martes, 07 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La química que encendió la chispa del origen de la vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Una reciente investigación ha sugerido por primera cómo pudo aparecer el ARN, quizás la primera molécula de material genético, a partir de las transformaciones de sustancias encontradas en cometas

Se cree que hay posibles precursores de la vida dispersos por nubes interplanetarias, cometas y asteroides

Se cree que hay posibles precursores de la vida dispersos por nubes interplanetarias, cometas y asteroides – NASA/JENNY MOTTAR

Reportaje de GONZALO LÓPEZ SÁNCHEZ en ABC-

 

 

El Universo es un infierno frío, oscuro y absolutamente inmenso. Los rayos de luz tardan miles de años en recorrer las galaxias, y las estrellas están tan lejos entre sí que apenas son puntos en la negrura. En medio de esa oscuridad, la temperatura media del Universo ronda los 270 grados centígrados bajo cero, casi en el límite mínimo posible. Pero ni el frío ni el vacío han conseguido evitar la aparición de un pequeño y sorprendente milagro: la vida.

Los científicos llevan muchos años tratando de averiguar cómo fue posible que ocurriera. Cómo, en medio de la muerte, la vida parece luchar contra el caos y aferrarse a la supervivencia con todo lo que tiene a su alcance. Recientemente, los investigadores han descubierto algo que llevaban buscando 50 años. Por primera vez, han conseguido encontrar una explicación química para una pequeña parte de este milagro. En concreto, un artículo publicado recientemente en «Science» ha explicado cómo algunas moléculas inanimadas pueden convertirse en ARN, una de las chispas que encendió el origen de la vida.

«Describimos una ruta química simple que permite a pequeñas moléculas transformarse en nucleósidos, los precursores del ARN», ha explicado a ABC Thomas Carell, químico en la Universidad de Múnich y primer autor del estudio.

A través de unas reacciones químicas relativamente sencillas, estos investigadores han sugerido cómo es posible que unas moléculas de aspecto insignificante se conviertan en uno de los ingredientes básicos de la vida.

Tal como ha explicado Ricardo Amils, catedrático en microbiología de la Universidad Autónoma de Madrid, se trata de compuestos sencillos (como ácido cianhídrico, amoníaco y derivados del ácido fórmico) con los que se puede sintetizar ARN. Este «primo» del ADN es capaz de hacer dos importantísimas funciones en los seres vivos: puede almacenar y codificar información genética (que se hereda y se transfiere) y puede formar monedas energéticas, unas moléculas que se intercambian en el interior de los seres vivos y que permiten que desarrollen sus reacciones químicas.

Una de las cosas más interesantes de estas moléculas precursoras es que parecen estar dispersadas por el Universo. Están presentes en el polvo interplanetario y sobre la superficie de asteroides, cometas y planetas rocosos. De hecho, en el caso de esta investigación, los precursores se encontraron sobre la superficie del cometa 67 P/Churyumov-Gerasimenko, la «roca» investigada por la sonda Philae de la Agencia Espacial Europea.

El papel de volcanes y rayos

El investigador Juli Peretó, especialista en la investigación del origen de la vida en la Universidad de Valencia, ha explicado cómo se cree que ocurrió el milagro: «El ARN pudo actuar como material genético y como catalizador (facilitando ciertas reacciones químicas). Podría haber estado encapsulado en vesículas membranosas de aminoácidos y otros péptidos cortos». Gracias a esto, y a la presencia de azúcares y aminoácidos, estas pequeñas cápsulas «aprendieron» a conectar la materia y la energía del exterior para su propio beneficio, en lo que sería la versión más primitiva del metabolismo.

Así fue cómo, hace 4.000 o 3.500 millones de años, esas vesículas se organizaron y originaron las primeras formas de vida. Algunos creen que las moléculas precursoras de la vida llegaron a la Tierra bordo de asteroides, y que allí se transformaron y permitieron la aparición de los primeros seres vivos. Pero otros, como Thomas Carell, sitúan el origen en el propio planeta. Quizás, los rayos, los volcanes y los mares de la superficie pudieron ser el caldo de cultivo ideal para las semillas de la vida. Y así, a partir de una posible chispa de ARN, comenzó un proceso imparable de supervivencia, multiplicación y adaptación a un Universo hostil.

Representación del nacimiento de la Tierra. Millones de años después, las condiciones cambiaron y favorecieron la aparición de la vida- JULIAN BAUM

 

Moléculas, sustancias, cuerpos…

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El material más abundante del Universo es el Hidrógeno cuyos átomos contienen un sólo protón y un sólo electrón. Sin embargo, a partir de él se pueden conseguir todos los elementos que existen mediante una transición de fase que, generalmente, se produce en las estrellas.

Es allí, en las estrellas, en sus hornos nucleares y en las explosiones de supernovas, donde a miles de millones de grados de temperatura, se crean los elementos más complejos que el hidrógeno y  el helio.  Aparece el litio, el carbono, el silicio o el nitrógeno y el hierro.

De estos materiales estamos nosotros hechos, y, lógicamente, se fabricaron en las estrellas.

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

H, He, (Li, Be, B) C, N, O…… Fe

¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo y…. de la vida inteligente.

El telescopio VLT (Very Large Telescope) de ESO ha obtenido imágenes de una fascinante región de formación de estrellas en la Gran Nube de Magallanes — una de las galaxias satélite de la Vía Láctea. Esta precisa imagen revela dos peculiares y brillantes nubes de gas: la rojiza NGC 2014 y su vecina azulada NGC 2020. Pese a que son muy diferentes, ambas fueron esculpidas por potentes vientos estelares procedentes de estrellas recién nacidas extremadamente calientes que también irradian el gas, provocando que brille de forma intensa. (para verla entera hay que pasar la rgla hacia la derehca).

