Jun
14
¿La teoría cuántica y la Gravedad, dentro de las cuerdas
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (4)
Todo se degrada con el paso del Tiempo
Sí, a veces la Física, parece un Carnaval. Imaginamos universos que… ¿serán posibles?
Las teorías de cuerdas [TC’s] no son una invención nueva, ni mucho menos. La primera TC se inventó a finales de los años sesenta del siglo XX en un intento para encontrar una teoría para describir la interacción fuerte. La idea medular consistía en que partículas como el protón y el neutrón podían ser consideradas como ondas de «notas de una cuerda de violín». La interacción fuerte entre las partículas correspondería a fragmentos de cuerda que se extenderían entre pequeños pedacitos de cuerda, como las telas que forman algunos simpáticos insectos. Para que esta teoría proporcionase el valor observado para la interacción fuerte entre partículas, las cuerdas tendrían que ser semejantes a las de un violín, pero con una tensión de alrededor de unas diez toneladas.
La primera expresión de las TC’s fue desarrollada por Jöel Scherk, de París, y John Schwuarz, del Instituto de Tecnología de California, quienes en el año 1974 publicaron un artículo en el que demostraban que la TC podía describir la fuerza gravitatoria, pero sólo si la tensión en la cuerda se tensiometrara alrededor de un trillón de toneladas métricas. Las predicciones de la teoría de cuerdas serían las mismas que las de la relatividad general a escala de longitudes normales, pero diferirían a distancias muy pequeñas, menores que una trillonésima de un cm. Claro está, que en esos años, no recibieron mucha atención por su trabajo.
Ahora se buscan indicios de la teoría de cuerdas en los grandes aceleradores de partículas donde parece que algunos indicios nos dicen que se va por el buen camino, sin embargo, nuestros aceleradores más potentes necesitarían multiplicar por un número muy elevado su potencia para poder, comprobar la existencia de las cuerda situadas a una distancia de 10-35 m, lugar al que nos será imposible llegar en muchas generaciones. Sin embargo, en las pruebas que podemos llevar a cabo en la actualidad, aparecen indicios de una partlicula de espín 2 que todos asocian con el esquivo Gravitón, y, tal indicio, nos lleva a pensar que, en la teoría de supercuerdad, está implícita una Teoría Cuántica de la Gravedad.
Los motivos que tuvo la comunidad científica, entonces, para no brindarle la suficiente atención al trabajo de Scherk y Schwuarz, es que, en esos años, se consideraba más viable para describir a la interacción fuerte a la teoría basada en los quarks y los gluones, que parecía ajustarse mucho mejor a las observaciones. Desafortunadamente, Scherk murió en circunstancias trágicas (padecía diabetes y sufrió un coma mientras se encontraba solo en su estudio). Así, Schwuarz se quedó solo, en la defensa de la teoría de cuerdas, pero ahora con un valor tensiométrico de las cuerdas mucho más elevado.
Pero con los quarks, gluones y también los leptones, en la consecución que se buscaba, los físicos entraron en un cuello de botella. Los quarks resultaron muy numerosos y los leptones mantuvieron su número e independencia existencial, con lo cual seguimos con un número sustancialmente alto de partículas elementales (60), lo que hace que la pregunta ¿son estos los objetos más básicos?
Si esos sesenta objetos fuesen los más básicos, entonces también aflora otra pregunta ¿por qué son como son y por qué son tantos? Los físicos quisieran poder decir «salen de esto», o «salen de esto y aquello», mencionar dos principios bien fundamentales y ojalá sea tan simples que puedan ser explicados a un niño. La respuesta «porque Dios lo quiso así» posiblemente a muchos les cause «lipotimia», ya que esa respuesta nos lleva a reconocer nuestra ignorancia y, además, la respuesta que esperamos no pertenece al ámbito de la religión. Por ahora, ¿cuál es la última respuesta que puede dar la ciencia?
El cuello de botella incentivó a que se encendiera una luz de esperanza. En 1984 el interés por las cuerdas resucitó de repente. Se desempolvaron las ideas de Kaluza y Klein, como las que estaban inconclusas de Scherk y Schwuarz. Hasta entonces, no se habían hecho progresos sustanciales para explicar los tipos de partículas elementales que observamos, ni tampoco se había logrado establecer que la supergravedad era finita.
