domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Hoy, día de los Asteroides

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                      Hoy es el día escogido para celebrarlo como Día Internacional del Asteroide

Se trata de sensibilizar a la opinión pública, a toda la Sociedad Humana, sobre la tremenda importancia que tiene el estudio de estos objetos del Espacio, ya que, en la Historia de la Tierra, en muchas ocasiones causaron estragos y muerte.

Composición de imágenes en la que se muestran a escala ocho asteroides visitados por sondas espaciales

Un asteroide es un cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide que gira alrededor del Son en una órbita interior a la de Neptuno. La mayoría orbita entre Marte y Júpiter en la región del Sistema solar conocida como Cinturón de Asteroides,  otros se acumulan en los puntos de Lagrange de Júpiter y la mayor parte del resto cruza las órbitas de los planetas.

En nuestro planeta son muchos los Cráteres que nos hablan de la caída de grandes Asteroides en un sin fin de regiones de la Tierra, y, algunos de ellos, causaron muerte y, se habla incluso, de la extinción de los Sinosaurios que podría haber sido provocada por la caida de un Asterioide en el Yucatán (México).

El Cráter de Chicxulub sería el que provoco la extinción de los dinosaurios? No se sabe, pero lo mas probable es que, por ahí vayan las cosas. Todos los indicios así lo apuntan y ahora se están haciendo de nuevos investigaciones sobre el terreno para despejar las dudas.

La caida en la Tierra de uno de estos grandes “pedruzcos”, tendrían unas consecuencias inimaginables, ya que, algunos de ello, como Ceres, pueden llegar a medir hasta l.ooo Km, y otros, como Palas y Vesta sobrepasan los 500 Km. ¿Qué catástrofe no sería la caída de uno de estos en nuestro Planeta?

Algunos nos rondan y poasan de latrgo, otros son atraídos por Saturno y Júpiter y nos libran de ellos, otros, como Apofis, nos amenazan con caer en la Tierra, y, lo cierto es que, por mucho que nos digan o nos cuenten desde la NASA, no tenemos los medios para poder salvarnos de uno de estos visitantes.

Hay que prestar atención a éstas amenazas que están ahí, y, lo que no pasa en 100 años, puede ocurrir en unos minutos. El estudio, la vigilancia y sobre todo, tratar de inventar la manera de, si llega el caso, poder destruir a estos monstruos espaciales.

Que el destino y el Azar nos traiga un poco de suerte en el futuro.

emilio silvera

¿La Física? ¡Siempre estará presente!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Galaxia

Todo comienza siendo una cosa y con el tiempo, se transforma en otra diferente: Evolución por la energía. En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible. Todo lo que arriba se muestra, cada imagen de bonito colorido, no importa de que objeto se pueda tratar, todo sin excepción, antes fue otra cosa que se convirtió en lo que ahora podemos contemplar.

El gas y el polvo se transforma en una brillante estrella que vive diez mil millones de años y termina en Nebulosa planeta con una enana blanca en el centro. Entonces la estrella que tenía un diámetro de 1.500 km, se reduce hasta unas pocas decenas, 20 0 30 Km y, su densidad, es inmensa, emitiendo radiación ultravioleta durante mucjho tiempo hasta que se enfría y se convierte en un cadáver estelar.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura posible la fusión de los protones y, en ese instante, nace la estrella que brillará miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar el común de los mortales.

         La singularidad con su inmensa fuerza gravitatoria atrae a la estrella vecina

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s.  Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita , y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.793’458 km/s.

Luz

                        Corría septiembre de 2011 y el físico Antonio Ereditato conmocionaba al mundo.

El anuncio que había hecho prometía dar un drástico giro a nuestros conocimientos sobre el Universo. Si los datos recogidos por 160 científicos que trabajaban en el proyecto OPERA eran correctos, lo impensable había ocurrido.

Un grupo de partículas -en este caso, los neutrinos- había viajado más rápido que la luz.

Según la teoría de la relatividad de Albert Einstein, eso no era posible. Y las implicaciones eran enormes. Muchos aspectos de la física tendrían que ser modificados.