Pero está claro que, todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairos-Swith, puede incluso llegar a transmitirse.

Porque ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc., en otros aspectos, ni sabemos si pueden existir otras propiedades distintas a las meramente-físicas.

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular.  El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según decía en páginas anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos.  Hoy día, estos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en Química se llama análisis cualitativo) es extraordinariamente sencilla ya que, como es sabido, constan de neutrones y protones que se pueden considerar como unidades que, dentro del núcleo, mantienen su identidad.  Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida.  Recordad que su fórmula general es , lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Resultado de imagen de El número de protones y de neutrones determina el elemento

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al Uranio (el más complejo), siempre referido a elementos naturales que son 92, el resto, son artificiales, los conocidos transuránicos en cuyo grupo están el Einstenio o el Plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

El papel primordial del agua en el metabolismo de los seres vivos se debe sus propiedades físicas y químicas, derivadas de la estructura molecular.

El número de especimenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas.  Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio; el número de moléculas conocidas hasta ahora comprende varios millones de especimenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Una molécula es una estructura, con individualidad propia, constituida por núcleos y electrones.  Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Proteina supresora de tumores p53 encajada a una secuencia de ADN

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno.  De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio.  El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña muy importante papel en la evolución.

Desde las moléculas más sencilla, como la del hidrógeno, con un total de 2 electrones, hasta las más complejas, como las de las proteínas, con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que, desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que los nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica,  y en particular a la de los electrones más débilmente ligados.   Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes.   De acuerdo con la mecánica cuántica el número de orbitales se reduce a unos pocos.  Se individualizan por unas letras hablándose de orbitales, s, p, d, f, g, h.  Este pequeño número nos proporciona una gran diversidad.

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula.  En las moléculas, la información, obviamente, debe de abarcar a todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos.  La ganancia de información equivale a una disminución de entropía; por esta razón,  a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc., es decir, curvas isoelectrónicas, equivalentes formalmente a las de nivel en topografía.  Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc., que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos.  Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas).  La inmensa mayoría de ellas contiene carbono.  Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

Estas moléculas se agrupan y forman biomoléculas; Monómeros, que enlazados unos a otros, forman largas cadenas y originan la enorme diversidad de macromoléculas existentes CO2 H2O N2 Hidratos de carbono Glucosa Peroxidasa.

El carbono no es el único átomo con capacidad para formar los citados esqueletos.  Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.

Refiriéndonos al silicio, que para nosotros es el más importante, señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos, poseyendo gran nivel de información, difieren, en varios aspectos, de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.

El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas.  Esas diferencias se refieren, fundamentalmente, a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente.  Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de van der Waals, que, pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas.  En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.

Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto.  Para un cristal ideal así sería en efecto, pero ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales.  Precisamente esos defectos puntuales podían proporcionar una mayor información.

Las moléculas orgánicas con enlaces dobles ó triples tienen también formas características.

Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación entre los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras.  Resulta ranozable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.

No puedo, dejar pasar la oportunidad, aunque sea de pasada, remencionar las sustancias.

Resultado de imagen de Las moléculas orgánicasResultado de imagen de Las moléculas orgánicas

                                                          Tipos de energía que se almacena en moléculas orgánicas

Las así llamadas, son cuerpos formados por moléculas idénticas, entra las cuales pueden o no existir enlaces químicos.  Veremos varios ejemplos.  Las sustancias como el oxígeno, cloro, metano, amoníaco, etc., se presentan en estado gaseoso en condiciones ordinarias de presión y temperatura.  Para su confinamiento se embotellan, aunque existen casos en que se encuentran mezcladas en el aire (os podéis dar una vueltecita por el Polo químico de Huelva).

En cualquier caso, un gas como los citados consiste en un enjambre de las moléculas correspondientes.  Entre ellas no se ejercen fuerzas, salvo cuando colisionan, lo que hacen con una frecuencia que depende de la concentración, es decir, del número de ellas que están concentradas en la unidad de volumen; número que podemos calcular conociendo la presión y temperatura de la masa de gas confinada en un volumen conocido.

Decía que no existen fuerzas entre las moléculas de un gas.  En realidad, es más exacto que el valor de esas fuerzas es insignificante porque las fuerzas residuales de las electromagnéticas, a las que antes me referí, disminuyen más rápidamente con la distancia que las fuerzas de Coulomb; y esta distancia es ordinariamente de varios diámetros moleculares.

Podemos conseguir que la intensidad de esas fuerzas aumente tratando de disminuir la distancia media entre las moléculas.  Esto se puede lograr haciendo descender la temperatura, aumentando la presión o ambas cosas.  Alcanzada una determinada temperatura, las moléculas comienzan a sentir las fuerzas de Van der Waals y aparece el estado líquido; si se sigue enfriando aparece el sólido.  El orden crece desde el gas al líquido, siendo el sólido el más ordenado.  Se trata de una red tridimensional en la que los nudos o vértices del entramado están ocupados por moléculas.

Todas las sustancias conocidas pueden presentarse en cualquiera de los tres estados de la materia (estados ordinarios y cotidianos en nuestras vidas del día a día).

Si las temperaturas reinantes, como decíamos en páginas anteriores, es de miles de millones de grados, el estado de la materia es el plasma, el material más común del Universo, el de las estrellas (aparte de la materia oscura, que no sabemos ni lo que es, ni donde está, ni que “estado” es el suyo).