El ser humano –en función de su naturaleza– cuando se imagina algo muy pequeño, piensa en un puntito de forma esférica. Los físicos también son seres de este planeta y, para ellos, las partículas elementales son como puntitos en el espacio, puntos matemáticos, sin extensión. Son sesenta misteriosos puntos y la teoría que los describe es una teoría de puntos matemáticos. La idea que sugieren las TC’s es remplazar esos puntos por objetos extensos, pero no como esferitas sino más bien como cuerdas. Mientras los puntos no tienen forma ni estructura, las cuerdas tienen longitud y forma, extremos libres como una coma “,” (cuerda abierta), o cerradas sobre sí misma como un circulito. Si el punto es como una esferita inerte de la punta de un elastiquito, la cuerda es el elástico estirado y con él se pueden hacer círculos y toda clase de figuras. Está lleno de posibilidades.
Muchas son las imágenes que se han elaborado para representar las cuerdas y, como nadie ha visto nunca ninguna, cualquiera de ellas vale para el objetivo de una simple explicación y, las cuerdas que se han imaginado han tomado las más pintorescas conformaciones para que, en cada caso, se adapten al modelo que se expone.
diferencia entre un punto y una coma. Según la teoría de cuerdas importa, y mucho. Por su extensión, a diferencia del punto, la cuerda puede vibrar. Y hacerlo de muchas maneras, cada modo de vibración representando una partícula diferente. Así, una misma cuerda puede dar origen al electrón, al fotón, al gravitón, al neutrino y a todas las demás partículas, según cómo vibre. Por ello, la hemos comparado con la cuerda de un violín, o de una guitarra, si se quiere.
Al dividir la cuerda en dos, tres, cuatro, cinco, o más partes iguales, se generan las notas de la escala musical que conocemos, o técnicamente, los armónicos de la cuerda. En general, el sonido de una cuerda de guitarra o de piano es una mezcla de armónicos. Según la mezcla, la calidad (timbre) del sonido. Si distinguimos el tono de estos instrumentos, es por la «receta» de la mezcla en cada caso, por las diferentes proporciones con que cada armónico entra en el sonido producido. Pero, también es posible hacer que una buena cuerda vibre en uno de esos armónicos en particular, para lo cual hay que tocarla con mucho cuidado. Los concertistas lo saben, y en algunas obras como los conciertos para violín y orquesta, usan este recurso de «armónicos». Así, la naturaleza, con su gran sabiduría y cuidado para hacer las cosas, produciría electrones, fotones, gravitones, haciendo vibrar su materia más elemental, esa única y versátil cuerda, en las diversas (infinitas) formas que la cuerda permite.
Una partícula ocupa un punto del espacio en todo momento. Así, su historia puede representarse mediante una línea en el espaciotiempo que se le conoce como «línea del mundo». Por su parte, una cuerda ocupa una línea en el espacio, en cada instante de tiempo. Por tanto, su historia en el espaciotiempo es una superficie bidimensional llamada la «hoja del mundo». Cualquier punto en una hoja del mundo puede ser descrito mediante dos números: uno especificando el tiempo y el otro la posición del punto sobre la cuerda. Por otra parte, la hoja del mundo es una cuerda abierta como una cinta; sus bordes representan los caminos a través del espaciotiempo (flecha roja) de los extremos o comas de la cuerda (figura 12.05.03.02). La hoja del mundo de una cuerda cerrada es un cilindro o tubo (figura 12.05.03.03); una rebanada transversal del tubo es un círculo, que representa la posición de la cuerda en un momento del tiempo.
No cabe duda que, de ser ciertas las TC’s, el cuello de botella queda bastante simplificado. Pasar de sesenta objetos elementales a una sola coma o circulito es un progreso notable. Entonces, ¿por qué seguir hablando de electrones, fotones, quarks, y las demás?
Que aparentemente las cosas se simplifican con las TC’s, no hay duda, pero desafortunadamente en física las cosas no siempre son como parecen. Para que una teoría sea adoptada como la mejor, debe pasar varias pruebas. No basta con que simplifique los esquemas y sea bella. La teoría de las cuerdas está –se puede decir– en pañales y ha venido mostrado distintas facetas permeables. Surgen problemas, y se la deja de lado; se solucionan los problemas y una avalancha de trabajos resucitan la esperanza. En sus menos de treinta años de vida, este vaivén ha ocurrido más de una vez.
Uno de los problemas que más afecta a la cuerda está ligado con su diminuto tamaño. Mientras más pequeño algo, más difícil de ver. Es una situación que se agudiza en la medida que se han ido corrigiendo sus permeabilidades. En sus versiones más recientes, que se llaman supercuerdas, son tan superpequeñas que las esperanzas de ubicarlas a través de un experimento son muy remotas. Sin experimentos no podemos comprobar sus predicciones ni saber si son correctas o no. Exagerando, es como una teoría que afirmara que los angelitos del cielo tienen alitas. ¿Quién la consideraría seriamente?
