jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Vida en el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Aunque el artículo es antiguo, lo vuelvo a traer para recordar que existe el programa y que hay gente trabajando en él cada día. Es cierto que estamos ausentes de éstos trabajos que se llevan a cabo en silencio y que generan pocas noticias, ya que, el día que tengan que decir algo… ¡Será una conmoción mundial!

Veamos el reportaje.

Seth Shostack, en su despacho del SETI en Silicon Valley
                                Seth Shostack, en su despacho del SETI en Silicon Valley. / P. X -S.

 El SETI es el centro privado que heredó de la NASA el programa que escudriña el Espacio Exterior en busca de señales de radio de otra Civilización. “Pensar que estamos solos en el Universo es como creer en milagros” Dice el responsable.

Algunos científicos lo llaman el efecto risitas. Es la reacción, inevitable para mucha gente, que se produce cuando alguien comienza a hablar de extraterrestres. Una media sonrisa, una risita apagada que inmediatamente anula el efecto de lo que se quiera decir. Los expertos en buscar vida en otros planetas están acostumbrados. Cuando le preguntan a Seth Shostak en una fiesta a qué se dedica, ¿qué dice? “Digo que arreglo coches”, bromea. Es más fácil eso que explicar que es el director del Instituto para la Búsqueda de Vida Inteligente Extraterrestre (SETI, en sus siglas en inglés).

 

 

           “Si hubiera una señal, sonaría como un tono, una flauta dentro del ruido”

 

El SETI es probablemente el lugar del mundo donde más en serio se toma esta cuestión. Situado en un edificio de oficinas en Mountain View, California, en el corazón de Silicon Valley, se trata de un centro privado que heredó lo que una vez fue un programa oficial de la NASA: escuchar el espacio en busca de una señal de radio de otra civilización. Su director será una de las dos o tres primeras personas en el mundo que se enterarán el día en que nos contacten los extraterrestres, algo que en este lugar no es una especulación, es una certeza.

La búsqueda de una señal desde el espacio comenzó en los años 60 del pasado siglo, cuando los extraterrestres ya habían invadido la cultura popular. “Era cultura pop, pero no tanto”, dice Shostak. “A mitad de siglo ya había científicos serios pensando en la posibilidad de vida en Marte”. Marconi o Tesla también habían teorizado sobre contactar con Marte. “La idea de la vida en el espacio es antigua. La idea de contactar con ellos es del último medio siglo”.

Antenas del telescopio Allen, en el norte de California, con las que el SETI escucha el universo en busca de una señal de vida. / SETI

Cuando Shostak se unió al SETI, en 1990, era un programa oficial de la NASA. Fue cancelado en 1992, apenas un año después de comenzar a escuchar, dentro de una negociación presupuestaria en el Congreso. Desde entonces, no se ha podido volver a presentar una propuesta para gastar dinero público en SETI sin ser víctima del efecto risitas. Fue un grupo de inversores de Silicon Valley los que retomaron el programa y lo mantienen con fondos privados. Shostak afirma que el programa federal se podría recuperar con un presupuesto de solo un millón de dólares al año. Pone como ejemplo que el Congreso encontró bien rápido los fondos para un programa que se dedica a vigilar asteroides cuando, en 1994, vieron las imágenes del cometa Shoemaker impactando contra Júpiter y provocando explosiones del tamaño de la Tierra: merecía la pena saber algo más de la trayectoria de los asteroides.

Resultado de imagen de La radio, la rueda... civilización

“La física es igual en todas partes, damos por hecho que una civilización extraterrestre conoce la radio como conoce la rueda…”

 

En el piso de Mountain View que hoy alberga el SETI hay pocas referencias a hombrecillos verdes. Las antenas están a 500 kilómetros hacia el norte. El ambiente de oficina está decorado con mapas celestes y fotos de lugares extremos de nuestro planeta. En una estantería se alinean lo que parecen globos terráqueos hasta que se miran de cerca. Son mapas globo de los planetas y lunas donde es más probable que haya vida, hechos con imágenes de satélite. Calisto, Europa, Ío, Ganímedes… Para el que solo conoce la capa más pop de la vida extraterrestre, el satélite Europa es el más famoso, desde que Arthur C. Clarke lo convirtió en el hogar de la próxima civilización del sistema solar en 2010: Odisea Dos. “Europa es uno de ellos, pero no necesariamente el mejor”, aclara Shostak.