En condiciones ordinarias de presión, la temperatura por debajo de la cual existe el líquido y/o sólido depende del tipo de sustancia.  Se denomina temperatura de ebullición o fusión la que corresponde a los sucesivos equilibrios(a presión dada) de fases: vapor <-> líquido <-> sólido.  Estas temperaturas son muy variadas.  Por ejemplo, para los gases nobles son muy bajas; también para el oxígeno (O2) e hidrógeno (H2).  En cambio, la mayoría de las sustancias son sólidos en condiciones ordinarias (grasas,  ceras, etc.)

Las sustancias pueden ser simples y compuestas, según que la molécula correspondiente tenga átomos iguales o diferentes.  El número de las primeras es enormemente inferior al de las segundas.

El concepto de molécula, como individuo-físico y químico, pierde su significado en ciertas sustancias que no hemos considerado aun.  Entre ellas figuran las llamadas sales, el paradigma de las cuales es la sal de cocina.  Se trata de cloruro de  sodio, por lo que cualquier estudiante de E.G.B. escribiría sin titubear, su fórmula: Cl Na.  Sin embargo, le podríamos poner en un aprieto si le preguntásemos donde se puede encontrar aisladamente individuos moleculares que respondan a esa composición.  Le podemos orientar diciéndole que en el gas Cl H o en el vapor de agua existen moléculas como individualidades.  En realidad y salvo casos especiales, por ejemplo, a temperaturas elevadas, no existen moléculas aisladas de sal, sino una especie de molécula gigante que se extiende por todo el cristal.  Este edificio de cristal de sal consiste en una red o entramado, como un tablero de ajedrez de tres dimensiones, en cuyos nudos o vértices se encuentran, alternativamente, las constituyentes, que no son los átomos de   Cl  y  Na  sino los iones Cl y Na+.  El primero es un átomo de Cl que ha ganado un electrón, completándose todos los orbitales de valencia; el segundo, un átomo de Na que ha perdido el electrón del orbital s.

Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro.  El resultado es que, la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl.  Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el ClNa.  Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals.  Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.

Hablemos de cuerpos.

Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta.  En segundo lugar considerare los demás cuerpos y objetos del Universo.  El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos.  Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la Química), consideró como el último término a que se llega mediante la aplicación del análisis químico.

Hoy sabemos que son colectividades de átomos isotópicos.

La mayoría de ellos son sólidos y se encuentran en la Naturaleza (nuestro entorno terráqueo) en estado libre o en combinación química con otros elementos, formando los diversos minerales.

La ordenación de los iones en las redes se manifiesta externamente en multitud de formas y colores.  No obstante, debo señalar que, aun siendo abundante esta variedad, no es tan rica como la que corresponde a los cuerpos vivos, tanto animales como vegetales.   La explicación se basa en que el número de especimenes moleculares y su complejidad son mucho mayores que en el reino inorgánico.

Sería conveniente, salir al paso de una posible interpretación errónea.  Me refiero a que pudiera pensarse que los reinos que acabamos de mencionar constituyen clases disyuntas, esto es, sin conexión mutua.  Y no lo digo porque esté considerando el hecho de que el carbono forma compuestos inorgánicos y orgánicos (lo que también hace el silicio), sino porque haya existido, y aún pueda existir, una conclusión, mejor conexión evolutiva del mundo inorgánico y el viviente que no se puede descartar, de hecho, yo particularmente, estoy seguro de ello.  Estamos totalmente conectados con los ríos, las montañas y los valles, con la tierra que pisamos, el aire que respiramos y con todo el resto del Universo del que formamos parte.

La teoría de Cairos Swith considera que el eslabón entre ambos mundos se halla localizado en los microcristales de arcilla.  Mi teoría particular es que no hay eslabón perdido en dicha conexión, sino que es el tiempo el que pone, en cada momento, una u otra materia en uno u otro lugar.  Ahora, nos ha tocado estar aquí como ser complejo, pensante y sensitivo.  El eón que viene nos puede colocar formando parte de un enorme árbol, de un monte, o, simplemente estar reposando como fina arena en el lecho de un río.  Sin dudarlo, J. M. y P. formarán parte de un hermoso jardín perfumado y lleno de aromas que la brisa regalará a los que pasen cerca de allí.

El granito, por ejemplo, consiste básicamente en una mezcla de tres cuerpos compuestos: cuarzo, mica y feldespato. ¿Quién puede decir hoy lo que seremos mañana?

En todos los cuerpos que hemos estado considerando hasta ahora, las moléculas, los átomos o los iones se hallan situados en los nudos de la correspondiente red, así que, los electrones de esos individuos se encuentran también localizados en el entorno inmediato de esos lugares.  Podríamos decir que la densidad electrónica es una función periódica espacial, lo que significa que al recorrer la red siguiendo una determinada dirección irían apareciendo altibajos, es decir, crestas y valles de la densidad electrónica.

La estructura de los cuerpos metálicos, así como las aleaciones, merecen una consideración especial.  La estructura de los metales y aleaciones difiere de la de los demás cuerpos en un aspecto muy importante que consideraré a continuación.

Supongamos, para fijar las ideas, que tenemos un trozo de plata metálica pura. En los nudos de la red correspondientes los átomos han perdido su electrón de …

Me refiero a que en los cuerpos metálicos existe una deslocalización de los electrones que están menos fuertemente enlazados en los correspondientes núcleos, es decir, de los electrones de valencia.