La propia base conceptual de la teoría comporta problemas. Uno de ellos, es el gran número de dimensiones que se usan para formularla. En algunos casos se habla de 26 o, en el mejor, de 10 dimensiones para una cuerdita: espacio (son 3), tiempo (1) y otras seis (o 22) más, que parecen estar enroscadas e invisibles para nosotros. Por qué aparecieron estas dimensiones adicionales a las cuatro que nos son familiares y por qué se atrofiaron en algún momento, no lo sabemos. También, la teoría tiene decenas de miles de alternativas aparentemente posibles que no sabemos si son reales, si corresponden a miles de posibles universos distintos, o si sólo hay una realmente posible. Algunas de estas versiones predicen la existencia de 496 fuerzones, partículas como el fotón, que transmiten la fuerza entre 16 diferentes tipos de carga como la carga eléctrica. Afirmaciones como éstas, no comprobables por la imposibilidad de hacer experimentos, plagan la teoría de cuerdas. Quienes alguna vez intentaron trabajar matemáticamente en las cuerdas, muchas veces deben haber pensado de que lo que estaban calculando más se asemejaba a juegos de ejercicios que la consecución de una base matemática teórica tras objetivo de dar un paso trascendental en el conocimiento de la naturaleza. Ahora, los que tienen puesta su fe en ella suelen afirmar que se trata de una teoría que se desfasó de la natural evolución de la física, que su hallazgo fue un accidente, y no existe aún el desarrollo matemático para formularla adecuadamente.
En las teorías de cuerdas, lo que anteriormente se consideraba partículas, se describe ahora como ondas viajando por las cuerdas, como las notas musicales que emiten las cuerdas vibrantes de un violín. La emisión o absorción de una partícula por otra corresponde a la división o reunión de cuerdas.

“Al principio se vio como un gran éxito, pero pronto esta “reunificación”, no tan exacta, empezó a dar fallos entre los físicos que trabajaban en las “grandes teorías unificadas”. Como puede verse en la gráfica que representa las intensidades de las fuerzas básicas respecto a la energía expresada en GeV (en la figura se representa en el eje horizontal los exponentes de las potencias de diez), las gráficas no llegan a coincidir en un punto como era de esperar aunque la “tendencia” si se apreciaba unificadora.”
La Teoría de cuerdas trata de incorparar la Gravedad a las otras tres fuerzas y completar asíel panorama actual de la Física de Partículas en el Modelo Estándar en el que sólo están incluídas estas tres interacciones de arriba, la Gravedad queda fuera por surgir infinitos no renormalizables que, desaparecen en la Teoría de supercuerdas de 26 dimensdiones de espacio tiempo para los Bosones y de 10 y 11 dimensiones de espacio tiempo para los Ferniones.
El trabajo que aquí hemos leido lo he obtenido de fuentes diversas y, como tantos otros, nos dice más o menos lo que todos. La realidad de la Teoría de supercuerdas está en que no podemos llegar a ese límite necesario de los 10-35 m, donde supuestamente, está instalada la cuerda, y, como llegar a esa distancia nos exige una energía de 1019 GeV con la que no podemos ni soñar. Seguirán, por mucho tiempo, las especulaciones y cada cual, tendrá su idea, su propia teoría, toda vez que, ninguna de ellas podrá ser verificadas y mientras eso sea así (que lo es), todas las teorías tendrán la posibilidad de ser refrendadas…algún día.
- ¿Dónde estarán las respuestas?
Sin embargo, una cosa es cierta, es la única teoría, la de supercuerdas, que nos da cierta garantía de que vamos por el buen camino, en su desarrollo aparecen indicios confirmados por los experimentos, como por ejemplo, la aparici´çon de una partícula de espín 2, el Gravitón que nos lleva a pensar que, en la teoría de supercuerdas está integrada una teoría Cuántica de la Gravedad que nos, podrá llevar, hasta esos primeros momentos del Big Bang que ahora quedan tan oscuros a la vista de los observadores y, de la misma manera, nos dejará entrar en la Singularidad de un Agujero Negro para poder ver (al fin) lo que allí pueda haber, qué clase de partículas o de materia se ha podido formar en un material tan extremadamente denso como el de la singularidad.