Al final, el resultado de OPERA estaba errado por causa de un problema de sincronización debido a un cable mal conectado.

           Nada es más rápido que la luz en el vacío

Sí, se pudo confirmar que los neutrinos respetan la supremacía el fotón, y la luz, sigue siendo la más rápida del Universo. Y sin embargo, no escapar de la atracción de un A.N.

Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su , agujero negro, la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y en el Big Crunch (que se podría considerar una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin  que será el comienzo).

Esta es la esencia de un agujero negro y lo que se denomina una singularidad. De hecho, el Big Bang, se cree que surgió de una singularidad.

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el de agujero negro se debe a Wehleer.

                     Señalamos la singularidad del Big Bang pero… ¿fue así?

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada la singularidad, donde desaparece siempre sumándose a la masa del agujero cada vez mayor.

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

Cygnus X-1

Después de todo, la velocidad de la luz, la máxima del universo, no vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre.

En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?

Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros.

Llegará un momento que el de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad.

Esa fuerza de la naturaleza que está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.

Esa reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás.  Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch.

de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.

Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.

Carl Sagan pinta el cuadro siguiente:

 

“Dentro de miles de millones de años a partir de , habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

File:Andromeda Galaxy (with h-alpha).jpg
                                                                                    La Galaxia Andrómeda

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a unos 500  km/s, y chocarán en un periodo de entre 3 y 4 mil  millones de años. Como ha dicho el astrónomo Lars Hernquist de la California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“. Aunque, lo cierto es que aunque en el choque algo se detruya, lo cierto es que todo quedará en forma de una galaxia mucho mayor.

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil.  Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

Por todas estas catástrofes anunciadas por la ciencia, científicos como Kip S. Thorne y Stephen Hawking sugieren a otros universos paralelos a través de agujeros de gusano en el hiperespacio. Sería la única puerta de salida para que la Humanidad no se destruyera.

Si lo alcanzaremos o no, es imposible de contestar, no tenemos los necesarios para ello. Incluso se podría decir que aparte de estas catástrofes futuras que sabemos a ciencia cierta que ocurrirán, seguramente existan otras que están ahí latentes en la incertidumbre de si finalmente ocurren o no, sólo pendiente de decidir lo uno o lo otro por parámetros ocultos que no sabemos ni que puedan existir.

En esta situación de impotencia, de incapacidad física e intelectual, nos tenemos que dar y admitir que, verdaderamente, comparados con el universo y las fuerzas que lo rigen, somos insignificantes, menos que una mota de polvo flotando en el haz de luz que entra, imparable, por la ventana entre-abierta de la habitación.

Sin embargo, tampoco es así. Que se sepa, no existe ningún otro grupo inteligente que esté capacitado tratar de todas estas cuestiones. Que la especie humana sea consciente de dónde vino y hacia dónde va, en verdad tiene bastante mérito, y más, si consideramos que nuestro origen está a partir de materia inerte evolucionada y compleja que, un día, hace probablemente miles de millones de años, se fraguó en estrellas muy lejanas.

A finales de los 60, un joven físico italiano, Gabriele Veneziano, buscaba un grupo de ecuaciones que explicara la fuerza nuclear fuerte. Este pegamento tan fuerte que mantenía unidos los protones y neutrones del núcleo de cada átomo. Parece ser que por casualidad se encontró con un libro antiguo de matemáticas y en su interior encontró una ecuación de más de 200 años de antigüedad creada por un matemático suizo llamado Leonhard Euler. Veneziano descubrió con asombro que las ecuaciones de Euler, consideradas desde siempre una simple curiosidad matemática, parecían describir la fuerza nuclear fuerte. Después de un año de , se podría decir, que elaboraron la Teoría de Cuerdas de manera fortuita. Tras circular entre compañeros, la ecuación de Euler acabó escrita frente a Leonard Susskind, quien se retiro a su ático para investigar. Creía que aquella antigua fórmula describía matemáticamente la fuerza nuclear fuerte, pero descubrió algo nuevo. Lo primero que descubrió fue que describía una especie de partícula con una estructura interna que vibraba y que mostraba un comportamiento que no se limitaba al de una partícula puntual. Dedujo que se trataba de una cuerda, un hilo elástico, como una goma cortada por la mitad. Esta cuerda se estiraba y contraía además de ondear y coincidía exactamente con la fórmula. Susskind redactó un artículo donde explicaba el descubrimiento de las cuerdas, pero nunca llegó a publicarse.

