna sorpresa.A mí me gustaría que los resultados nos dikeran si existe algo más allá de los Quarks.

Primeras colisiones a 13 TeV en el experimento CMS. / CERN</p>
<p>” width=”499″ height=”380″ /></p>
<p style=Los protones son inyectados en ese particular circuito, al principio a una energía relativamente pequeña, pero poco a poco la van aumentando hasta alcanzar los 13 teraelectronvoltios (TeV). Al incrementar el número de protones aumentará el número de colisiones y la temperatura, y a finales de Abril de 2.016 se alcanzó su pico de energía de las partículas que circulen en el interior del LHC. Ahora a esperar resultados.

El descubrimiento del bosón de Higgs fue crucial para “completar” la formulación del modelo estándar de la física de partículas, pero dicha teoría está aún incompleta, y otra teoría llamada supersimetría sugiere que hay una partícula aún no descubierta que acompaña a cada una de las existentes en el modelo estándar. Estas son algunas de las partículas que los científicos esperan detectar en la nueva ronda de experimentos, y sobre todas ellas destaca la “partícula de materia oscura, que según los físicos constituye el 26% del universo.

Datos de mayo de 2004. La zona verde representa el resultado del experimento DAMA, en comparación con los límites de precisión de los experimentos CDMS y EDELWEISS. Desde entonces, as mejoras en los resultados han sido significativas.

“El CDMS (Cryogenic Dark Matter Search), situado en la mina Soudan (Minnesota, Estados Unidos), utiliza una técnica basada en el almacenamiento de cristales de germanio y silicio a una temperatura muy fría. Los cristales, que tienen un tamaño similar al de un disco de hockey, son enfriados a la temperatura de 50 milikelvin (0,05 K). Esta temperatura tan cercana al cero absoluto hace que los átomos del cristal vibren muy lentamente, por lo que, si cualquier WIMP impactara contra un átomo del cristal, se produciría una onda de sonido, pues el átomo que recibe el impacto desplaza en su vibración a los átomos de su alrededor, tarea de la que se encarga una capa de metal (aluminio y tungsteno). Este tungsteno se encuentra a una temperatura crítica, por lo que ejerce de superconductor, y las vibraciones que se generan en el cristal calientan la capa de metal, que se detecta a través del cambio en la resistencia del mismo.”

Sí los WIMPS han sido buscados por muchos y de muchas maneras pero, sin encontrarlos hasta el momento, y, en ello, está empeñado el LHC que cuenta con más potencia que otros experimentos.

Si los WIMPs, finalmente resultan ser las partículas responsables de la “materia oscura” no bariónica ( si es que realmente existen), deberían tener propiedades muy concretas al hacer “imposible” o “dificil” que no podamos verlos a pesar de que conforma una gran parte de la masa del Universo, no interacciona mediante la fuerza electromagnética, lo que nos lleva a pensar que son neutras y, sin embargo, sí parece que emitan fuerza gravitatoria… ¡Es todo tan raro!

Dibujo20150417 dark matter - gas temperature - illustris project - dark matter particle mass - marco cirelli - neutel 2015

En física, el consenso científico es que la materia oscura existe con una certeza del 100% (Bueno, yo no entro en ese 100 x 100 y soy muy exceptico en cuanto a la existencia de esa materia oscura a la que se agarran los cosmólogos como el ahogado a un clavo ardiendo, ya que, de otra manera no sabrían explicar por qué las galaxias se alejan unas de otras a tanta velocidad y lo mismo las estrellas en las galaxias, y, la explicación más fácil para ellos… ¡la materia oscura!. Sabemos que interacciona muy poco con la materia ordinaria, por ello detectarla es extremadamente difícil, pero la están buscando con ahínco y tesón en un rango de 90 órdenes de magnitud. Has leído bien, buscamos una partícula con una masa entre los yoctogramos y los yottagramos. La han descartado en muchos lugares, pero hay muchos otros en los que aún podría esconderse.