Vamos a precisar un poco.  Supongamos, para fijar las ideas, que tenemos un trozo de plata metálica pura. En los nudos de la red correspondientes los átomos han perdido su electrón de valencia, pero ocurre que cada uno de estos electrones forma una colectividad que se halla desparramada o dispersa por todo el sólido.  Una primera imagen de esta situación fue establecida por el gran físico italiano Enrico Fermi, por lo que se habla de un gas electrónico, llamado también de Fermi, que llenaría los espacios libres, es decir, no ocupados por los iones metálicos.

Este gas electrónico es el responsable de las propiedades metálicas, tales como el brillo, conductibilidades eléctrica y térmica, etc.  La aplicación de la mecánica cuántica a la descripción del estado metálico conduce a la obtención del mapa de la densidad electrónica, o, como decía antes, a las características de la información correspondiente.

Sin entrar en detalles que desviarían nuestra atención hacia otros conceptos fuera de los límites de lo que ahora estoy pretendiendo, utilizaré el mismo lenguaje que para las estructuras de núcleos y átomos.

Recordemos que en la sociedad de los nucleones y electrones existen las relaciones verticales y las de estratificación, que se manifiestan en las capas y subcapas.  En el caso de los metales tendríamos una colectividad de núcleos, arropados con sus capas cerradas, ocupando los nudos de la red; únicamente los electrones de valencia de cada átomo forman la colectividad del gas electrónico.

La pregunta que nos debemos hacer es: ¿estos electrones, en número igual, por lo menos,  al de los átomos, se hallan estratificados?  La respuesta es que sí.  Existe una estratificación de estos electrones en las llamadas bandas.  El concepto de banda energética resulta de la consideración simultánea de dos aspectos: la cuantización energética (o la estratificación de los niveles energéticos en los átomos) y el grandísimo número de electrones existentes.  Este colectivo no podría ubicarse en un número finito y escaso de niveles.   Esta dificultad queda soslayada si se admite que cada uno de esos niveles atómicos de los N átomos que forman el cuerpo se funde en otros tantos niveles de cierta anchura donde ya pueden alojarse los electrones disponibles.

Esa fusión de los niveles atómicos da lugar a las bandas.  Esta imagen equivaldría a considerar un metal como un átomo gigante en el que los niveles energéticos poseyeran una anchura finita.

En cuanto a la información que puede soportar un metal, podríamos señalar que sería parecida a la del correspondiente átomo, pero mucha más extendida espacialmente.   Una información puntual, la del átomo, daría paso a otra espacial, si bien vendría a ser una mera repetición periódica de aquella.

¿Y los cuerpos que pueblan el resto del Universo?

https://sistemaplanetario.files.wordpress.com/2011/03/universo2.jpg

Cuando un cuerpo sobrepasa unas determinadas dimensiones, aparece algo que conocemos como fuerza gravitatoria y que se deja sentir en la forma que todos conocemos y, que da lugar, primeramente a la fusión de los diversos materiales que forman los cuerpos.

Así, por ejemplo, en el cuerpo que llamamos Tierra, la presión crece con la profundidad, por lo que, a partir de un determinado valor de ésta, aparece el estado líquido y con él una estratificación que trata de establecer el equilibrio hidrostático.

Dentro de nuestro sistema planetario se distinguen los planetas rocosos, hasta Marte y meteoritos inclusive, y el resto de ellos, desde Júpiter en adelante, incluido este.  Estos últimos difieren esencialmente de los primeros en su composición.  Recuérdese que la de Júpiter es mucho más simple que la de los planetas rocosos.  Consta fundamentalmente de hidrógeno, helio, agua, amoniaco y metano, con un núcleo rocoso en su interior.  El hidrógeno que rodea a este núcleo se encuentra en forma de hidrógeno atómico sólido.

También la composición del Sol (y todas las estrellas que brillan) es más simple que la de los planetas rocosos, su estado físico es el de plasma y su contenido está reducido (mayormente) a hidrógeno y helio.  Mas variedad de materiales existe en las estrellas supernovas, donde el primitivo hidrógeno ha evolucionado de la manera que expliqué en otra parte de este trabajo.

En cuanto a los derechos de la evolución estelar, enanas blancas, estrellas de neutrones y agujeros negros, señalaré que la composición de la primera es sencilla en cuanto al numero de “elementos” constituyentes; la segunda ya lo indica su propio nombre, constan de nucleones, particularmente neutrones que están fuertemente empaquetados (muy juntos) por la gravedad.  Una estrella de neutrones puede tener una densidad superior a la del agua, en millones de veces y del mismo orden que la de los núcleos atómicos.   El agujero negro, es un fenómeno aparte, su inmensa fuerza gravitatoria es tal que, ni la luz puede escapar de ella, es decir, su velocidad de escape es superior a 300.000 km/s, y, como según la relatividad, nada es en nuestro Universo, superior en velocidad, a la luz, resulta que nada podrá escapar de un agujero negro.

Allí dentro, en el interior del agujero negro, no existen ni el tiempo ni el espacio, es como un objeto que estando en nuestro Universo (deja sentir su fuerza gravitatoria y engulle estrellas), al mismo tiempo, no está aquí. Son muchas las cosas que aún nos queda por dedcubrir.

emilio silvera

¿Hasta dónde nos llevará la Inteligencia Artificial?

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Computación

Robots profesores, abogados o periodistas: la invasión de la inteligencia artificial

Bufetes de abogados que contratan robots, profesores cibernético que ‘engañan’ a los alumnos… La inteligencia artificial está poco a poco entrando en nuestras vidas de las formas más insospechadas.

