viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las estructuras fundamentales de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Las huellas del pasado    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                    Una molécula de Agua y otra de Amoníaco

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

http://www.nfcol.net/NEUROCOL_files/celula.jpg

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientpos.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera

¡Conocer la Naturaleza! Hoy sólo un sueño ¿Realidad mañana?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


“A partir de sus principios en Sumeria alrededor del 3500 a. C., en Mesopotamia, los pueblos del norte comenzaron a intentar registrar la observación del mundo con cuantitativos y numéricos sumamente cuidados. Pero sus observaciones y medidas aparentemente fueron tomadas con otros propósitos más que la ley científica. Un caso concreto es el del teorema de Pitágoras, que fue registrado, aparentemente en el siglo XVIII a. C.: la tabla mesopotámica Plimpton 322 registra un número de trillizos pitagóricos (3,4,5) (5,12,13)…., datado en el 1900 a. C., posiblemente milenios antes de Pitágoras,1 pero no era una formulación abstracta del teorema de Pitágoras.

Los avances significativos en el Antiguo Egipto son referentes a la astronomía, a las matemáticas y a la medicina.2 Su geometría era una consecuencia necesaria de la topografía, con el fin de intentar conservar la disposición y la propiedad de las tierras de labranza, que fueron inundadas año por el Nilo. La regla del triángulo rectángulo y otras reglas básicas sirvieron para representar estructuras rectilíneas, el pilar principal de la arquitectura dintelada egipcia. Egipto era el centro de la química y la investigación para la mayor del Mediterráneo.”

Nuevas paradigmas en la Física Moderna

Isabel Pérez Arellano y Róbinson Torres Villa, publicaron un artículo en 2009, sobre la física moderna y sus paradigmas y, comenzaban diciendo:


siempre el hombre ha intentado dar respuesta a los interrogantes más profundos que lo inquietan; preguntas que van desde ¿Quién soy?, ¿de dónde vengo? ¿y hacia dónde voy?, los intentos por explicar el origen y final universo en qué vive. Muchas son las prepuestas que se han dado a esos interrogantes, dependiendo de la corriente de pensamiento seguida por quien aborda esas preguntas; es así como se ven aproximaciones místicas, esotéricas, religiosas y científicas entre otras; pero todas con el objetivo de dilucidar alguna respuesta a esas preguntas fundamentales.

Desde el punto de vista científico y concretamente de la física moderna, se han planteado algunas explicaciones del universo en el que vivimos que algunas veces rozan con lo fantástico, dado el nivel de abstracción o especulación que llevan implícito, todo obviamente avalado por sofisticados modelos matemáticos que al parecer soportan las hipótesis planteadas.”

 

 

 

Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Por mencionar a un científico de nuestro tiempo, escojamos a E. Witten que está convencido de que la ciencia será algún día capaz de sondear las energías de Planck. Como ya he contado en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente 25 años.”

 

En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación.

Resultado de imagen de arthur eddington

El astrónomo arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas insistían en que todo debería ser verificado. El premio Nobel Paul dirac incluso llegó a decir de forma más categórica: “Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos , «Es sólo el optimista el que consigue algo en este mundo».

Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, decido según mis propios criterios y emito mi opinión de cómo es el mundo que, no obligatoriamente, coincidirá con alguna de esas opiniones, y que en algún caso, hasta difieren radicalmente.

Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, su “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas su explicación allí, en aquel lugar y tiempo donde se produjeron las mayores energías conocidas en nuestro Universo y que, nosotros, no podemos alcanzar -de momento-.

Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que podría ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar eco del Big Bang, una radiación de microondas que impregna el universo conocido.

         una onda, podemos detectar el eco del big bang

El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante. Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un , y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

                                  Podemos ver en plena oscuridad

Esta radiación, ¡cómo no!, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta clase de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura y, cuando regresamos para proseguir el camino… ¿quién es el guapo que entra?

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de este modo calentar gradualmente el planeta.

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió el punto en el que los átomos pudieron empezar a componerse; los electrones, entonces,  pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este , el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación. Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

Gráfica que muestra el espectro de cuerpo negro emitido por tres cuerpos a distinta temperatura (4500 K, 6000 K y 7500 K). El eje horizontal es la longitud …

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura es la mejor aproximación que se puede tener de él en la práctica. La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

Hablar, sin más especificaciones, de radiación, es estar refiriéndonos a una energía que viaja en de ondas electromagnéticas o fotones por el universo. nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

             Radiación y magnetismo presentes en todas partes

La radiación actínida es la electromagnética que es capaz de iniciar una reacción química. El término es usado especialmente la radiación ultravioleta que emiten las estrellas jóvenes y azuladas en las bellas nebulosas.