Uno de los grandes objetivos del LHC Run 2 es buscar una partícula candidata a la materia oscura si es que hay alguna que esté a su alcance. No sabemos si está a su alcance. Pero no perdemos la esperanza de que la encuentre. (Dicen algunos físicos del LHC).

Dibujo20150417 spin-independent - wimp-nucleon scattering - evolution in time - Snowmass CF1 Summary WIMP

 

“La materia oscura es un corpúsculo (si es macroscópico) o una partícula (si es microscópica) neutro (para la carga eléctrica y para la carga de color), que tiene una vida media muy larga y que interacciona débilmente con la materia ordinaria, quizás sólo gracias al bosón de Higgs. Uno de los objetivos del LHC Run 2 es explorar la búsqueda de una partícula de materia oscura en un pequeño rango de energías (la escala débil entre cientos y miles de GeV). Nos gusta creer que hay muchas razones físicas por las cuales debería esconderse en dicha escala. Pero la Naturaleza es sutil, aunque no perversa. Igual que el borracho que ha perdido sus llaves al entrar en casa de noche las busca debajo de la farola, donde hay luz, aunque esté a unos metros de distancia, buscamos la partícula donde podemos hacerlo. Y nuestra esperanza es encontrarla, pero si no la encontramos allí, como somos tercos, seguiremos buscándola.”

Como veréis, estos hablan de las partículas y de la materia oscura como si fueran objetos familiares con los que estamos a diario interaccionando, cuando en realidad, todo son hipótesis y creencias asentadas a través de indicios y conexiones “lógico-mentales” que no sabemos, aún, si van en la buena dirección.

¡Ya veremos que pasa! Me gustaría que acertaran y aparecieran los dichos WIMPs, confirmando todas esas teorías, así podríamos comenzar la búsqueda de otras partículas que, como el Gravitón, están por ahí perdidas y tampoco podemos encontrarla.

emilio silvera

El Universo y la Vida… ¡Nuestra imaginación!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

    Los astrofísicos se devanan los sesos queriendo saber si hay vida fuera de la Tierra

Hay cuestiones que van mucho más allá de nuestros pensamientos, sobrepasan la propia filosofía y entran en el campo inmaterial de la Metafísica, quizá el único ámbito que realmente pueda explicar lo que la Mente es. Allí reside la esencia de lo complejo, del SER. Ya sabéis:

 

 

 

 

Nuevas energías y nuevas partículas antes desconocidas. Ya están planificando el nuevo Acelerador de partículas que supere al LHC que, seguirá funcionando y buscando desvelar los secretos de la materia.

 

 

Nuestro Universo es grande, inmenso y, para nosotros se podría decir que infinito si pensamos en la imposibilidad que tenemos de poder recorrerlo, no ya en una nave espacial que no podríamos, sino mediante algún otro camino que acortara las distancias como, por ejemplo, los imaginados viajes por el Hiperespacio. Decir Universo es decir todo lo que existe: La materia conformada de mil maneras, el espaciotiempo, las fuerzas que actúan e interaccionan con todos los objetos que constituyen esa materia que podemos ver y detectar, las constantes universales que hace que nuestro mundo sea tal como lo conocemos y que hace posible la existencia de la vida. En él ocurren muchos sucesos que, unas veces podemos explicar y otras son un misterio.

El Universo y la Vida… ¡Nuestra imaginación!

 La Galaxia Vía Láctea tiene cien mil años-luz de diámetro y sería impensable recorrerlos para poder salir de ella y mirarla desde fuera, de tal manera que, ahora sí, la pudiéramos ver tal y como nos la imaginamos.

De la misma manera que nunca podremos ver nuestra Galaxia como observamos otras más lejanas, tampoco podemos ver el Universo entero. Somos demasiado pequeños y estamos condenados a observar una pequeña parte de nuestra región, aquella que nos circunda y, el todo al que pertenece esa región, siempre estará fuera de nuestra alcance y, sin embargo, sí podemos ver regiones y espacios mayores y más lejanos… ¡Curioso!