¿Tenemos derecho a saber si quien contratamos es humano?
¿Tenemos derecho a saber si quien contratamos es humano? Istock

 

 

El bufete estadounidense de abogados Baker & Hostetler anunció recientemente que han contratado a ROSS, “el primer abogado artificialmente inteligente del mundo”, para echar una mano en casos de bancarrota empresarial. Este bufete, que cuenta con 50 abogados humanos, piensa ampliar las competencias de ROSS a otros casos próximamente.

ROSS se basa en Watson, la plataforma de computación cognitiva desarrollada por IBM, y es capaz de leer y comprender, generar hipótesis cuando se le pregunta, y responder con referencias y citas -está diseñado para bucear rápidamente en normativas y jurisprudencia- para respaldar sus conclusiones. Y además tiene capacidad de aprendizaje: cuanto más se utiliza, más rápidas y certeras serán sus respuestas, que no son meras referencias sino textos estructurados según su propio criterio.

En otros ámbitos, como en el comercio, poco a poco van ocupando espacios que cada vez son más reales y menos experimentales. A lo largo de este año, y después de ciertas experiencias en Japón, el desembarco de robots en las tiendas podría ser ya una realidad este año, y cadenas como Best-Buy ya han experimentado con sistemas robotizados en algunas de sus tiendas.

IBM se ha asociado con Softbank para fabricar robots, con una cierta apariencia humana (androides), que ayuden a los clientes en las tiendas al por menor, como Pepper y Nao, también equipados con sistemas basados en Watson de IBM. La idea no es sustituir a humanos en las tareas de ventas, sino servir como complemento y apoyo.

Profesora

Mientras, y en el ámbito académico, quédense con este nombre: Jill. También basada en Watson de IBM, este robot es un experimento del Instituto de Tecnología de Georgia (EEUU), que ha estado funcionando este año como profesora asistente en los cursos online de esta institución, que dan servicio a unos 300 alumnos, quienes han sido usados como ‘cobayas humanas’ sin saberlo.

Con un lenguaje correcto, estructurado y a menudo colonial, los alumnos no sospechaban que quienes les estaba atendiendo era una máquina, según cuenta un amplio reportaje de The Wall Street Journal.

¿Están los robots para ayudarnos o para sustuirnos?
¿Están los robots para ayudarnos o para sustuirnos? Kai Schreiber (CC)

Así, durante meses, Jill ayudaba a los alumnos a resolver dudas sobre diseñar programas que, a su vez, resuelven problemas. El proyecto arranco el pasado año, cuando un equipo de investigadores del centro comenzó a crear a Jill Watson mediante el estudio pormenorizado de casi 40.000 publicaciones en un foro de discusión, y la programaron para responder a las preguntas que suponían que podían ser más plausibles. A finales de marzo, Jill comenzó a trabajar.

Según el mencionado reportaje, Jill no se parece en nada a los asistentes virtuales que podemos encontrar en los sitios web de bancos o líneas aéreas: sólo responde a una cuestión si tiene una tasa de confianza de al menos el 97%.

Periodista

 

Algunas agencias de noticias y medios de comunicación llevan experimentando con robots desde hace tiempo. Associated Press (EEUU) tiene automatizadas algunas de sus secciones, de forma que son robots quienes generan algunas informaciones que emiten, especialmente financieras. También la agencia pública de noticias Xinhua tira de robots para la redacción rápida de ciertas informaciones.

Algunos diarios han utilizado bots para generar artículos rápidamente, como hizo Le Monde durante las elecciones del domingo 22 de marzo de 2015. Otros medios han experimentado con bots en diversas plataformas, como The New York Times, mientras algunos ven en el uso de estas herramientas un futuroincierto para el periodismo. Y para los periodistas.

Mantener una conversación más o menos natural o coherente no es algo nuevo, ni mucho menos. Plataformas como Alexa de Amazon, Siri de Apple y Cortana de Microsoft permiten desde hace años preguntar a nuestros dispositivos con la voz y recibir respuestas que tienen sentido. Y existen asistentes personales que reaccionan al lenguaje personal capaces de gestionar una agenda. Y funciona de maravilla.

Incluso existen robots ‘escritores’, capaces hasta de emocionar al jurado de un concurso, aunque la generación de obras literarias por parte de máquinas que se dedican a imitar estilos y adaptar tramas no es algo nuevo. Eso sí, la inteligencia de estas máquinas, su capacidad de aprendizaje, no ha parado de evolucionar. Ya hablamos con robots.

Según Satya Nadella, director general de Microsoft, el “lenguaje humano es la nueva interfaz del usuario” y los bots estarán en medio, como las nuevas aplicaciones. Aunque aún existen problemas que solventar, como sufrió en sus propias carnes esta compañía estadounidense, al probar un sistema de inteligencia artificial en redes sociales que fue troleado, aprendió lo que no debía y se volvió primero racista y luego spammer.

No obstante, en mitad de tanto avance se plantea una duda razonable: ¿tenemos derecho a saber si quien nos informa, nos enseña o nos atiende al otro lado de la pantalla o del teléfono es un ser humano o un robot?

¿La sustancia cósmica? ¡La semilla de la materia!

Autor por Emilio Silvera    ~    Archivo Clasificado en La ignorancia nos acompaña siempre    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Large_cosmos20130404-2-vgdwr3

 

Debajo de ésta imagen se puede leer:

“Hallan indicios de materia oscura unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares. Un detector de rayos cósmicos de dos mil millones de dólares en la Estación Espacial Internacional halló la huella de algo que pudiera ser la materia oscura, la misteriosa sustancia que se cree mantiene unido al cosmos.”