Habrá que tener paciencia con la Teoría de cuerdas y con el hallazgo tan esperado del Gravitón que nos confirmará, al fín, que la Gravedad como las demás interacciones, también está cuantizada y tiene su Bosón transmisor. De lo que no acabo de estar seguro es…del hecho en sí, de que podamos univer la Gravedad con la cuántica…¡son tan dispares! y habitan en reinos tan diferentes.
emilio silvera
Jun
13
¡El Futuro! ¿Cómo será?
por Emilio Silvera ~
Clasificado en el futuro ~
Comments (3)
Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso fondo oceánico como fue predicho hace ahora más de un siglo.
Ahora, los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades del mundo de la materia.
Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los campos, nos llevan, sin que nos demós cuenta, hacia el futuro que, ¡puede ser de tántas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estémos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.
Ascensor Espacial Erkki Halkka
Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que ahora. las posibles innovaciones tecnológicas en campos tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.
Estos serán los materiales con los que se construi´ra ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, hacia las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de fácil combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…
Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables como materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:
En Estados Unidos, un antiguo ingeniero de la NASA llamado Bradley C. Edwards ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.3 Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años para construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.
Este sería el final del recorrido y estaría preparado para conectar con bases espaciales. Ahora nos parece un suelo paero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.
Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, diabetes, heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de aplicaciones, que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.
En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a nivel clínico. El primer trasplante de órgano bioartificial en humanos, por su parte, confían en que pueda ver la luz dentro de “unos cinco o diez años”.
La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de datos biológicos . Los principales esfuerzos de investigación en estos campos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica . Veamos algunas de ellas…
Formas nuevas de comunicarse y de adquiri datos
La fusión, energía limpia y barata y, sobre todo, inagotable
Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La palabra clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus resifuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.
La ciencia de la medicina está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.
Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado como grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan aplicar. No perdamos de vista en este ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…
Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del habitat humano y a su forma de trabajo, de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que ahora criticamos.
Los modernos celulares irán insertados en el brazo
Cualquier vivienda será controlada por mecanimos informáticos
Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en forma virtual. Sí, virtual hoy pero… ¿Y mañana?
¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿Para qué tanta diversidad y tanta belleza? Si están ahí, por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente serémos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!
Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos robotizados, han realizado para nosotros las tareas que, de momento nos están vedadas pero, demslé tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.
El futuro convive ya con nosotros y, al tenerlo tan cercano, no le prestamos atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.
Sueños convertidos en realidad
Ya construímos ciudades flotantespara esquivar la subida del nivel del Mar
Como no podemos predecir que le puede pasar a la Tierra en el futuro, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale, un ¡por si acaso!, que un yo creí”!
emilio silvera
Jun
12
La rotación de las partículas y otros temas de física
por Emilio Silvera ~
Clasificado en Física ~
Comments (12)
Momento angular de una partícula
Si hablamos de las partículas no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas.
Movimiento de una carga puntual en un campo magnético.
Los campos magnéticos no realizan trabajo sobre las partículas y no modifican su energía cinética. Veamos la imagen. cabe notar en la imagen que la fuerza magnética es perpendicular a la velocidad de la partícula haciendo que se mueva en una órbita circular. La fuerza magnética proporciona la fuerza centrípeta necesaria para que la partícula adquiera la aceleración v2 /r del movimiento circular.
Las partículas al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.
Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.
Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.
Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.
En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Debido al principio de exclusión de Pauli, no es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
Un condensado de Bose-Einstein
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).
Todo lo que rota crea un campo magnético
Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.
Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.
Cualquier imagen que imaginemos podemos decir que es la anti-materia pero…
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.
No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.
Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.
La materia normal como la conocemos, está compuesta de átomos, las distintas organizaciones de distintos átomos forman todos los tipos de moléculas y estos a su vez la materia. Estos átomos están compuestos por electrones, protones y neutrones, los elementos más pequeños conocidos (eso sin contar los quarks y demás). Ahora bien, la antimateria se compone del mismo modo, con algo llamado anti-átomos, que están constituidos por antielectrones (también llamados positrones), antiprotones y antineutrones. (Dirac, predijo el positrón que, poco después fue descubierto)-
Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?
Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.
Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
Aquí, un electrón e desviado por el campo eléctrico de un núcleo atómico produce prenorradiación. El cambio de energía E2 − E1 determina la fecuencia f del fotón emitido. ¡No por pequeño se el insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.
Existen razones teóricas para suponer que cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.
Parece que los tenemos a todos bien localizados pero… ¿Dónde está el Gravitón?
Seguramente riéndose de nuestra ignorancia
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas) desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegase a captar la cienbillonésima parte de un centímetro. Las débiles ondas de los gravitones, que proceden del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitacionales. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaron el hallazgo de Weber.