Muchos son los tipos conpocidos: Radiación blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotón, ultravioleta, de la teoría cuántica, de radiactividad… y, se puede ver, la radiación en sus diversas formas es un universo en sí misma.

El físico alemán Max Planck (1.858 – 1.947), responsable otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrón, Em, está dada por la ecuación que lleva su : Em = hf – Φ.

Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:

1.  escala de longitud ( 10-35 m ) veinte órdenes de magnitud menor que el tamaño del protón, de 10-15 m, es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.

2.    Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional.

La descripción de una partícula elemental de masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 14 TeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas.

Únicamente en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas . Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

Siempre, que puedo recordar, me llamó la atención los misterios y secretos encerrados en la naturaleza, y la innegable batalla mantenida a lo largo de la historia por los científicos para descubrirlos.

emilio silvera

Cada vez es menor la capacidad de asombrarnos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Sabemos del Universo que no sabemos cómo surgió, si está sólo o acompañado, si es cíclico y se reproduce una y otra vez, si cada vez que surge también viene acompañado por los mismos procesos que nos llevan hacia la vida…

La imagen de arriba tomada por el Telescopio Espacial  Hubble, fue cedida en su día por la NASA y, en ella, podemos contemplar la inmensidad de un Universo que no hemos llegado a conocer y, como nos pasa en tantas otras cuestiones, nos tenemos que conformar construyendo Modelos que nos aproximen a lo que pudo ser y que no reflejan, necesariamente, lo que fue.

Nuestro Sol, esa estrella mediana, amarilla del tipo  G2V que, nos calienta y hace posible que la vida en el planeta Tierra esté presente. Ese suceso de la vida consciente en un planeta idóneo para la evolución de la materia hacia niveles de impensables rendimientos como, de hecho, son las ideas y los pensamientos, nos llevan a pensar que, nuestro Universo, “parece” que tenía un plan predeterminado para nosotros. Bueno, al menos eso nos gusta pensar para sentirnos más importantes.

Sólo conocemos el Universo que nos ha dejado ver la luz, esa radiación electromagnética a la que es sensible el ojo humano, y, otras de ondas más cortas que mediante telescopios hemos podido captar, son las referencias visuales que del Universo tenemos y, hay que decir que, cuando podamos captar las ondas gravitatorias que emiten los Agujeros Negros, podremos ver un Universo nuevo.

Muchas son las maneras en las que hemos querido representar y “ver” a nuestro Universo. El concepto de un universo holográfico no es nada nuevo. Los sufíes del siglo XII llegaron a la conclusión de que “el macrocosmos es el microcosmos”. El Profeta egipcio Hermes Trismegisto dijo que la cuna de la comprensión universal es la clave y está en comprender que “el pequeño es como el grande”. Los alquimistas medievales tenían otro lema: “Como es arriba, es abajo”. Con el paso de los tiempos se han establecido unas claves para entender la realidad en que vivimo.

Claro que, para nosotros, no será fácil saber si, nuestra realidad, es la auténtica realidad del Universo. Estamos inmerso en nuestro “propio mundo”, el mundo de nuestros sentidos que nos hacen ver y sentir un universo propio, particular y supeditado a las potestades que dichos sentidos puedan tener… A partir de ahí… ¿Quién sabe?

¡Se dicen tantas cosas! ¡Nos cuentan tantas historias!

http://4.bp.blogspot.com/-c8LlQD5zrgk/UMeDw1UdHNI/AAAAAAAALX4/lAR0W6cg3iQ/s1600/telescopio_magallanes.jpg

Por ahí he podido leer que: “Hoy en día los superordenadores utilizan una técnica llamada “cuadrícula de cromodinámica cuántica, una técnica que funciona a partir de las leyes físicas que rigen el Universo, capaz de simular con cierto grado de éxito pequeñas porciones del mismo en una escala de una billonésima de metro, un poco más grande que el núcleo de un átomo.

Para los investigadores, con el tiempo las simulaciones más potentes serán capaces de modelar en la escala de una molécula, luego de una célula e incluso de un ser humano. Para ello dicen que deberán pasar varias generaciones de equipos cada vez más potentes, tanto, que podrían simular porciones del Universo lo suficientemente grandes como para entender las limitaciones a las que se verían sometidos los procesos físicos que conocemos. Estas limitaciones serían la prueba de que, como dice Bostrom, vivimos en una simulación informática.”