“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

 

Vía Láctea es captada en el Desierto de Atacama sobre el telescopio ALMA del Observatorio Espacial Europeo ESO

Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida.

No pocas veces nos tenemos que maravillar ante las obras de la Naturaleza, en ocasiones, con pinceladas de las propias obras que nosotros mismos hemos sido capaces de crear. Así, no es extraño que algunos piensen que la Naturaleza nos creó para conseguir sus fines, que el universo nos trajo aquí para poder contemplarse así mismo.

Siempre hemos tratado de saber lo que el Universo es, lo que la Naturaleza esconde para conocer los mecanismos de que ésta se vale para poder hacer las maravillas que podemos contemplar tanto en la tierra como en el cielo. Valles, ríos y montañas, hermosos bosques de lujuriante belleza , océanos inmensos y llenos de formas de vida y, criaturas que, conscientes de todo eso, aunque algunas veces temerosas ante tanto poder, no por ello dejan de querer saber el origen de todo.

http://ascendingstarseed.files.wordpress.com/2012/08/starseed.jpg

Es posible que nos creámos más de lo que en realidad somos. Queremos jugar con fuerzas que no hemos llegado a comprender y, desde las estrellas y las inmensas galaxias, hasta los mundos y las fuerzas que todo lo rigen en el Universo, hemos querido conocer para poder, con esos conocimientos, recrear la misma creación. Los científicos han dado ya el primer paso para la creación de la vida sintética, han sido capaces de crear un cromosoma completo a partir de una célula de levadura. El logro es considerado un gran hallazgo dentro de la biología sintética, que busca diseñar organismos desde sus principios más básicos.

¿Hasta dónde queremos llegar?

carteles naturaleza truth anndechocholate amo desmotivaciones

A veces, viendo como se desarrollan las cosas y cómo se desenvuelven los hechos a medida que el Tiempo transcurre, no tenemos más remedio que pensar que parece como sí, la Naturaleza, supiera que estamos aquí y, desde luego, nos tiene impuesto límites que no podemos traspasar hasta que “ella” no considera que estamos preparado para ello. Un amigo asiduo a éste lugar nos decía que la Naturaleza nos preserva de nosotros mismos. Nosotros, los humanos, no conocemos ninguna regla que nos prohíba intentar todo aquello que podamos imaginar y, de esa manera, a veces, jugamos a ser dioses.

Pero, ¿acaso no somos, nosotros mismos universo? Dicen que genio es aquel que puede plasmar en realidad sus pensamientos y, aunque nos queda mucho camino por recorrer, lo cierto es que, hasta el momento presente, mucho de eso se ha plasmado ya. Es decir, hemos sabido de qué están hechas las estrellas, conocemos la existencias de las grandes estructuras del Universo constituidas por cúmulos y supercúmulos de galaxias, sabemos de mundos en los que, con mucha probabilidad puedan existir criaturas diversas que, conscientes o no, piensen, como nosotros, en todos los secretos que el Universo esconde. Hemos viajado hasta el “universo” infinitesimal del átomo y hemos conocido de qué está hecho el ínfimo núcleo donde los protones y neutrones, esos hadrones conformados por tripletes de Quarks que están confinados en su interior por los Grluones, los mensajeros de la Fuerza Nuclear Fuerte.