En cualquier caso, no creo que a estas alturas alguien pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es 0, su carga es 0, y su espín es 2. Como el fotón, no tiene antipartícula; ellos mismos hacen las dos versiones.
emilio silvera
Jun
11
¿Cómo podemos comprender algo del vasto Universo?
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (3)
Cuando en el Universo se rompieron las simetrías… ¡Comenzó a ser bello! Y, comprensible.
Einstein decía: “Lo incomprensible del Universo es, que lo podamos comprender”
Creo que ningún hombre, o mujer, realmente reflexivo, deberían desear saberlo todo, pues cuando el conmocimiento y su análisis son completos, el pensamiento se detiene, la curioosidad desaparece y, hasta la imaginación se frena al no tener nada nuevo que imaginar ¿Saberlo Todo? ¡Qué aburrido! Sería el camino más certero hacia la decadencia y el hastío. El ansia de saber nos mantiene vivos, y, hace que perdure la emoción por descubrir.
La Ciencia describe y predice sucesos que, muchas veces están por llegar y, con la observación y el experimento, con el estudio de la Naturaleza, se llega a saber y comprender el por qué de los comportamientos que podemos ver en una estrella, una galaxia, en las Nebulosas y en objetos más exóticos como los púlsares y los agujeros negros. Lo cierto es que, como nuestros cerebros evolucionaron mediante la acción de las leyes de la Naturaleza, estas resuenan dentro de él, y, de esa manera podríamos llegar a comprender el por qué, a pesar de su complejidad, podemos comprender el vasto Universo. La ünica explicación plausible es que, nosotros, hemos desarrollado esa herramienta que forma parte de ese inmenso todo que llamamos Cosmos.
Se repiten las sencillas piedras del río y también, las complejas galaxias del espacio “infinito”
La variación y el cambio son etapas inevitables e ineludibles por las cuales debe transitar todo sistema complejo para crecer y desarrollarse. Cuando esta transformación se consigue sin que intervengan factores externos al sistema, se denomina “auto-organización.
La auto-organización se erige como parte esencial de cualquier sistema complejo. Es la forma a través de la cual el sistema recupera el equilibrio, modificándose y adaptándose al entorno que lo rodea y contiene. En esta clase de fenómenos es fundamental la idea de niveles. Las interrelaciones entre los elementos de un nivel originan nuevos tipos de elementos en otro nivel, los cuales se comportan de una manera muy diferente. Por ejemplo, entre otros, las moléculas a las macromoléculas, las macromoléculas a las células y las células a los tejidos. De este modo, el sistema auto-organizado se va construyendo como resultado de un orden incremental espacio-temporal que se crea en diferentes niveles, por estratos, uno por encima del otro.
La Naturaleza nos presenta una serie de repeticiones -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre los que ocurre dentro y fuera del cerebro humano que, a través del conocimiento, ha podido llegar a generar algo que llamamos Mente y que está, directamente conectada con el inmenso Universo que, de esa manera, podemos comprender… ¡aunque sólo en parte! Nos queda una gran asignatura pendiente de poder contestar qué es la Vida.
La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.
¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.
No siempre, nuestras mentes, llegan a poder asimilar que, partiendo de Quarks y Leptones, se puedan conformar objetos tan grandes las estrellas y los mundos y, mientras que algunos son descomunales, como la estrella VY Canis Majoris que, si la comparamos con el Sol, deja a este casi invisible por su pequeñes en comparación y, sin embargo, para nosotros, el Sol es descomunal. Esto quiere decir que no hay nada grande ni pequeño, las medidas de las cosas irán en función de su importancia local, es decir, de la función que esté desempeñando en su medio.
Lo cierto es que, para llegar a comprender lo muy grande, tuvimos que saber de lo muy pequeño que, cuando se junta, es lo que conforma todo lo que podemos observgar en el Universo. Son tan complejos esos “Universos” de lo muy pequeño que llamamos mecánica cuántica que, en realidad, más que con palabras la tenemos que contar con número. Los números, las matemáticas es el lenguaje de la Física, la que realmente expresa lo que queremos decir y que las palabras no pueden. El lenguaje ordinario de las palabras no es suficiente para contar todo lo que ocurre en ese micho mundo de la materia.