En uno de mis trabajos en éste blog decía: “Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas … Allñi surgen nuevos sistemas planetarios y, en alguno de sus mundos, como ocurrió en la Tierra, podrán surgir formas de vida que evolucionarán con el Tiempo hasta los pensamientos.

Sigue el reportaje.

Muchas de las imágenes del planeta Marte, nos hablan de secretos que… ¿De dónde sale el metano allí detectado? ¿Lo producen metanógenos?

El pasado marzo, Shostak escribió un artículo en The New York Times que abría el debate a un cambio de estrategia: enviar mensajes al espacio en vez de escuchar pasivamente. La mera posibilidad provocó un debate fenomenal, en el que personalidades como Elon Musk (SpaceX) o el astrónomo Geoff Marcy advertían de los peligros de exponernos a una civilización cuyas intenciones desconocemos. De repente, en los primeros meses de 2015, el debate sobre extraterrestres se ha vuelto muy serio. Shostak aclara que actualmente no están emitiendo señales, pero dice que hay quien quiere hacerlo en su equipo. Cree que “es más útil escuchar”, pero si se hiciera, propone emitir toda la información de los servidores de Google. Suele comparar su exploración con la de Cristóbal Colón: “Es como decirle a Colón: ‘mejor no vayas hacia el oeste porque puedes encontrarte con una civilización hostil que venga a Europa y la destruya”.

También se llega a la conclusión de que casi todas las estrellas similares al Sol tienen planetas a su alrededor. Hay un 17% de estrellas que tiene planetas …

Si miras a 100 estrellas, 20 de ellas tienen planetas como la Tierra

Otra cuestión es si esa supuesta civilización utilizará medios de comunicación que se puedan captar con las antenas que usamos. “La radio es como la rueda”, afirma Shostak. Si han llegado al nivel de civilización que les permita enviar mensajes por el espacio, forzosamente utilizan radio. “La física es igual en todas partes, damos por hecho que conocen la radio como conocen la rueda”. la búsqueda SETI da por hecho que hay otras formas de vida no muy lejanas, que alguna de ellas ha desarrollado una civilización inteligente al menos tan avanzada como el ser humano, y que tratan de explorar el universo igual que nosotros. Es una cuestión de estadística. “Si miras a 100 estrellas, 20 de ellas tienen planetas como la Tierra”, explica Shostak. “El análisis del telescopio Kepler revela que una de cada cinco estrellas tienen planetas que pueden tener vida. Eso son decenas de miles de posibilidades, solo en la Vía Láctea. Pueden ser estériles, pero eso nos convertiría en un milagro. Y en la ciencia, cuando crees en los milagros normalmente te equivocas”.

¿Confirman que unas enigmáticas ondas de radio provienen del espacio exterior?

¿Y el día que llegue esa señal? El imaginario popular ve esa señal como una especie de borrón, un ruido confuso pero con alguna lógica interna que destaca entre el zumbido seco del universo. La película Contact (1997) obtuvo una nominación al Óscar al mejor sonido por su emocionante recreación de un supuesto contacto extraterrestre por radio. Pero el hombre que probablemente será el primero en escucharlo, Shostak describe así lo que lleva esperando toda su vida: “No buscamos sonidos, sino bandas, números. Si esos números se convierten en audio, suena ruido. Si hubiera una señal en él, sonaría como un tono, una flauta dentro del ruido”.