hombre universo

Sinceramente creo que, dentro de nosotros, están todas las respuestas a las preguntas que podamos plantear, toda vez que, como parte del Universo que somos, en nuestros genes, en lo más profundo de nuestras mentes están grabados todos los recuerdos y, siendo así, solo se trata de recordar para saber lo que pasó, para comprender los orígenes y, finalmente saber, el por qué estamos aquí y para qué. Nos hemos olvidado de que somos “polvo de estrellas”, los materiales que nos conforman se forjaron en los “hornos” nucleares de los astros que brillan en el firmamento lejano. A temperaturas de millones de grados se pudieron fusionar los elementos que hoy están en nosotros. Una Supernova, hace miles de millones de años, hizo brillar el cielo con un resplandor cegador, una enorme región quedó sembrada de materiales en forma de Nebulosa que, con el paso de los eones, conformó un sistema planetario con un Sol central que le daba luz y calor a un pequeño planeta que, mucho después, llamaron Tierra. Los seres que allí surgieron y evolucionaron, eran el producto de grandes transiciones de fase y cambios que, desde el Caos hizo todo el recorrido necesario hasta la creación de la Vida consciente.

De esa manera, sin lugar a ninguna duda, podemos hablar de un Universo viviente en el que, la materia evoluciona hasta la vida y los pensamientos. En el que en un carrusel sin fin surgen nuevas estrellas y nuevos mundos en los que, como en la Tierra, pasando el tiempo, también surgirá la vida que, podrá ser… ¡de tántas maneras! Una galaxia como la Vía Láctea puede tener más de cien mil millones de estrellas, en el universo pueden estar presentes más de cien mil millones de galaxias, los mundos que existen en una sola galaxia son cientos de miles de millones y, sabiendo todo eso, ¿Cómo poder pensar que la vida sea única en la Tierra?

“La vida se abre paso… ¡imparable!”

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza. Hemos podido constatar la persistencia con la que la vida, se abre paso en este mundo, la hemos podido hallar en lugares tan insólitos como fumarolas marinas a más de 100 ºC, o en aguas con una salinidad extrema, o, a varios kilómetros de profundidad bajo tierra, o, nutriendose de metales, o metanógenas y alófilas y tantas otras infinitesimales criaturas que nos han causado asombro y maravilla.

 

 

 

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

Si, amigos míos, en lo que a la vida se refiere, ésta se abre paso en los lugares más extremos e inesperados por muy malas condiciones que allí puedan estar presentes.De la misma manera, podrían estar situadas en mundos lejanos que, con unas condiciones distintas a las de la Tierra, se puedan haber creado criaturas que ni nuestra desbordante imaginación pueda configurar en la mente.

 

 

 

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

Es cierto que en todo el Universo rigen las mismas leyes y están presentes las mismas constantes universales que, ni con el paso del tiempo pueden variar, así la luz siempre irá a 300.000 Km/s, la carga del electrón será siempre la misma como la masa del protón y, gracias a que eso es así, podemos estar nosotros aquí para contarlo. Sin embargo, el Universo, no es uniforme y en el inmenso espacio interestelar impera la diversidad.

http://www.eso.org/public/archives/images/screen/eso1208a.jpg

Existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos -composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

Aquí se crea entropía negativa. También nosotros, tenemos una manera de vencer a la inexorable Entropía que siempre acompaña al Tiempo, su transcurrir deja sentir sus efectos sobre las cosas que se hacen más viejas. Sin embargo, sabemos, como las galaxias, generar energía reproductora y, mientras que las galaxias crean estrellas nuevas y mundos, nosotros, recreamos la vida a partir de la unión entr hombre y mujer, y, de esa unión surgen otros seres que, perpetúan nuestra especie. Es la entropía negativa que lucha contra la extinción.

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

El hombre furente a una enorme galaxia en el espacio ilustra el sermón 'El origen del ser humano, su dignidad y su lugar en el universo'.

Puede que podamos ser más de lo que parece y que, seamos menos de lo que nosotros mismos nos podamos creer. No parece muy aconsejable que estemos situados en un plano de superioridad en el cual podamos mirarlo todo por encima del hombro. Precisamente por ser Naturaleza nosotros mismos, estamos supeditados a sus cambios y, por lo tanto, a merced de ellos.