Claro que el misterio no es que coincidamos con el Universo, sino que en cierta medida estamos en conflicto con él, y sin embargo, podemos comprender algo de él. ¿Por qué esto es así? En busca de una respuesta, detengámonos otra vez, a beber en la fuente burbujeante de la simetría. La simetría, recordemos, no sólo implica la existencia de una invariancia bajo una transformación, la base de toda Ley natural, sino que también una “debida proporción” entre la invariancia y un marco de referencia mayor y más inclusivo.
Einstein decía que la Mente, funciona como un paracidas, sólo funciona si se abre
La Mente, con sus limitaciones intrínsecas, forma un marco dentro del cual nuestras ideas pueden juguetear; hasta la teoría más amplia está enmarcada en un bocabulario matemático, verbal o visual específico. Luego ponemos a prueba nuestras ideas comparándolas con una parte del mundo externo, que sin embargo, tiene a su vez un marco a su alrededor. Este proceso es útil mientras no lleguemos a un campo sin marco, sin límites. El Teorema de Gödel indica que esto nmunca ocurrirá, que una teoría, por su misma naturaleza, requiere para su verificación la existencia o contemplación de un marco de referencia mayor. Es la condición límite, pues, la que brinda la distinción esencial entre la Mente y el Universo; Los Pensamientos y los Sucesos están limitados, aunque la totalidad no lo es´te (Ideas como esta aparecieron en Grecia, cuando el pensamiento griego, como el de Filolao de Tarento escribió, alrededor de 460 a.C.: “La Naturaleza, en el Cosmos, armonizó lo Ilimitado y lo limitado, el orden de la totalidad de todas las cosas dentro de ella”-.
Cuando miramos el Horizonte, nos encontramos con un límite que no podemos traspasar, y, ese límite nos habla de nuestras carencias. No podemos ir más allá de los límite que la Naturaleza nos impone y, para evitar eso, nos valemos de ingenios que hemos inventado y que nos permiten llegar mucho más lejos de lo que nuestras condiciones físicas nos permiten.
¿Y de dónde provienen los límites? Muy posiblemente de la ruptura de simetrías cósmicas en el momento de la Génesis. Contemplamos un paisaje cósmico hendido por las líneas de fracturas de simetrías rotas, y tomamos de sus esquemas y metáforas que aspiran a ser tan creativas, si no siempre tan agrietadas, como el universo que se propone describir.
Vivímos en un mundo tridimensional y, cuando queremos escenificar ese mundo de más dimensiones… ¡No podemos! Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero … ¡Nuestro UniversoAsimétrico!
Sólo las matemáticas lo consiguen dibujar. La última parada antes de que tal cosa suceda se llama “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.
“Todas las metáforas son imperfectas”, decía el poeta Robert Prost, y en eso reside su belleza.
Puede ser, pues, que el universo sea comprensible porque es defectuoso, que gracias a que renunció a la perfección del no ser por el revoltijo del ser existimos nosotros, percinbimos la embrollada e imperfecta realidad y la sometemos a prueba con el fantasmal espectro del pensamiento de la simetría primordial que la precedió. Somos, por lo tanto pensamos. (O, como dice el cuentista Jorge Luis Borge: “Pese a uno mismo, uno piensa”.
La Ciencia es un proceso, no un edificio, y se depoja de los viejos conceptos a medida que crece.”Las teoría -decía Ernest Mach- son como hojas marchitas, que caen después de haber permitido al organismo de la ciencia respirar por un tiempo”. El proceso depende del error -como señala Popper, una teoría es valiosa sólo si es susceptible de ser refutada-, como para dar testimonio de la ubicuidad y eficacia de la imperfección cósmica. Claro que, el error, a menudo puede ser fértil (ya lo explicaré en otro momento).
Acordáos que Einstein decía que la Mente era como un paracaidas que sólo funciona cuando se abre. Así que, no pocas físicos siguen ese consejo y abren sus mentes a cuestiones que no han podido ser demostradas y, elaboran teorías, unas más complicadas que otras que, en definitiva persiguen saberl del Universo y buscar, algunas respuestas a preguntas planteadas que nadie ha sabido contestar. Así, para burlar la velocidad de la Luz nos agarramos a los Agujeros de Gusano, para saber de cómo es en realidad la Naturaleza surgen Teorías como las de Supercuerdas que nos llevan a un Universo de 11 dimensiones donde, la Gravedad de Einstein y la mecánica cuántica de Planck, pueden convivir tan ricamente.
La cienca es muy jóven y le queda mucho por avanzar, y, que sobreviva el tiempo suficiente para llegar a vieja, dependerá de nuestras conductas, cordura, coraje y vigor, y como siempre se debe añadir en esta era nuclear, de que no nos destruyamos antes nosotros mismos.