Una conversación con Seth Shostak una mañana de abril puede acabar en un debate sobre si la radio de ET era lo bastante potente como para llamar a su casa. Ha trabajado como asesor científico en películas (el remake de Ultimátum a la Tierra) y conoce y disfruta toda la cultura popular alrededor de los extraterrestres. Pero es absolutamente serio cuando afirma que encontraremos vida inteligente fuera de la Tierra, quizá antes de dos décadas, gracias al ritmo al que evoluciona la tecnología que escucha el universo y procesa el ruido. ¿Y qué pasará ese día? “Será noticia cinco días y luego cada uno volvería a lo suyo”.

Cuando el trabajo es imaginar extraterrestres

El SETI no solo se dedica a escuchar el universo. Alrededor de este programa trabajan unos 150 especialistas en distintos proyectos con aplicaciones en la búsqueda de vida extraterrestre. La mayoría son astrobiólogos, que desarrollan en estas instalaciones su trabajo sobre condiciones de vida extremas en la Tierra, un tipo de estudios que sirve para imaginar la vida que se podría generar en sistemas helados o ardientes. El español Pablo Sobrón trabaja en SETI desde 2012. “Mi trabajo se centra en explorar nuevas formas de vida en entornos inhóspitos de nuestro planeta como el Ártico, la Antártida, desiertos, montañas y el fondo oceánico”, explica Sobrón en un correo electrónico.

Sobrón está ahora en un grupo de investigación para explorar la vida en los océanos. “Los mejores escenarios para la evolución de vida en el sistema solar son posiblemente los océanos de los satélites Europa y Encedalus (Júpiter y Saturno, respectivamente). Estas dos lunas heladas albergan océanos de agua líquida bajo una corteza de hielo y es posible que existan chimeneas hidrotermales en el fondo de los mismos”, que es posiblemente el entorno en el que surgió la vida en la Tierra. “Por tanto, Europa y Encedalus son objetivos prioritarios en la búsqueda de vida fuera de la Tierra”.

En un despacho del SETI, por ejemplo, trabaja David Hinson, especialista en meteorología espacial. Una especie de hombre del tiempo de Marte. Su trabajo consiste en predecir el tiempo en la superficie, una información fundamental si uno quiere hacer aterrizar una nave allí. “Cuando iban a mandar la nave Viking a Marte, querían aterrizar en el sitio más seguro. La estructura atmosférica y los vientos en ese momento son muy importantes”.

En este lugar, la búsqueda de vida extraterrestre es una cuestión científica de primer orden. Hay alguien imaginando cómo sería una forma de vida en condiciones extremas y buscando respuestas en el fondo del océano o en las toberas de un avión, hay alguien intentando predecir el tiempo en esos lugares y, sobre todo, alguien escuchando, por si hubiera otros, en otro lugar, haciendo lo mismo.

Publica: emilio silvera

El “mundo” de lo muy pequeño… ¡Es tan extraño!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.

                      Experimentos con electrones y positrones nos enseñaron cómo funciona el universo

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

En esta gráfica a cada temperatura el cuerpo negro emite una cantidad estándar de energía que está representada por el área bajo la curva en el intervalo.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

La primera es la imagen obtenida por los físicos en el laboratorio y, la segunda es la Imagen ilustrativa de la dualidad onda-partícula, con la cual se quiere significar cómo un mismo fenómeno puede tener dos percepciones distintas. Lo cierto es que, el mundo de lo muy pequeño es extraño y no siempre lo podemos comprender.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

 

 

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

El “universo de las partículas nunca ha sido fácil de comprender y su rica diversidad, nos habla de un vasto “mundo” que se rige por su propias reglas que hemos tenido que ir conocimiendo y seguimos tratando de saber, el por qué de esos comportamientos extraños y a veces misteriosos. Así, la pregunta anterior, de ¿qué puede significar todo eso?…

La pudo contestar Niels Bohr, de forma tal que,  con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Especto electromagnético

Mucho ha sido el camino andado hasta nuestros tratando de conocer los secretos de la naturaleza que, poco a poco, nos van siendo familiares. Sin embargo, es más el camino que nos queda por recorrer. Es mucho lo que no sabemos y, tanto el micromundo como en el vasto mundo de muy grande, hay que cosas que aún, no hemos llegado a comprender.