Muchos buscaron la 5ª dimensión… ¡sin fortuna! Aquí sólo hay tres y el espacio.

Claro que, ya he comentado otras veces que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y , y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”.  Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría“.

La Gravedad cuántica está en algunas mentes , ¿Estará en la Naturaleza?

La característica más notable de la teoría de cuerdas ( ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. , de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.

Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas“.

La Teoría M de Witten trató de reunir todos los modelos de cuerdas en uno sólo

No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de diferente.

Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.

En conclusión, las simetrías que vemos a nuestro alrededor, el arcoiris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original.  Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.

La teoría de cuerdas, a partir del descubrimiento Veneziano-Suzuki, estaba evolucionando atrás buscando las huellas de Faraday, Riemann, Maxwell y Einstein poder construir una teoría de campos de cuerdas.  De hecho, toda la física de partículas estaba basada en teoría de campos. La única teoría no basada en teoría de campos era la teoría de cuerdas.

La teoría de cuerdas surge como resultado de años de trabajo para combinar de manera consistente el modelo estándar de las partículas elementales con la teoría de la gravitación de Einstein. Dicen que en esta teoría subyace una teoría cuántica de la Gravedad y, además, las ecuaciones de campo de Einstein emergen de la Teoría de cuerdas como por arte de magia, sin que nadie las llame.

De la teoría de cuerdas combinada con la supersimetría dio lugar a la teoría de supercuerdas. La cuerda es un objeto unidimensional que en nueva teoría se utiliza remplazando la idea de la partícula puntual de la teoría cuántica de campos. La cuerda se utiliza en la teoría de partículas elementales y en cosmología y se representa por una línea o lazo (una cuerda cerrada). Los estados de una partícula pueden ser producidos por ondas estacionarias a lo largo de esta cuerda.

En teoría se trata de unificar a todas las fuerzas fundamentales incorporando simetría y en la que los objetos básicos son objetos unidimensionales que tienen una escala de 10-35 metros y, como distancias muy cortas están asociadas a energías muy altas, este caso la escala de energía requerida es del orden de 1019 GeV, que está muy por encima de la que hoy en día pueda alcanzar cualquier acelerador de partículas.

antes expliqué, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De , inalcanzables.

Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías ( ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.

Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad,  lo que en efecto ocurre en las interacciones débiles.

Extrañas configuraciones a las que, algunos físicos le quieren sacar lo que seguramente no se encuentra en ellas. Nuestro Universo es de tres dimensiones espaciales y una temporal y, nos empeñamos en “ver” otras que no existen a la vista del ojo desniudo.

Estoy convencido de que la teoría de supercuerdas será finalmente corroborada por los hechos y, ello, se necesitará algún tiempo; no se puede aún comprobar ciertos parámetros teóricos que esas complejas matemáticas a las que llaman topología nos dicen que son así.

Habrá que tener siempre a mano las ecuaciones de Einstein, las funciones modulares de Ramanujan y el Supertensor métrico de ese genio matemático que, al igual que Ramanujan, fue un visionario llamado Riemann.

Las historias de estos dos personajes, en cierto modo, son muy parecidas.  Tanto Riemann como Ramanujan murieron antes de cumplir los 40 años y, también en ambos casos, en difíciles. Estos personajes desarrollaron una actividad matemática sólo comparable al trabajo de toda la vida de muchos buenos matemáticos.

¿Cómo es posible que, para proteger la simetría conforme original por su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas, que precisamente son las identidades de la función modular de Ramanujan?