Con el paso del Tiempo, el Universo cambiará como todo lo demás

Lo único cierto es, que nadie sabe “la verdad” de en qué estamos inmersos y, sin embargo, todo el mundo habla y, como un profetas, nos dicen lo que fue, lo que es y hasta se atreven con lo que será… ¡Ilusos! De ilusión también se vive pero…, la cruda realidad vendrá de manos de la Naturaleza que, como debemos saber, siempre impone su ley.

Lo prudente es seguir avanzando y procurando desvelar “el saber del mundo”, y, mientras tanto, cuando queramos explicar alguna cosa decir: Por ejemplo, referido al átomo. Parece que el átomo se comporta como si, en su interior, tuviera protones y neutrones que, a su vez, pueden estar conformados por Quarks y, ese núcleo, parece estar rodeado por partículas denominadas electrones que hacen el conjunto atómico que. unidos, llegan a formar moléculas y estas la materia.

Spiral clocks and space time Stock Photo - 10279206Family tree, relatives Stock Photo - 5942701

Ni conocemos el reloj (para nosotros eterno) del Universo, ni tampoco conocemos ese árbol del que tanto hablamos, el de la vida que resulta ser algo que nosotros mismos representamos y que no podemos explicar. ¿Se habrá visto mayor paradoja?

Y si no estamos sólos, ¿por qué no están aquí? Bueno, seguramente por la misma razón por la que nosotros tampoco podemos estar allí. La Empresa nos sobrepasa y, seguramente, también a “ellos”, les viene grande. ¡Distancias inauditas! ¡Velocidades inalcanzables! ¡Tiempo de evolución de miles de millones de años! Todo eso junto, conforma la imposibilidad en la que nos encontramos de poder, estrechar la mano de esos seres que, como nosotros, pensarán en ese día que, cuando llegue (si es que llega), marcará un hito universal.

¡Los hemos imaginado de tantas maneras! Lo hemos intentado y continuamos en el empeño pero… Las cosas no serán fáciles para poder, algún día, decir que no estamos solos en el inmenso Universo.

Muchos antes que nosotros han intentado descubrir nuestro lugar en el mundo, los secretos que la Naturaleza esconde, el por qué el Universo nos muestra cosas que no siempre llegamos a comprender, y, seguimos intentando llegar a esa “verdad” que incansables perseguimos. Y, mientras tanto conseguimos saber donde estamos, de donde venimos y hacia donde vamos, seguimos enredados cuestiones tales como:

“La Paradoja de Olbers en acción. A medida que se consideran las estrellas situadas en capas y capas más lejanas a la Tierra el cielo debería verse más y más luminoso.”

 

http://3.bp.blogspot.com/-H3d5nIBnzBI/TvMB8jtquYI/AAAAAAAAG-4/6zHBb8dJt_E/s1600/La-foto-imposible-del-universo_gallery_lightbox.jpg

Sí, somos conscientes -al menos algunos- de nuestras limitaciones y, sabiendo eso, no cedemos en el empeño de saber, lo que el Universo es,  y,  de paso, si podemos captar algún dato esencial sobre nosotros… ¡mucho mejor!

Incluso tenemos dudas fundadas en saber, a ciencia cierta, en qué clase de universo estamos: ¿Es plano, es abierto, es cerrado? La cantidad de materia que contenga nuestro Universo, eso que llaman Omega y que determina la Densidad Crítica, dirá la última palabra sobre el tema para conocer cómo será el final que aguarda al inmenso universo.

Como las podemos observar, sí podemos explicar su evolución. Sin embargo, si alguien nos pregunta: ¿Cómo se formaron las galaxias? La única respuesta seria que podríamos dar sería… ¡No lo sabemos! Nadie ha podido dar una razón convincente de cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. ¿Qué había allí que generaba Gravedad y retenía la materia el tiempo suficiente para que se formaran? Nadie lo sabe. Sospecho que algo tiene que ver con eso… ¡la sustancia cósmica! o “materia primigenia” surgida en el universo en el primer momento de su existencia y que, aunque no la veámos, está dispersa por todas partes.

Lo que no podemos asegurar es que todos los pensamientos surgidos de las mentes humanas sean constructivos y, como tales, se encaminen en la dirección correcta de construir un mundo más justo y equitativo donde todos (que somos uno). tengan las mínimas posibilidades para vivir de manera digna sea cual fuere su procedencia o condición. La desigualdad en el mundo nos degrada como seres humanos que no han sabido alcanzar la meta de esa Ley no escrita pero que está en la mente de todos: Justicia, igualdad, equidad, y, bienestar para todos los seres del mundo.