           El detector ATLAS funcionó, y rastrearon las partículas subatómicas

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los “trucos” ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

     Es cierto que, localizar y saber en qué punto exacto están esas pequeñas partículass… no es fácil

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Función de onda para una partícula bidimensional encerrada en una caja. Las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

(“El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.

El teorema de Bell es un metateorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.”)

 

 

                                  ¿Cómo saber el número que saldrá cuando lanzamos los dados?

¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar se producen. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extramundano y, algunas veces…imposible. Sin embargo, ahí está. Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resultado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos eson sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.

emilio silvera

Los pros y los contras de las máquinas más listas

Autor por Emilio Silvera    ~    Archivo Clasificado en I. A.    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Inteligencia artificial

 

El aprendizaje automático es uno de los campos con más proyección  en inteligencia artificial.

 

 

 

Tenemos la clave para fabricar máquinas listas. Intel

 

Reportaje de Pablo G. Bejerano
 

Los miles de millones de dispositivos que se conectan a internet cada día generan una cantidad abrumadora de información. Son montones de terabytes de datos que aparecen de la nada diariamente.

Esto abre el apetito por obtener valor de la información. Y la inteligencia artificial es clave aquí. El término se suele asociar con la robótica, una herencia cultural de la ciencia ficción, pero lo cierto es que la inteligencia artificial es algo mucho más abstracto que robots humanoides caminando o que los dilemas del superordenador Hal en 2001: una odisea del espacio.

Ojo cámara (con lente fish eye es decir con una visual muy panóptica) de color rojo (para detectar por filtro cromático incluso la “luz” IR no perceptible por el ser humano), usado para representar a HAL 9000 en uno de sus aspectos de control prácticamente orweliano.

Podría decirse que la inteligencia artificial asoma la cabeza por primera vez en los años 60 con sistemas predictivos y a partir de ahí evoluciona a velocidad de crucero. Hoy se usa para evitar fraudes bancarios, en el reconocimiento de voz, en el filtro anti spam del correo electrónico, incluso en el etiquetado de fotos automático de Facebook o en los videojuegos.

Lo que está por venir en inteligencia artificial –ya se ha investigado mucho sobre ello– son los coches autónomos, la medicina de alta precisión o el procesamiento del lenguaje natural que le pediremos a los Siri, Google Now o Cortana en los próximos años. Son algunas de las áreas para las que el aprendizaje automático o machine learning es necesario.

Creada una máquina que aprende como una persona

Que las máquinas aprendan es fundamental porque es uno de los elementos que retrasará su obsolescencia prematura, reforzando su autonomía. Este aprendizaje es uno de los temas que han sobrevolado la Conferencia Internacional de Desarrolladores (IDF) de Intel.

Hoy el 7% de todos los servidores presentes en el mundo están dedicados a tareas de aprendizaje automático. Y más del 97% de estos servidores funcionan con procesadores de Intel. Si bien en campos como los coches autónomos la compañía se ve amenazada por los productos de su competidora Nvidia.

En todo caso, esta rama de la inteligencia artificial es la que tiene mayor proyección. Intel proporciona el hardware sobre el que los desarrolladores pueden programar sus algoritmos de inteligencia artificial. Para entrenar a los algoritmos la compañía ofrece el procesador Xeon Phi, mientras que para ejecutar una tarea determinada, ya aprendida, cuenta con el Xeon.

                                                                        Un centro de datos de Intel. Intel

 

“Trabajamos con instituciones académicas y desarrolladores para asegurarnos de que pueden usar el hardware optimizado”, comenta Nidhi Chappell, responsable de aprendizaje automático en la división de centros de datos de Intel. “Hay muchos beneficios en tener el software y el hardware optimizado. ¿Podrías trabajar con procesamiento del lenguaje natural en un Xeon no optimizado? Sí, pero cuanto más optimices los elementos, tanto en software como en el hardware, más rápido harás los trabajos”.