“Pero los primeros resultados del Espectrómetro Magnético Alfa (AMS, por sus siglas en inglés) son casi tan enigmáticos como la materia oscura en sí, la cual nunca ha sido observada directamente. Muestran evidencia de nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares, anunciaron un miércoles científicos en el laboratorio europeo de física de partículas cerca de Ginebra.”

 

Como no me canso de repetir, cualquiera de estas noticias nos vienen a decir que, de la “materia oscura”, nada sabemos. Sería conveniente, para que las cuentas cuadren, que exista esa dichosa clase de materia o lo que pueda ser, toda vez que, sin ella, no resulta fácil llegar a una conclusión lógica de cómo se pudieron formar las galaxias, o, de por qué se mueven las estrellas de la manera que lo hacen.

http://misteriosaldescubierto.files.wordpress.com/2012/07/detectan-el-primer-filamento-de-materia-oscura-entre-dos-clusteres-de-galaxias.jpg

hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta.

Foto: M. Zemp

En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creo que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura (un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los interplanetarios, en la dinámica del Sistema Solar, etc.).

El problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton/Einstein sean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día.

Cuando pienso en la existencia ineludible de esa “materia cósmica” primigenia, la primera y más sencilla clase de materia que se formó en las primeras fracciones del primer segundo del big bang, en la mente se me aparece una imagen llena de belleza creadora a partir de la cual, todo lo que ahora podemos contemplar es posible. La belleza de la idea es que toma dos problemas -la ventana del tiempo inadecuada para la fromación de las galaxias y la existencia de la “materia oscura”- y los une para conformar una solución al dilema central de la estructura del universo.

La “materia oscura”, por hipótesis, tiene una ventana de tiempo mucho más larga que la materia ordinaria, porque se desapareja más pronto en el Big Bang. Tiene mucho tiempo para acumularse antes de que la materia ordinaria sea libre para hacerlo y formar los átomos. La “materia oscura o sustancia cósmica primera, es de porte más sencillo y no tiene ni requiere la complejidad de la materia bariónica para formarse, es totalmente translúcida y se sitúa por todas partes, es decir, permea todo el universo invadiendo todas sus regiones a medida que este se expande más y más. Y fue esa “invisible” sustancia cósmica, la que realmente hizo posible que las galaxias se pudieran formar a pesar de la expansión de Hubble.

El hecho de que la materia ordinaria caiga entonces en el agujero gravitatorio creado de este modo sirve para explicar por qué encontramos galaxias rodeadas por un halo de algo que hemos dado en llamar “materia oscura”. Tal hipótesis mata dos pájaros de un sólo tiro.

Pero debemos recordar que en este punto sólo tenemos una idea que puede funcionar, no una teoría bien construida. Para pasar de la idea a la teoría, tenemos que responder dos preguntas importantes y difíciles:

1. ¿Cómo explicamos la estructura de la materia oscura?

2. ¿Que es la materia oscura?

3. ¿Qué partículas son las que conforman ésta materia fantasmal?

Se habla de materia oscura caliente y fría. También, algunas veces me veo sorprendido por las ocurrencias que tienen algunos científicos de hoy que, como los antiguos, imaginan respuestas para acomodar las cuestiones que realmente desconocen y, buscan así, una salida airosa sin que se note la inmensa ignorancia que llevan consigo.

http://quantitos.files.wordpress.com/2010/12/materia-oscura-3-big.jpg

Podríamos comenzar a examinar estas cuestiones pensando en el modo en que la “materia oscura” pudo separarse de la nube caliente en expansión, de materiales que constituía el universo en sus comienzos. Por analogía de la discusión del desaparejamiento de la materia ordinaria después de la formación de los átomos, llamaremos también desaparejamiento a la separación de la “materia oscura” de aquella fuente “infinita” de energía primera. Una transformarción como la que condujo a la formación de los átomos es necesaria para que ocurra el desaparejamiento. Todo lo que tiene que suceder es que la fuerza de la interacción de las partículas que forman la “materia oscura” caigan por debajo del punto en que el resto del universo puede ejercer una presión razonable sobre él. Después de esto, la “materia oscura” continuará a su aire, indiferente a todo lo que la rodee.

Resulta que desde el punto de vista de la creación de la estructura observada del universo, la característica más importante del proceso de desaparejamiento para la “materia oscura” es la velocidad de las partículas cuando son libres. Si el desaparejamiento tiene lugar muy pronto en el Big Bang, la “materia oscura” puede salir con sus partículas moviéndose muy rápidamente, casi a la velocidad de la luz. Si es así, decimos que la “materia oscura” está caliente. Si el desaparejamiento tiene lugar cuando las partículas están moviendose poco a poco -velocidad significativamente menor que la de la luz- decimos que la materia está fría.

Foto

De los tipos de “materia oscura” que los cosmólogos toman en consideración, los neutrinos serán el mejor ejemplo de “materia oscura” caliente. Los neutrinos han llamado la atención de los científicos en relación a la “materia oscura” durante mucho tiempo. Para tener una idea aproximada del número de neutrinos del universo, podríamos decir que existe actualmente un neutrino por cada reacción nuclear que tuvo lugar desde siempre. Los cálculos indican que hubo aproximadamente mil millones de neutrinos producidos durante el Big Bang por cada protón, neutrón o electrón. Cada volumen del espacio del tamaño de nuestro cuerpo contiene unos diez millones de estos neutrinos-reliquias y en ellos no se encuentran los que se produjeron más tarde en las estrellas. Está claro que toda partícula tan corriente como ésta podría tener en principio un efecto muy grande sobre la estructura del Cosmos, si tuviera una masa.