Sin embargo, nadie puede negar que formamos parte del Universo. Somos, en realidad, la parte del Universo que puede pensar y generar ideas y pensamientos y… ¡hasta sentimientos! Lo cual, es algo tan inconmensurablemente grande que… ¿No sabemos en que podrá desembocar finalmente!.

¿A qué resultará que no somos tan insignificantes?

emilio silvera

Guardar

Siempre buscando la realidad de las cosas

Autor por Emilio Silvera    ~    Archivo Clasificado en La justa medida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Os acordais de la Mars Climater Orbiter? Allá por el mes de Septiembre de 1998, la NASA preparaba a bombo y platillo la gran noticia que sacudiría el “mundo”  de Prensa con una gran noticia. En breve (dijeron), saldría para el planeta Marte la nueva misión comocida como la Mars Climater Orbiter, diseñada para estudiar la atmósfera superior de Marte y, estaba acondicionada para poder enviarnos importantes sobre el clima y la atmósfera marciana. En lugar de ello, simplemente se estrelló contra la superficie marciana.

La distancia entre la nave espacial y la superficie del planeta Marte era de 96,6 kilómetros inferior de lo que pensaban los controladores de la misión, y 125 millones de dolares desaparecieron en el rojo polvo de la superficie Marte. La pérdida ya era suficientemente desastrosa, pero aún, hubo que morder más el polvo cuando se descubrió la causa: Lockheed-Martin, la empresa que controlaba el funcionamiento diario de la nave espacial, estaba enviando datos al control de la misión en unidades imperiales -millas, pies y libras de fuerza- mientras que el equipo de investigación de la NASA estaba suponiendo, como el resto del mundo científico internacional, que recibián las instrucciones en unidades métricas. La diferencia entre millas y kilómetros fue lo suficiente para desviar la nave unas 60 millas el curso previsto y llevarla a una órbita suicida hacia la suprficie marciana, en la que quedó chafada e inservible dando al traste, no ya con (que también) sino  con un montón de ilusionados componentes del equipo que esperaban grandes acontecimientos del Proyecto.

La lección que podemos obtener de catástrofe está muy clara:  ¡Las Unidades de medida son importantes!

                                                                             Unidades de medidas de peso

                                                                      Rústica unidades de medida de líquidos

Nuestros predecesores nos han  legado incontables unidades de medida de uso cotidiano que tendemos a utilizar en situaciones diferentes por razones de conveniencia. Compramos huevos por docenas, pujamos en la subasta en guineas, medimos las carreras de caballos en estadios, las profundidades oceánicas en brazas, el trigo en fanegas, el petróleo en barriles, la vida en y el peso de las piedras preciosas en quilates. Las explicaciones de todos los patrones de medida existentes en el pasado y en el presente llenan cientos de volúmenes.

Todo era plenamente satisfactorio mientras el comercio era local y sencillo. Pero cuando se inició el comercio internacional en tiempos antiguos, se empezaron a encontrar otras formas e contar. Las cantidades se median de diferente de un pais a otro y se necesitaban factores de conversión, igual que hoy cambiamos la moneda cuando viajamos al extranjero a un pais no comunitario. Esto cobró mayor importancia una vez que se inició la colaboración internacional de proyectos técnicos. La Ingenieria de precisión requiere una intercomparación de patrones exacta. Está muy bien decir a tus colaboradores en el otro lado del mundo que tienen que fabricar un componente de un avión que sea exactamente de un metro de longitud, pero ¿cómo sabes que su metro es el mismo que el tuyo?

                            No todas las medidas se regían por los mismos patrones

En origen, los patrones de medidas eran completamente locales y antropométricos. Las longitudes se derivaban de la longitud del brazo del rey o de la palma de la mano. Las distancias reflejaban el recorrido de un día de viaje. El Tiempo segúi las variaciones astronómicas de la Tierra y la Luna. Los pesos eran cantidades convenientes que podían llevarse en la mano o a la espalda.