Se necesita que el rendimiento del hardware sea muy alto, pero también que sea fácil de poner en marcha. Y otra de las claves para optimizar este aspecto es la compatibilidad con diferentes tipos de algoritmos. “Queremos habilitar nuestros productos para soluciones que estén basadas en código abierto”, indica Chappell. “Pues muchas de las cargas de trabajo en deep learning, como el procesamiento del lenguaje natural o el etiquetado de imágenes, están basadas en frameworks (marcos de trabajo para desarrollar software) de código abierto”.

Los algoritmos del ‘Deep learning’

 

 

 

 

El Deep learning o aprendizaje profundo, considerado una parte del aprendizaje automático, se basa en redes neuronales artificiales, inspiradas en el funcionamiento de sistemas biológicos. Muchos algoritmos que usan deep learning proceden de empresas o universidades, como Google o Berkeley, y una parte de ellos están bajo código abierto. Lo que hace Intel es asegurarse de que la arquitectura de sus productos está optimizada para estos algoritmos.

El conocimiento que los nutre proviene de compañías privadas, de centros académicos y también de instituciones públicas. No todo se pone a disposición del público, pero compartir la información y los progresos técnicos es uno de los motores para el aprendizaje de las máquinas.

Cloudera, una de las empresas presentes en el IDF, trabaja en big data con plataformas de código abierto. Su portavoz en el congreso de Intel, Johnny Pak, cree que la colaboración es necesaria para no estancarse. “El código abierto ayudará al desarrollo rápido de la inteligencia artificial. La posibilidad de construir sobre el trabajo de otros es lo que va a ayudar a avanzar”, reflexiona.

                                                   El conocimiento proviene de múltiples fuentes. Intel

 

Aprender bien la lección

 

 

 

El aprendizaje automático tiene otra cara. Se puede descontrolar, como le ocurrió al bot Tay, programado por Microsoft para aprender de la gente a través de sus interacciones en Twitter. Su cuenta en la red social pronto empezó a lanzar mensajes xenófobos tras el troleo de algunos usuarios y la compañía tuvo que suspender este experimento social.

“Siempre se necesitará un marco para limitar al algoritmo”, es la opinión de Pak. “Una máquina no es más que un conjunto de algoritmos. Lo que significa que las máquinas no tienen la libertad que las personas tenemos”. Así, esa especie de libertad social que Tay tuvo para aprender acabó por volverse en su contra. “Si vas a usar algoritmos en un entorno social creo que tienes que poner unos límites, de la misma forma que nosotros tenemos límites sociales”, sentencia Pak.

Es una forma de controlar la toma de decisiones. Por cierto, para una persona estas decisiones no siempre están basadas en el razonamiento lógico y no siempre se obtiene así el mejor resultado. La intuición a veces es un factor determinante y no es algo que se aprenda de forma lógica. ¿Pueden los algoritmos actuales dotar a una máquina de intuición?

El caso que más se acerca a una toma de decisiones intuitiva por una máquina es el del sistema Alpha Go, desarrollado por Google y que venció Lee Sedol, el campeón mundial del Go, un juego mucho más complejo de aprender para una máquina que por ejemplo el ajedrez.

Pak apunta que la toma de decisiones de Alpha Go a veces no partía de la lógica. “No estaba calculando, como sí hacen en ajedrez, millones de interacciones para determinar qué es lo que va a hacer el jugador. Tenía que vislumbrar cuál era el mejor movimiento. Y ganó. Lee solo gano una partida”. Y es que ni siquiera los científicos detrás de Alpha Go predecían cómo se iba a comportar su programa.

Guardar

Curvatura del Espacio – Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Densidad Crítica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espaciotiempo a distancias inmensas en tiempos y espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

Los moelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra.

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

¿Cómo medirán una hora aquel que pasa ese Tiempo con el Ser amado en comparación con aquel otro que, lleno de dolor, la ve transcurrir lentamente en la cama de un Hospital?

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

gemelos en el tiempo

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

 Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar  “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.

Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

El  símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.

Ω =r /rcrit

Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.

Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

ONDA CORPUSCULO

 

Describe a las partículas como una especie de campo de materia que se esparce por el espacio de modo similar a una onda. Hay una relación entre la localización de la partícula y los lugares del espacio donde el campo es más potente. La mecánica cuántica introduce un postulado en el que cuando se realiza una medida de la posición de la partícula se produce lo que se llama colapso de función de onda que asemeja al campo como una particula localizada. Se usa en el microscopio de electrones para obsevar objetos menores que los observados por la luz visible.

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

emite3.gif (3517 bytes)

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

                                           La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negros gigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera

Física, la era cuántica y otros fascinantes conceptos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

gran-muralla-galaxias

Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y condiciones en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

El momento de Planck es la unidad de momento, denotada por m P c {\displaystyle m_{P}c} {\displaystyle m_{P}c} en el sistema de unidades naturales conocido como las unidades de Planck.

Se define como:

{\displaystyle m_{P}c={\frac {\hbar }{l_{P}}}={\sqrt {\frac {\hbar c^{3}}{G}}}\;\approx \;6.52485\;kg{\frac {m}{s}}}

donde

En unidades del SI. el momento de Planck equivale a unos 6,5 kg m/s. Es igual a la masa de Planck multiplicada por la velocidad de la luz, con frecuencia asociada con el momento de los fotones primordiales en ciertos modelos del Big Bang que aún perduran.

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha sido prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad general de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

Si hablamos de singularidades en agujeros negros, debemos dejar la R.G. y acudir a la M.C. “…según las leyes de la Relatividad, el eje más horizontal siempre es espacio, mientras que el más vertical siempre es tiempo. Por tanto, al cruzar el horizonte lo que nosotros entendemos por tiempo y espacio ¡habrán intercambiado sus papeles! Puede sonar raro y, definitivamente, es algo completamente anti intuitivo, pero es la clave de que los agujeros negros sean como son y jueguen el papel tan importante que juegan en la física teórica actual. Al fin y al cabo, dentro no es lo mismo que fuera…”

Si ahora queremos cuantizar, es decir encontrar la versión cuántica, la gravedad escrita como RG lo que tenemos que hacer es encontrar la teoría cuántica para la métrica.  Sin embargo, esto no conduce a una teoría apropiada, surgen muchos problemas para dar sentido a esta teoría, aparecen infinitos y peor que eso, muchos cálculos no tienen ni tan siquiera un sentido claro.  Así que hay que buscar otra forma de intentar llegar a la teoría cuántica.

gravedad cuantica

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un número sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

¿Qué es la espuma cuántica?

Según la física cuántica, “la nada” no existe. En vez de esto, en la escala más pequeña y elemental del universo hallamos una clase de “espuma cuántica”.

John Wheeler explicó el término de “espuma cuántica” en 1955. A este nivel subatómico, la energía se rige por el principio de Incertidumbre de Heisenberg; sin embargo, para comprender este principio y cualquier aseveración de física cuántica, es importante antes entender que el universo se rige por cuatro dimensiones: tres comprendidas por el espacio que un objeto ocupa (vectores “X”, “Y” y “Z”) y una última, que es el tiempo.

La Física actual no puede describir lo que sucedió en el Big Bang. La Teoría Cuántica y la Teoría de la Relatividad fracasan en éste estado inicial del Universo infinitamente denso y caliente. Tan solo una teoría de la Gravedad  Cuántica que integre ambos pilares fundamentales de la Física, podría proporcionar una idea acerca de cómo comenzó el Universo.

Según los primeros trabajos sobre la teoría cuántica de la gravedad, el propio espaciotiempo varió en su topografía, dependiendo de las dimensiones del universo niño. Cuando el universo era del tamaño de un núcleo atómico (ver imagen de abajo), las condiciones eran relativamente lisas y uniformes; a los 10-30 cm (centro) es evidente una cierta granulidad; y a la llamada longitud de Planck, todavía unas 1.000 veces más pequeño (abajo), el espacio tiempo fluctúa violentamente.

 

La Gravedad de Einstein y la Cuántica de Planck… ¡No casan!