En este he expresado que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debo corregir algo esta afirmación, y para decirlo correctamente debería decir: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. Al añadir la palabra coherentemente hemos señalado un punto crucial. ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez de dimensiones del espacio-tiempo. Esto a su vez, puede facilitarnos la clave decisiva para explicar el origen del universo.

emilio silvera

Noticias de Prensa

Autor por Emilio Silvera    ~    Archivo Clasificado en a otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Si fuéramos a Marte ahora mismo, moriría todo el mundo”

El hombre que grabó ‘Space Oddity’ de David Bowie mientras flotaba en el espacio cree que la música es imprescindible para explicar los misterios del universo

El astronauta canadiense Chris Hadfield, esta mañana en Tenerife.

Chris Hadfield es el astronauta más famoso del momento. Nació en 1959 en Sarnia, una pequeña ciudad petrolera de Canadá. Él creció en una granja y, cuando vio la llegada del primer humano a la Luna por televisión, dice que sintió “una invitación a convertirse en algo diferente”. Aquel chaval creció, estudió en cuatro universidades, se alistó en las Fuerzas Aéreas, se hizo piloto de pruebas y, en 1992, Canadá le contrató para ser astronauta, el primero en hacer una caminata espacial en toda la historia del país. Hadfield ha viajado tres veces al espacio, ha sido comandante de la Estación Espacial Internacional (ISS), ha hecho durísimas caminatas espaciales y reparado averías que hubieran arruinado esta base que orbita la Tierra a unos 400 kilómetros de altitud. Y de vuelta a la Tierra es profesor de Universidad de Waterloo, músico, escritor, conferenciante… Pero la inmensa mayoría de la gente no tiene ni idea de todo eso. Para la mayoría es solo el astronauta que cantaba Space Oddity de David Bowie mientras flotaba con su guitarra en el espacio, un impresionante video con decenas de millones de visualizaciones en todo el mundo.

Space Oddity - YouTube

De hecho, Hadfield fue el primer hombre en grabar una canción en el espacio llamada “Jewel in the Night”. Ahora, redobló la apuesta y grabó un cover del clásico de David Bowie “Space Oddity” como despedida de su misión.

Hoy Hadfield está en Tenerife para participar en el festival Starmus, un encuentro que reúne a 12 premios Nobel, 7 astronautas y unos 800 asistentes de 12 países para hablar de ciencia y cultura y rendir homenaje al físico Stephen Hawking. En esta entrevista con EL PAÍS, el astronauta y músico cuenta por qué decidió quitarse horas de sueño cada día para mostrar al mundo cómo es vivir en el espacio y por qué la música es la mejor herramienta para hacerlo.

Pregunta. ¿Cuál fue su mejor experiencia en el espacio?

 

Tras un paseo espacial acabas sangrando por las manos, los hombros, las rodillas…

 

Respuesta. Los vuelos espaciales son mágicos. Flotar sin gravedad, estar haciendo algo muy difícil y hacerlo bien porque te has entrenado mucho… es como un regalo que estás abriendo continuamente. Entre todas las cosas, lo más diferente que puedes hacer es una caminata espacial. Yo he hecho dos. Te pones un traje enorme y sales al universo. Estas solo, agarrándote a una nave espacial con toda la eternidad del universo rodeándote. Y la Tierra muy lejos a un lado. Es una experiencia impresionante. Yo pasé 15 horas, di 10 vueltas completas a la Tierra.

P. ¿Físicamente es muy duro?

R. Hay gente que pierde las uñas. A menudo cuando acabas y te quitas el traje estás sangrando por las manos, los hombros, las rodillas… Es como estar en una máquina de ejercicios en el gimnasio durante 10 horas.

P. ¿Por qué se sangra?

R. Porque el traje está presurizado, con tanta presión como una bola de voleibol. Cada vez que tienes que apretar una mano, mover el hombro, doblar el codo, estás luchando contra un traje increíblemente duro. Al principio no hay problema, pero en unas horas se te comienza a abrir la piel. Porque no están diseñados para ser cómodos, más que un traje es como una nave espacial para una sola persona hecho de tela. Es muy duro para el cuerpo.