Pero resulta que la “materia oscura” caliente, actuando sola, casi con toda seguridad no podría explicar lo que observamos en el universo y que el escenario de “materia oscura-fria” debe modificarse por completo si queremos mantenerla como candidata a esa teoría última de la materia que “debe” existir en el universo pero, que no sabemos lo que es y la llamamos, precisamente por eso materia oscura”.

El tema de la materia desconocida, invisible, oculta y misteriosa que hace que nuestro universo se comporte como la hace… ¿sigue siendo una gran incognita! Nadie sabe el por qué las galaxias se alejan las unas de las otras, el motivo de que las estrellas en la periferia de las galaxias se muevan a mayor velocidad de lo que deberían y otros extraños sucesos que, al desconocer los motivos, son achacados a la “materia oscura”, una forma de evadirse y cerrar los ojos ante la inmensa ignorancia que tenemos que soportar en relación a muchos secretos del Universo a los que no podemos dar explicación.

              Claro que otros, han imaginado cuestiones y motivos diferente spara explicar las cosas

Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían ser un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria y no pueden ser rotas por la presión de la radiación en los inicios del Universo.

 El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y la cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

Lo cierto es que todavía no se ha encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no pierden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC y aceleradores como el LHC las evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, sino que el modelo del Big Bang es un modelo acertado.

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros,  curvan el espaciotiempo de manera distinta. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Una de las virtudes de la teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar de que, la cuerdas cósmicas, no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang.

                               Podrían estar por todas partes

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto la “materia oscura”. Ejercen una atracción gravitatoria, no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Como habéis podido comprender, todas estas teorías están por demostrar y sólo son conjeturas derivadas de profundos pensamientos de lo que puso ser y de lo que podría ser. Nada relacionado con la materia oscura, las supercuerdas o las cuerdas cósmicas ha sido demostrado ni se han observado por medio alguno en nuestro Universo. Sin embargo, no descartar nada y hacer lo posible por demostrarlas, es la obligación de los científicos que tratan de buscar una explicación irrefutable de cómo es el Universo y por qué es así.

                El misterioso “universo” de los campos cuánticos que nadie sabe lo que esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba. En fin, muchas elucubraciones y conjeturas que surgen siempre que no sabemos explicar esa verdad que la Naturaleza esconde y, mientras tanto nosotros, simples mortales de la especie Homo, seguimos dejando volar nuestra imaginación que trata, cargada siempre de curiosidad, de desvelar esos misterios insondables del Universo.

Finalmente sabremos sobre esa sustancia cósmica que impregna todo el universo pero, no será la materia oscurade la que todos hablan, será otra cosa muy diferente e inimaginable en estos momentos en los que, nuestra ignorancia, echa mano de cualquier cosa para poder ocultarla… ¡materia oscura! ¿qué es eso?

emilio silvera

Sí, podemos ver con la Mente ¡Con tanta claridad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Así etán las cosas    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

   Dependiendo de nuestro estado de ánimo, podemos imaginar cualquier escenario que la razón o sinrazón nos pueda sugerir

Es curioso, cuando mi mente está libre y divagando sobre una gran diversidad de cuestiones que, sin ser a propósito, se enlazan o entrecruzan unas con otras, y lo mismo estoy tratando de sondear sobre el verdadero significado del número 137 (sí, ese número puro, adimensional, que encierra los misterios del electromagnetismo, de la luz y de la constante de Planck – se denomina alfa (α) y lo denotamos 2πe2/hc), o que me sumerjo en las profundidades del número atómico para ver de manera clara y precisa el espesor de los gluones que retienen a los quarks confinados en el núcleo atómico merced a la fuerza niuclear fuerte. Sin embargo, mi visión mental no se detiene en ese punto,  continúa avanzando y se encuentra con una sinfonía de colores que tiene su fuente en miles y miles de cuerdas vibrantes que, en cada vibración o resonancia, producen minúsculas partículas que salen disparadas para formar parte en otro lugar, de algún planeta, estrella, galaxia e incluso del ser de un individuo inteligente que observa el Universo.

Me pregunto por el verdadero significado de la materia, y cuanto más profundizo en ello, mayor es la certeza de que allí están encerradas todas las . ¿Qué somos nosotros? Creo que somos materia evolucionada que ha conseguido la conquista de un nivel evolutivo en el que ya se tiene consciencia de Ser, que hemos llegado a generar ideas y pensamientos y, sobre todo, ¡Sentimientos!

Pienso que toda materia en el universo está cumpliendo su función para conformar un todo que, en definitiva, está hecho de la misma cosa, y que a partir de ella surgen las fuerzas que rigen el Cosmos y toda la naturaleza del universo que nos acoge. La luz, la gravedad, la carga eléctrica y magnética, las fuerzas nucleares, todo, absolutamente todo, se puede entender a partir de la materia, a niveles microscópicos como a dimensiones cosmológicas, todo son aspectos distintos para que existan estrellas y galaxias, planetas, árboles, desiertos, océanos y seres vivos como nosotros, que somos capaces de pensar en todo esto.

Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo está compuesto por una variedad de que, siendo iguales en su origen, son totalmente distintas en sus costumbres y en sus mentes que llevan los gérmenes ancestrales de sus antepasados y del lugar que los vio nacer.