Los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían sido cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las condiciones iniciales del universo.

Observaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardos de años (entre 13 730 y 13 810 millones de años) y por lo menos … Sin embargo…

El universo estaba a 3.000° Hace doce mil quinientos millones de años; a 10 mil millones de grados (1010° K) un millón de años antes, y, tal vez, a 1028° K un par de millones más temprano. Pero, y antes de ese tiempo ¿qué pasaba? Los fósiles no faltan, pero no sabemos interpretarlos. Mientras más elevada se va haciendo la temperatura del universo primigenio, la situación se va complicando para los científicos. En la barrera fatídica de los 1033° K –la temperatura de Planck–, nada funciona. Nuestros actuales conocimientos de la física dejan de ser útiles. El comportamiento de la materia en estas condiciones tan extremas deja de estar a nuestro alcance de juicio. Peor aún, hasta nuestras nociones tradicionales pierden su valor. Es una barrera infranqueable para el saber de la física contemporánea. Por eso, lo que se suele decir cómo era el universo inicial en esos tempranos períodos, no deja de tener visos de especulación.

Los progresos que se han obtenido en física teórica se manifiestan a menudo en términos de síntesis de campos diferentes. Varios  son los ejemplos que de ello encontramos en diversos estudios especializados, que hablan de la unificación de las fuerzas fundamentales de la naturaleza.

En física se cuentan con dos grandes teorías de éxito: la cuántica y la teoría de la relatividad general.

Cada una de ellas ha demostrado ser muy eficiente en aplicaciones dentro de los límites de su ámbito propio. La teoría cuántica ha otorgado resultados más que satisfactorios en el estudio de las radiaciones, de los átomos y de sus interacciones. La ciencia contemporánea se presenta como un conjunto de teorías de campos, aplicables a tres de las grandes interacciones: electromagnética, nuclear fuerte, nuclear débil. Su poder predictivo es bastante elocuente, pero no universal. Esta teoría es, por ahora, incapaz de describir el comportamiento de partículas inmersas en un campo de gravedad intensa. Ahora, no sabemos si esos fallos se deben a un problema conceptual de fondo o falta de capacidad matemática para encontrar las ecuaciones precisas que permitan la estimación del comportamiento de las partículas en esos ambientes.

La teoría de la relatividad general, a la inversa, describe con gran precisión el efecto de los campos de gravedad sobre el comportamiento de la materia, pero no sabe explicar el ámbito de la mecánica cuántica. Ignora todo acerca de los campos y de la dualidad onda-partícula, y en ella el «vacío» es verdaderamente vacío, mientras que para la física cuántica hasta la «nada» es «algo»…

                  Nada está vacío, ya que, de donde surge es porque había

Claro está, que esas limitaciones representativas de ambas teorías no suelen tener mucha importancia práctica. Sin embargo, en algunos casos, esas limitantes se hacen sentir con agresividad frustrando a los físicos. Los primeros instantes del universo son el ejemplo más elocuente.

El científico investigador, al requerir estudiar la temperatura de Planck, se encuentra con un cuadro de densidades y gravedades extraordinariamente elevadas. ¿Cómo se comporta la materia en esas condiciones? Ambas teorías, no dicen mucho al respecto, y entran en serias contradicciones e incompatibilidades. De ahí la resistencia de estas dos teorías a unirse en una sólo teoría de Gravedad-Cuantíca, ya que, cada una de ellas reina en un universo diferente, el de lo muy grande y el de lo muy pequeño.