El problema está, como dijo aquel hombre sabio:  “¡Somos parte del problema que tratamos de resolver!”

emilio silvera

Posibles mundos habitables

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticia comentada    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Descubren tres nuevos planetas cercanos a la Tierra y potencialmente habitables

Entusiasmo en el mundo astronómico

Están a 40 años luz de la Tierra. Un grupo de científicos internacionales hizo el hallazgo desde un telescopio ubicado en el Observatorio La Silla, en Chile.

Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

                       Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

Tres planetas potencialmente habitables que orbitan alrededor de una estrella enana ultrafría, a tan sólo 40 años luz de la Tierra, fueron descubiertos por un un equipo internacional de astrónomos desde el Observatorio La Silla, 470 kilómetros al norte de Santiago de Chile.

El hallazgo se hizo con el telescopio Trappist, aparato robótico belga de 0,6 metros operado desde la Universidad de Lieja y basado en el Observatorio La Silla, donde dedican gran parte de su tiempo al seguimiento de la luz de unas 60 estrellas enanas ultrafrías. Estas estrellas tienen tamaños y temperaturas similares a las de Venus y la Tierra, y son los mejores objetivos encontrados hasta ahora para la búsqueda de vida fuera del Sistema Solar.

El equipo de astrónomos observó que esta estrella se desvanecía ligeramente por intervalos de tiempo, lo que indicó que varios objetos pasaban entre ella y la Tierra. Un análisis detallado confirmó luego la presencia de tres planetas con tamaños similares al de la Tierra.

TRAPPIST-1 Un grupo internacional de científicos ha descubierto tres planetas de tamaños y temperaturas similares a los de la Tierra que orbitan alrededor de una estrella enana ultrafría a tan solo 40 años luz de la Tierra. (AFP)

  La estrella enana ultrafría TRAPPIST-1 en la constelación de Acuario.

Mirá también: Estudiarán 20.000 estrellas en busca de vida extraterrestre

“Realmente se trata de un cambio de paradigma con respecto a qué camino seguir en nuestra búsqueda de planetas y de vida en el universo. Hasta ahora, la existencia de estos mundos rojos orbitando alrededor de estrellas enanas ultra frías era puramente teórica, pero ahora tenemos, no un solitario planeta alrededor de una estrella roja débil, ¡sino un sistema completo de tres planetas!”, expresó Emmanuël Jehin, coautor del nuevo estudio.

TRAPPIST-1 Un grupo internacional de científicos ha descubierto tres planetas de tamaños y temperaturas similares a los de la Tierra que orbitan alrededor de una estrella enana ultrafría a tan solo 40 años luz de la Tierra. (AFP)

Ilustración de la estrella enana ultrafría TRAPPIST-1 desde la superficie de uno de sus planetas

Michaël Gillon, autor principal del artículo que presenta hoy el descubrimiento en la revista Nature, explicó: “Por qué estamos tratando de detectar planetas como la Tierra alrededor de estrellas más pequeñas y más frías en las vecindades del Sistema Solar? La razón es simple: con la tecnología actual, los sistemas alrededor de estas pequeñas estrellas son los únicos lugares donde podemos detectar vida en un exoplaneta del tamaño de la Tierra. Así que, si queremos encontrar vida en otros lugares del universo, ahí es donde debemos comenzar a buscar”.

Mirá también: Europa se lanza a buscar vida en Marte

“Gracias a varios telescopios gigantes actualmente en construcción, pronto seremos capaces de estudiar la composición de la atmósfera de estos planetas y explorarlas, primero en busca de agua y, luego, en busca de trazas de actividad biológica. Es un paso de gigante en la búsqueda de vida en el universo”, complementó Julien de Wit, coautor del MIT (Instituto de Tecnología de Massachusetts) en Estados Unidos.

Para el mundo de la astronomía, este estudio abre una nueva vía para la caza de exoplanetas y también pone de manifiesto que la búsqueda ha entrado en el reino de los “primos” potencialmente habitables de la Tierra.

Fuente: NASA