La mayor parte, se aplica en sus vidas cotidianas y sin grandes sobresaltos: trabajo, familia y dejar transcurrir el tiempo. Es la mayoría silenciosa. Una parte menor, conforman el grupo de los poderosos; sus afanes están centrados en acumular poder, dirigir las vidas de los demás y de manera consciente o inconsciente, dañan y abusan de aquella mayoría. Son los grandes capitalistas y políticos, que con sus decisiones hacen mejor o peor las vidas del resto. Por último, existe una pequeña parte que está ajena y “aislada” de los dos grupos anteriores; se dedican a pensar y a averiguar el por qué de las cosas. La mayor preocupación de este grupo de elegidos es saber, decir ¡SABER!, de todo y sobre todo; nunca están satisfechos y gracias a ellos podemos avanzar y evitar el embrutecimiento.

Grandes pensadores, filosofos y cientificos de las historia

                                         El vendedor de , el Banquero y el Filósofo

Pensando en el cometido de estos tres grupos me doy de lo atrasados que aún estamos en la evolución de la especie. El grupo mayor, el de la gente corriente, es muy necesario; de él se nutren los otros dos. Sin embargo, el grupo de mayor importancia “real”, el de los pensadores y científicos, está utilizado y manejado por políticos, militares y capitalistas que, en definitiva, aprueban los presupuestos y las subvenciones de las que se nutren los investigadores que están a su merced. ¿Cambiará eso algún día?

       Acordáos del Proyecto y la bomba atómica

En las dos grandes guerras mundiales tenemos un ejemplo de cómo se utilizaron a los científicos con fines militares. Los que no se prestaron a ello, lo pasaron mal y fueron marginados en no pocos casos. Es una auténtica barbaridad el ínfimo que se destina al fomento científico en cualquiera de los niveles del saber. Cada presupuesto, cada proyecto y cada subvención conseguida es como un camino interminable de inconvenientes y problemas que hay que superar antes de conseguir el visto bueno definitivo, y lastimosamente, no son pocos los magníficos proyectos que se quedan olvidados encima de la mesa del político o burócrata de turno, cuyos intereses particulares y partidistas les hace mirar en otra dirección.

El primer Encuentro de Jóvenes Científicos de la Zona Norte, organizado por la Universidad de Antofagasta en Chile,  donde se abrirá el debate en torno a las necesidades para el desarrollo de la ciencia y tecnología, institucionalidad e impulso a la investigación nacional. Esto sí que es un ejemplo de lo que debemos hacer.

Todo lo contrario pasa aquí, en España, donde hemos gastado ingentes cantidades de dinero en preparar a nuestros jóvenes cintíficos que, al finalizar sus carreras y no donde desarrollar sus conocimientos, tienen que marcharse fuera, a otros paises que le acogen con los brazos abiertos. Allí, investigan, descubren e inventan y, las patentes del fruto de su trabajo son vendidas más tarde a nuestro Pais que hizo el esfuerzo de crear a esos Ingenieros, físicos, médicos…

¡Qué lastima! ¡Qué torpes!

Menos mal que la torpeza de algunos no puede impedir el ingenio y la inteligencia que, al del camino, queda a beneficio de la Humanidad y de su futuro que, aunque es incierto (todo lo es), cada día que pasa se vislumbra una nueva luz y, no creo que tarde mucho tiempo en que la “gente corriente” reaccione y ponga las cosas en su sitio. No podemos seguir consintiendo tantos abusos, tanta maldad, tanta ceguera.


Ese encuentro maravilloso con la luz suprema del es un momento mágico, que es el precio que pagan al científico por sus esfuerzos, y es el incentivo que necesita para seguir trabajando en la superación de los muchos secretos que la Naturaleza pone ante sus ojos para que sean desvelados.

Cuando me pongo a escribir sin un previamente establecido, vuelco sobre el papel en blanco todo lo que va fluyendo en mis pensamientos, y a veces me sorprendo a mí mismo al darme cuenta de cómo es posible perder la noción del tiempo inmerso en los universos que la mente puede recrear para hacer trabajar la imaginación sin límites de un ser humano. Es cierto, nuestras limitaciones son enormes, enorme nuestra ignorancia y, sin embargo, estas carencias se pueden compensar con la también enorme ilusión de aprender y la enorme curiosidad y espíritu de sacrificio que tenemos en nuestro interior, que finalmente van ganando pequeñas batallas en el conocimiento de la naturaleza, y que sumados hacen un respetable bloque de conocimientos que, a estas alturas de comienzos del siglo XXI, parecen suficientes como punto de partida para despegar hacia el interminable viaje que nos espera.

                           Los pensamientos cambiaron el Mundo

Es tal la pasión que pongo en estas cuestiones que, literalmente, cuando estoy pensando en el nacimiento y vida de una estrella y en su como enana blanca, estrella de neutrones o agujero negro (dependiendo de su masa), siento cómo ese gas y ese polvo cósmico estelar se junta y gira en remolinos, cómo se forma un núcleo las moléculas, más juntas cada vez, rozan las unas con las otras, se calientan e ionizan y, finalmente, se fusionan para brillar durante miles de millones de años y, cuando agotado el combustible nuclear degeneran en enanas blancas, veo con claridad cómo la degeneración de los electrones impide que la estrella continúe cediendo a la fuerza de gravedad y queda así estabilizada. Lo mismo ocurre en el caso de las estrellas de neutrones, que se frena y encuentra el equilibrio en la degeneración de los neutrones, que es suficiente para detener la enorme fuerza gravitatoria. Y, cuando llego a la implosión que dará lugar a una singularidad, ahí quedo perdido, mi mente no puede, como en los casos anteriores, “ver” lo que realmente ocurre en el corazón del agujero negro, ya  que, lo que llamamos singularidad, parece como si desapareciera de este mundo.

emilio silvera