 

 

Allí arriba hay una guitarra permanentemente. La pusieron los psiquiatras de la NASA y lleva allí desde agosto de 2001

P. ¿Hay algo de la vida ordinaria en el espacio que le sorprendiera?

R. Ponerte una zapatilla de correr. Normalmente vas descalzo para usar los pies para agarrarte por ahí, pero si quieres correr en la cinta, por ejemplo, tienes que ponértelas. Piensa cómo te pones una zapatilla en la tierra. Te sientas y tiras de ella con las dos manos. Si haces eso en el espacio empiezas a dar vueltas. Allí me tiré seis meses intentando poner ambos zapatos flotando cerca de mí. Pero cada vez, para cuando había conseguido ponerme uno, el otro se había ido dando vueltas y tenía que ir persiguiéndolo por ahí. Piensas que en seis meses vas a conseguir hacerlo bien, pero no. Controlar objetos pequeños es muy difícil mientras que los grandes son mucho más sencillos, es decir, podrías mover un coche con un solo dedo.

P. Llegar a ser astronauta le ha costado mucho, ha hecho muchas cosas en el espacio, pero posiblemente la mayoría de la gente te recuerda por tocar una canción de Bowie. ¿Qué nos dice eso sobre nosotros mismos ?

http://4.bp.blogspot.com/-s8Uk8LvB31w/UZKTEg_dhwI/AAAAAAAAO10/BJNTSE5hnso/s1600/la-tierra-desde-el-espacio-1.jpg

      La Tierra desde el Espacio nos ofrece algunas perspectivas que, de otra manera, nunca podríamos ver

R. Es completamente normal. Estamos en una etapa en la exploración espacial en la que ya no vamos de viaje, un trayecto determinado y bien delimitado. Ahora 15 países de todo el mundo estamos permanentemente en el espacio, desde noviembre de 2000, y no se trata de un solo país, sino de toda la especie humana. Intentar hacer ver a la gente cómo es explorar el universo es muy importante, no solo los aspectos técnicos. Un gráfico puede describir a la perfección la temperatura de la superficie de Luna, por ejemplo, pero es muy difícil intentar explicar lo que se siente como ser humano al estar ahí. Puedes intentar escribir, tomar fotos… y la música es una forma completamente diferente para explicar una experiencia humana extraordinaria. Hay cuevas en Alemania donde encontraron instrumentos musicales de hace 42.000 años. La música es antigua, fundamental, necesaria más allá del lenguaje. Así que tocar la guitarra en la ISS es completamente normal, somos nosotros. Allí arriba hay una guitarra permanentemente. La pusieron los psiquiatras de la NASA y lleva allí desde agosto de 2001. Casi cada noche la toca alguien. La pusieron como apoyo psicológico porque creen que la música es fundamental para el alma, para mantenerte cuerdo. La canción de Bowie le hace ver a la gente cómo es vivir en una nave espacial, la serenidad, la gracia, la naturaleza introspectiva. Fue solo una pequeña cosa que he hecho durante una carrera de 21 años.

P. ¿Le criticaron, diciendo que no era serio?

R. Creo que lo hubieran hecho si lo hubiese hecho en horas de trabajo. La gente me vio cantar Space Oddity, lo que no vieron es el 99,999% del trabajo que hice allí. Lo hice en mi tiempo libre, porque pensé que no solo hay que ser un buen comandante y mantener la estación. Cada noche robaba dos horas de sueño para tomar fotos, escribir, hacer música, grabarla, intentar experimentar este entorno único y compartirlo. Cientos de millones de personas han visto el vídeo. Les ayuda a entender algo que es complicado de ver y comprender.

P. Usted asesora a Canadá en esta materia. ¿Cuáles cree que deben ser nuestros siguientes pasos en la exploración espacial?