“Nada que sea grandioso entra en la vida de los mortales sin una maldición” Decía Sófocles, y el conocimiento de cómo brillan las estrellas es muy grande, y su lado oscuro es, en verdad, muy oscuro. Es innecesario decir que la Ciencia misma no nos librará de los peligros a los que su conocimiento nos ha expuesto, y, está en nosotros, sólo en nosotros, el tener la racionalidad necesaria para que su uso no se vuelva contra nosotros…
Si nos adentramos dentro de nosotros mismos, si mirámos hacia atrás en el tiempo, si estudiamos de manera detenida y pormenorizada todo loq ue hemos hecho desde la noche de los Tiempos, si hacemos ese viaje al interior de nuestro Ser más profundo… ¡Contemplamos un escenario frío y caliente, oscuro y de cegadora luz! Somos capaces de lo mejor y de lo peor, estamos agarrados por dos fuertes manos: Una es la Vida y la otra es la Muerte. Nosotros, en medio de esa verdad, no hemos podido superar todavía, esa realidad de la extinción, de una vida perecedera. Nuestras vidas, como nuestro planeta, oscilan suspendidas en una dualidad mitad luz y mitad oscuridad y sombra. Si mimploramos a la Naturaleza será en vano; ella es indiferente a nuestro destino, y su costumbre es ensayarlo todo y ser implacable con la competencia. El 99 por ciento de todas las especies que han vivido en la Tierra han desaparecido, y, desde luego, ninguna estrella titilará en nuestro homenaje cuando nos vayamos de este mundo.
Epicteto, el ex esclavo señalaba que:
“Toda cuestión tiene dos asas, por una de las cuales se la puede coger, y por la otra no.
Si tu hermano te ofende, no aborde la cuestión por este lado, que él te ofende, pues de esa asa no se puede coger la cuestión. En cambio, abórdala por el otro lado, que él es tu hermano, tu amigo nato; y podrás dominarla, por el asa que soporta su cogida”.
Por lo tanto, decimos -hablamos como seres vivos y (creemos) como seres pensantes, como conquistadores del fuego-, por lo tanto, pues, elegimos la vida. Claro que, la elección nunca podrá estar en nuestras manos y, lo único que podremos hacer con ayuda de la Ciencia, será alargárla lo más posible para poder dejar, en este mundo, la mayor huella posible de nuestro efímero paso por él.
El cerebro es capaz de inventar recuerdos de hechos que nunca ocurrieron y visitar lugares que, ¡no sabemos si existirán en alguna parte! Los cien mil millones de neuronas que no dejan de titilar produciendo fogonazos que hacen saltar las ideas que nos llegan, no pocas veces sin saber de dónde, es aún un gran misterio que los estudiosos tratan de resolver. No se ha podido llegar a saber cómo funciona el cerebro humano y su complejidad es tal que, sólo el universo mismo se le podría comparar.
La capacidad humana para aprender, inventar, buscar recursos, y sobre todo, adaptarse a las circunstancias es bastante grande. A lo largo de los últimos milenios Civilizaciones del pasado han demostrado que desarrollarse y constituir sociedades que apuntan maneras de querer hacer bien las cosas. Bueno, al menos esas son las sensaciones que yo he podido percibir.
Constituido por innumerables galaxias de estrellas, nuestro Universo, no sólo es asombroso, sino que, es mucho más de lo que nuestras pobres mentes pueden imaginar. multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, una inmensidad de objetos exóticos de una rica variedad que subyacen en las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, percibe continuados mensajes que les envían los sentidos provenientes de los objetos y las cosas cotidianas que nos rodean pero, con una limitación inconmensurable que nos deja inmersos en una nube de ignorancia que, desde hace mucho tiempo, tratamos de desterrar… ¡Sin conseguirlo!
El camino hacia la total comprensión de la Naturaleza comenzó cuando fuímos conscientes de que nuestros conocimientos eran limitados y nuestra ignorancia infinita. Ya nos lo dijo Sócrates: “Solo se que no se nada”, después de él, muchos han sido los filósofos que de una u otra manera han dicho lo mismo en variadas versiones.
No puedo desechar la idea de que, con los “universos” ocurre lo mismo que ocurre con los mundos, con las estrellas y con las galaxias: ¡Que son infinitos! Dentro de un Multiverso mayor al que no hemos podido tener acceso, toda vez que, nuestras limitaciones, en este caso… ¡Son infinitas. Hablamos de ir a otros mundos sin pararnos a pesar en la complejidad que dicho viaje conlleva. Una cosa es enviar ingenios robotizados y, otra muy distinta, que sean personas las que intenten esa empresa que, al menos en los próximas décadas… ¡Será imposible de concretar!