Todo se desenvuelve alrededor de la noción de localización. La teoría cuántica limita nuestra aptitud para asignar a los objetos una posición exacta. A cada partícula le impone un volumen mínimo de localización. La localización de un electrón, por ejemplo, sólo puede definirse alrededor de trescientos fermis (más o menos un centésimo de radio del átomo de hidrógeno). Ahora, si el objeto en cuestión es de una mayor contextura másica, más débiles son la dimensión de este volumen mínimo. Se puede localizar un protón en una esfera de un décimo de fermi, pero no mejor que eso. Para una pelota de ping-pong, la longitud correspondiente sería de unos 10-15 cm, o sea, bastante insignificante.La física cuántica, a toda partícula de masa m le asigna una longitud de onda Compton: lc = h / 2p mc

Por su parte, la relatividad general igualmente se focaliza en la problemática del lugar que ocupan los objetos. La gravedad que ejerce un cuerpo sobre sí mismo tiende a confinarlo en un espacio restringido. El caso límite es aquel del agujero negro, que posee un campo de gravedad tan intenso que, salvo la radiación térmica, nada, ni siquiera la luz, puede escapársele. La masa que lo constituye está, según esta teoría, irremediablemente confinada en su interior.

En lo que hemos inmediatamente descrito, es donde se visualizan las diferencias entre esos dos campos del conocimiento. Uno alocaliza, el otro localiza. En general, esta diferencia no presenta problemas: la física cuántica se interesa sobre todo en los microobjetos y la relatividad en los macroobjetos. Cada cual en su terreno.

Sin embargo, ambas teorías tienen una frontera común para entrar en dificultades. Se encuentran objetos teóricos de masa intermedia entre aquella de los microobjetos como los átomos y aquella de los macroobjetos como los astros: las partículas de Planck. Su masa es más o menos la de un grano de sal: 20 microgramos. Equivale a una energía de 1028 eV o, más aún, a una temperatura de 1033° K. Es la «temperatura de Planck».

Ahora bien, si queremos estimar cuál debería ser el radio en que se debe confinar la masita de sal para que se vuelva un agujero negro, con la relatividad general la respuesta que se logra encontrar es de que sería de 10-33 cm, o sea ¡una cien mil millonésima de mil millonésima de la dimensión del protón! Esta dimensión lleva el nombre de «radio de Planck». La densidad sería de ¡1094 g/cm3! De un objeto así, comprimido en un radio tan, pero tan diminuto, la relatividad general sólo nos señala que tampoco nada puede escapar de ahí. No es mucha la información.

Si recurrimos a la física cuántica para estimar cuál sería el radio mínimo de localización para un objeto semejante al granito de sal, la respuesta que encontramos es de un radio de 10-33 cm. Según esta teoría, en una hipotética experiencia se lo encontrará frecuentemente fuera de ese volumen. ¡Ambos discursos no son coincidentes! Se trata de discrepancias que necesitan ser conciliadas para poder progresar en el conocimiento del universo. ¿Se trata de entrar en procesos de revisión de ambas teoría, o será necesaria una absolutamente nueva? Interrogantes que solamente el devenir de la evolución de la física teórica las podrá responder en el futuro.

Dibujo20121227 SUSY particles - SM particles - in spanish

No sabemos por qué existen los fermiones y los bosones gauge que han sido observados en los experimentos. Todas las piezas del puzzle encajan a la perfección, pero la imagen mostrada en el puzzle no la han elegido las leyes físicas que conocemos, nos viene impuesta por la Naturaleza. Lo único que podemos decir es que la Naturaleza es así y nos gustaría saber el porqué, pero aún estamos muy lejos de descubrirlo (si es que es posible hacerlo sin recurrir a un principio antrópico).

De todas las maneras, en lo que se refiere a una Teoría cuántica de la Gravedad, tendremos que esperar a que se confirmen las teorías de supergravedad, supersimetría, cuerdas, la cuerda heterótica, supercuerdas y, la compendiada por Witten Teoría M. Aquí, en estas teorías (que dicen ser del futuro), sí que están apasiblemente unidas las dos irreconcialbles teorías: la cuántica y la relativista, no sólo no se rechazan ni emiten infinitos, sino que, se necesitan y complementan para formar un todo armónico y unificador.

¡Si pudiéramos verificarla!

Pero, contar con la energía de Planck (1019 GeV), no parece que, al menos de momento, no sea de este mundo. Ni todos los aceleradores de partículas del mundo unidos, podrían llegar a conformar una energía semejante.

emilio silvera