R. Mire nuestra historia. Todos nosotros venimos de África. Puedes contar las generaciones desde la última oleada que salió de allí, la de nuestra propia subespecie. La Edad de Hielo nos hizo retroceder muchísimo terreno, pero después construimos botes que nos permitieron llegar hasta Australia. Inventamos una tecnología que nos permitió vivir en zonas que serían inhabitables como el norte de Europa y Rusia, Norteamérica… Llegamos a Nueva Zelanda hace solo 800 años. Y a la Antártida hace apenas 100. Y ahora miles de personas viven allí, cientos en el Polo Norte. Y lo hacen para estudiar el origen del universo, para analizar la fragilidad de nuestra atmósfera, entender nuestro planeta. Hace 50 años toda esa exploración fue a una nueva dimensión con el Sputnik , satélites científicos, y después con humanos. Es difícil extrapolar una historia así. Creo que simplemente seguiremos explorando. La Estación Espacial es nuestro primer asentamiento en el espacio. Dejamos la Tierra hace 15 años y medio y la estación funcionará por otros 10 o 15 más. Más allá el siguiente destino es obviamente la Luna, porque está a solo tres días de viaje. Vamos a cometer errores en ese viaje así que necesitamos tener la posibilidad de regresar si algo sale mal. Si vamos a Marte ahora mismo, moriría todo el mundo. Sería como intentar cruzar el Atlántico en una canoa, vas a morir a no ser que tengas mucha, mucha suerte. No hay prisa y no lo hacemos por diversión, sino para intentar entender el universo.

 

 

Convertirse en una especie multiplanetaria tiene sentido para garantizar que no desaparezcamos

P. Stephen Hawking ha dicho que tendremos que dejar este planeta para sobrevivir como especie. ¿Está de acuerdo?

R. Sí. La Tierra ha tenido muchos cataclismos. La Tierra fue una enorme bola de hielo. Ha sufrido impactos de meteoritos. Recibimos pulsos electromagnéticos de otras estrellas y de Sol que causan problemas. Somos la especie y la civilización más avanzada que ha producido el planeta, pero no somos inmortales. La pregunta es ¿queremos conseguir la supervivencia de la especie? Si es así, creo que convertirse en una especie multiplanetaria tiene sentido para garantizar que no desaparezcamos. Pero por ahora es como si fuéramos un bebé que ha dado solo unos pasos y de repente alguien habla ya de correr una maratón.

P. ¿Estamos preparados para abandonar nuestro planeta y no volver jamás?

carteles clanantifas kaf estrellasrojas bellum veritatis desmotivaciones

R. La preparación no importa realmente. Naces con unas fortalezas y debilidades, vives unos 70 u 80 años y te mueres ¿Para qué estás preparado? Intentas hacer lo máximo con lo que tienes, apreciar lo magnífica que es esta corta vida e intentas contribuir. Durante mucho tiempo hemos construido un montón de estructuras que nos permiten no tener que estar casi todo el tiempo cultivando para no morirnos de hambre sino desarrollar el intelecto y que este nos permita llegar más lejos. Como especie somos muy flexibles y la tecnología nos ayuda a adaptarnos. No importa si es Tenerife, Toronto, el Ártico, la estación espacial, la Luna o Marte, son solo sitios, y nos arreglaremos sobre la marcha. Necesitamos ese reto. Un ser humano que nace con un potencial que nunca puede usar es una gran pérdida.

Nueva Galaxia descubierta

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La galaxia CR7, llamada así en homenaje a Cristiano Ronaldo

La Galaxia CR7, tiene el nombre del futbolistal del R. Madrid Cristinao Ronaldo que, es muy admirado por su descubridor, y dice, que la Galaxia brilla como el futbolista. Todo un honor para él, ya que no todos podemos tener una galaxia con nuestro propio nombre.

En fin, ¡cosas que pasan!

Existen pocos mortales que tengan ese privilegio y, aunque sea un poco exagerado el hecho, tenemos que convenier en que, su descubridor, tenía la potestad para elegir el nombre que le viniera en gana. Sin embargo, los méritos del personaje están limitados a un ámbito muy reducido y, en honor a la verdad, sus hechos, por muy loables que puedan ser, para la Humanidad, tienen poca importancia.

emilio silvera