Jun
19
¿La masa perdida? ¿O no entendemos nada?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (6)
Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.
Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Se ha tratado de medir la Densidad Crítica del Universo par apoder saber en qué calse de universo estamos y, parece que es plano
Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.
Universo abierto
Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría ecuclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamentre a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.
La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.
el 19 de junio del 2016 a las 19:07
Lo cierto es que, de aquellas primeras fraciones del primer segundo de vida del universo, nadie sabe lo que pudo pasar. No hemos sido capaces de ir más allá del Tiemplo de Planck, es decir:
Lo cierto es que nos queda mucho por saber de aquellos primeros momentos y, también, la ignorancia está presente en lo que pueda resultar el final. Investigamos y cada vez tenemos mejores aparatos tecnológicos para mirar hacia lo más lejano del Universo, hacia lo más profundo y pequeño y hacia lo más grande. Sin embargo, no hemos podido alcanzxar todas las respuestas que necesitamos para saber, un sin fin de cuestiones que nos darían las respuestas que incansables buscamos.
Si nos preguntan qué es la masa o que es la energía… ¡No lo sabemos! Y, sólo tenemos la respuesta que nos dio Einstein de que se trata de dos aspectos de la misma cosa pero, decir, lo que se dice decir lo que en realidad es… ¡No podemos! Y, de la misma manera, tenemos un sin fin de dudas sobre todas esas cuestiones de las que no paramos de hablar y de las que no estamos seguros.
el 19 de junio del 2016 a las 22:34
La masa perdida es una forma de “discriminarla” frente a la energía. Pienso que toda energía que se precie, la generada por intermedio de la masa, siempre la poserá por muy pequeña o infinitesimal que sea.
No se puede confundir un la onda fotón pongamos por caso, con una onda en el agua, con una onda de sonido o con una onda calorífica.
Estas ondas que se llaman materiales, en si mismas, que de materiales nada, pues son ni más ni menos que la transmisión de un movimiento en un medio. ¡Pero que poco alcance tienen¡, compararlas con una onda electromagnética por ejemplo, es como comparar una mosca con el Universo. Las ondas electromagnéticas tienen una cualidad fundamental que las ondas de calor o las olas en el agua no poseen: son autónomas, es decir se mueve como cualquier partícula con impulso propio. Tambien las partículas poseen campo eléctrico y magnético y cómo no, masa. Pero es que además son ondas partícula como pueda serlo el fotón, solo cambian relativamente los modos de traslación y maneras de oscilación.
Si es así y las ondas electromagnéticas u otras (Gravitones gluones…) posen su masa por pequeña que pueda ser, adonde quedarian las pérdidas de masa, podrá haber disminuciones parciales de esa energía interna como también de energía de traslación, pero el total del Universo aislado se mantiene. En el “vacío” tambien hay masas, que eso de campos no masivos solo es teórico.
Ni explosiones nucleares, ni estallido de estrellas, ni agujeros negros, harían que la masa se pierda como tampoco la energía. Globales se entiende. Se perderá masa para nuestra dimensión macro si acaso. Pero se nos olvidan los agujeros negros como los grandes reservorios.
El big-bang propiamente hablando no se comprende, como tampoco la gran inflación, a no ser que se trate de un cambio de estado consecuente a unos sucesos anteriores, igual que ocurre cuando explosiona una estrella por ejemplo, o que la gran inflación no sea lo que quiere expresar sino con el arreglo de una detección de microondas indiscriminadas en dirección en el espacio que siguen ocurriendo a partir que dichas ondas nacieron.
Se os saluda contertulios todos
el 20 de junio del 2016 a las 6:19
Totalmente de acuerdo amigo Fandila, la masa no se pierde nunca, lo que ocurre es que, cuando suceden cambios de fase, alguna porción puede ir a lugares que, ni conocemos.
Un saludo cordial.
el 20 de junio del 2016 a las 7:10
LLevas razón. Lo que pasa que habría que saber hasta donde llega el Universo, o si éste no es mas que una parte de otro mayor.
No se puede determinar cuanto tarda o cuanto ha de caminar una onda partícula (Fotón u otra cualquiera) hasta difumínarse o destruirse por agotamiento y pérdidas de su entropia. Pero eso no significa que su masa o energía se pierda.
La expansión material no puede ser un suceso más o menos duradero. La expansión sui generis es algo consecuente al movimiento y éste es imperecedero, internamente, externamente, y siempre como consecuencia o relación de muchas unidades materiales. Moverse significa conquistar espacio, y cuando son ingentes cantidades de elementos que se mueven a la vez en un mismo espacio la consecuencia es la expansión. Hay fenómenos que llamamos cambios de fase y o recesiones de esas fases que tambien han de influir en esa expansión intrínseca material. Es de suponer que influyan posiva o negativamente en la expansión localizada y que pueda darse la concentración.
El tema no está agotado pero avanzar más tal vez sea meterse en berenjenales de los que sea díficil deslindar y salir.
el 19 de junio del 2016 a las 23:36
Realmente es de agradecer el empeño que pone usted en mostrar el estado actual de la física teórica, para que sea fácil de entender por la mayoría de los aficionados a las ciencias que tenemos la gran suerte de poder leerle. Sobretodo, me llama la atención por la gran honestidad demostrada al dejar claro qué es lo sabemos (o creemos saber) y qué es lo que, simplemente, desconocemos. Algunos científicos divulgan las teorías mayoritariamente aceptadas con vehemencia, guardando para sí las dudas que éstas le puedan suscitar. No es su caso y le felicito por ello.
Dicho esto, permítame que les presentes, a usted y a los lectores de su blog, una nueva teoría que podría dar respuesta a muchas de las cuestiones que actualmente están por resolver, se llama teoría de ruedas y la pueden encontrar visitando la página web: http://teoriaderuedas.com
Muchas gracias.
Nos leemos.
el 20 de junio del 2016 a las 6:37
Estimado Señor:
Agradezco sus palabras y tengo que decir que, no reconocer nuestra ignorancia sería como negarnos a seguir avanzando. El saber se alcanza con ese primer paso, ¡reconocer lo que no sabemos! Es tan grande y rica la Naturaleza que perseguir sus secretos es toda una aventura (como nos decía Feynmann). Está claro que vamos haciendo camino y que poco a poco, estamos logrando entrar en zonas que antes permanecían a oscuras, y, aunque aún no nos ciega el resplandor de la sabiduría, sí es cierto que se vislumbra un poco de claridad. Me gustaría que todos, sin excepción, pudieran saber en qué mundo estamos y cómo son las cosas fundamentales de la Naturaleza, del Universo en fin, es un empeño alucinante el que gente como usted, con sus contribuciones, hagan posible que cada día, el océano de ignorancia en el que estamos inmersos se empequeñezca cada día un poco más.
He dado una rápida mirada a su ofrecimiento de que entremos a leer la Teoría de ruedas que nos propone, y, aunque no he tenido mucho tiempo para profundizar en el su lectura, lo cierto es que, es muy prometedora y, precisamente por eso, aconsejo a todos los visitantes de este humilde lugar que accedan a esos nuevos conocimientos, en la seguridad que, cuando finalicen su lectura, serán un poco más sabios.
Gracias amigo.