Sin embargo, como nos pasa con las teorías, hablamos, imaginamos y planteados “mundos” ilusorios y viajes imposibles que, si alguna vez son una realidad, esa estará situada muy lejos en el tiempo que está por venir. Sin embargo, nuestra manera de ser, nos lleva a no pararnos ante nada, hacemos como que, las barreras no existen y nos imaginamos haciendo cosas que… “nunca podremos”.
Mientras tanto… ¡Sigamos soñando!
emilio silvera
Jun
10
Una pregunta tonta: ¿Qué es la vida?
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (0)


El físico Erwin Schrodinger pronunció una serie de conferencias con un tema común: ¿Qué es la vida?
Todos tenemos una idea intuitiva de qué es la vida. Sabemos de su existencia por nuestra propia experiencia pero la cosa se complica cuando tratamos de ponerlo negro sobre blanco. Una cantidad enorme de células deciden ponerse de acuerdo para construir un cuerpo. Actúan unidas, con la misión compartida de mantener la autonomía y la identidad de su existencia.
Erwin Schrodinger fue uno de los científicos más importantes del siglo XX. Recibió el Premio Nobel de Física en 1993 gracias al desarrollo de la Teoría Cuántica. Sin embargo, como todo pensador ilustre, trató de desentrañar conceptos que se extienden más allá de su ámbito de estudio. En sus propias palabras: “…se volvió casi imposible, para una única mente, dominar por completo más que una pequeña porción especializada de ese conocimiento. No veo otra salida para este dilema (bajo riesgo de perder nuestro objetivo para siempre) que aventurarnos a embarcar, algunos de nosotros, en una síntesis de hechos y teorías, aunque dotados de un conocimiento incompleto y de segunda mano sobre algunos de ellos, y, peor aun, pudiendo parecer tontos”.
¿Por qué son los átomos tan pequeños?
O dicho de otra forma: ¿por qué los seres vivos son enormes comparados con el tamaño de los átomos? La escala a la que trabaja “la vida” es necesariamente grande, y entiéndaseme; cuando digo “grande” quiero decir comparado con un átomo. Es necesario que sea así porque, si no, las perturbaciones que añaden los procesos atómicos, como por ejemplo el calor, harían que los desarrollos biológicos fueran imposibles. Imaginemos que unos pocos átomos formaran un organismo vivo. Sabemos que el calor produce vibraciones que aumentan la separación entre átomos. Pues si sólo unos pocos formaran un cuerpo, éste se pasaría la vida creciendo y menguando desaforadamente como si se estuvieran bebiendo frascos y frascos del elixir de Alicia en el País de las Maravillas. Aprendemos entonces que la vida tiene una escala necesaria: la del planeta Tierra.
Orden a partir del desorden y orden a partir del orden
Ya hemos hablado en alguna ocasión de la relación entre orden, entropía y vida. Cualquier proceso vital lo es gracias al aumento de desorden en el Universo. La naturaleza realiza procesos en los que trata de organizar, de reglar, de acumular. Sin embargo este “orden a partir del desorden” requiere un paso más. Sería imposible que una especie perdurara en el tiempo, más allá de su corta vida como individuo sin la existencia de la información genética. Las especies son capaces de comunicar su esencia a sus descendientes. Un mecanismo de transmisión del “orden a partir del orden” que perdura durante siglos. La información es parte fundamental de la existencia de la vida.
¿Se basa la vida en leyes físicas?
Bueno, algunos dicen que lo único que no cambia es el Cambio. Por eso hay vida
Se puede entrever que la Biología será útil a la Física, provocando el descubrimiento de nuevas leyes y, también, la Física a la Biología, porque ofrecerá una explicación unificada de la vida. Sin embargo, e inevitablemente, aunque aún no conozcamos todos los procesos que hacen que la vida exista, sólo podrán ser físicos, puesto que cuanto se encuentra en la materia de un ser vivo son los elementos con los que están hechos el resto del universo. Nuestros cabellos, las hojas de los arboles, el agua o el polvo estelar están hechos de los mismos componentes. Elementos únicos regidos por las leyes universales de la física. Sólo eso puede explicarlo todo. ¿O no?
– Seguir leyendo: http://www.libertaddigital.com/ciencia-tecnologia/ciencia/2016-06-08/una-pregunta-tonta-que-es-la-vida-1276575691/