Muchas de esas medidas fueron sabiamente escogidas y aún siguen con nostros hoy a pesar de la ubicuidad oficial del sistema decimal. Ninguna es sacrosanta. una está diseñada por conveniencia en circunstancias concretas.Muchas medidas de distancia se derivan antropomórficamente de las dimensiones de la anatomía humana:

El “pie” es la unidad más obvia dentro de esta categoría. Otras ya no resultan tan familiares. La “yarda” era la longitud de una cinta tendida desde la punta de la nariz de un hombre a la punta del dedo más lejano de su brazo cuando se extendía horizontalmente un lado. El “codo” era la distancia del codo de un hombre a la punta del dedo más lejano de su mano estirada, y varía entre los 44 y los 64 cm (unas 17 y 25 pulgadas) en las diferentes culturas antiguas que lo utilizaban.

La unidad náutica de longitud, la “braza” era la mayor unidad de distanciadefinida a partir de la anatomóa humana, y se definía como la máxima distancia las puntas de los dedos de un hombre con los brazos abiertos en cruz.

El movimiento de Mercaderes y Comerciantes por la región mediterránea en tiempos antiguos habría puesto de manifiesto las diferentes medidas de una misma distancia anatómica. Esto habría hecho difícil mantener cualquier conjunto único de unidades. la tradición y los hábitos nacionales era una poderosa fuerza que se resistía a la adopción de patrones extranjeros.

El problema más evidente de tales unidades es la existencia de hombres y mujeres de diferentes tamaños. ¿A quién se mide patrón? El rey o la reina son los candidatos obvios. Claro que, había que recalibrar cada vez que, el titular del trono cambiaba por diversos motivos.

http://www.culturaclasica.com/cultura/statera.jpg

La depuración de patrones de  medidas comenzó de decisiva en Francia en la época de la Revolución Francesa, a finales del siglo XVIII. La introducción de nuevos pesos y medidas conlleva una cierta comvulsión en la Sociedad y raramente es recibida con entusiamo por el pueblo.  Así, dos años más tarde, se introdujo el “metro” como patrón de longitud, definido como la diezmillonésima de un cuadrante de meridiano terrestre. Aunque esta es una forma plausible de identificar un patrón de longitud, es evidente que no resulta práctica a efectos de comparación cotidiana. Consecuentemente, en 1795 las unidades fueron referidas directamente a objetos hechos de forma especial.

 

    Siempre hemos tratado de medirlo todo, hasta las distancias que nos separan de las estrellas

Sí, siempre hemos tenido que medirlo todo. Al principio, unidad de masa se tomó el gramo, definido como la masa de un centímetro cúbico de agua a cero grados centígrados. Más tarde fue sustituido por el kilogramo (mil gramos), definido como la masa de mil centímetos cúbicos de agua… Finalmente, en 1799 se construyó una barra de metro prototipo junto con una masa kilogramo patrón, que fueron depositadas en los Archivos de la nueva República Francesa. Incluso hoy, la masa kilogramo de referencia se conoce como el “Kilogramme des Archives”.

Contar la historia aquí de todas las vicisitudes por las que han pasado los patrones de pesos y medidas en todos los paises, sería demasiado largo y tedioso. Sabemos que en Francia, en 1870, cuando se creo y reunió por primera vez en Paris la Comisión Internacional del Metro, con el fin de coordinar los patrones y supervisar la construcción de nuevas masas y longitudes patrón. El Kilogramo era la masa de un cilindro especial, de 39 milímetros de altura y de diámetro, hecho de una aleación de platino e iridio, protegido bajo tres campanas de cristal y guardado en una cámara de la Oficina Internacional de Patrones en Sèvres, cerca de Paris. Su definición es simple:

El kilogrtamo es la unidad de masa: es igual a la masa del prototipo internacional del kilogramo.

tendencia hacia la estándarización vio el establecimiento de unidades científicas de medidas. Como resultado medimos habitualmente las longitudes, masas y tiempos en múltiplos de metro, kilográmo y segundos. Cada unidad da una cantidad familiar fácil de imaginar: un metro de tela, un kilogramo de patatas. esta conveniencia de tamaño testimonia inmediatamente su pedigrí antropocéntrico. Pero sus ventajas también se hacen patentes cuando empezamos a utilizar dichas unidades para describir cantidades que corresponden a una escala superior o inferior a la humana:

Los átomos son diez millones de veces más pequeños que un metro. El Sol una masa de más de 1030 kilogramos. Y, de esa manera, los humanos hemos ido avanzando en la creación, odeando patrones todos y, no digamos en la medida de las distancias astronómicas en las que, el año-luz, la Unidad Astronómica, el Parsec, el Kiloparsec o el Megaparsec nos permiten medir las distancias de galaxias muy lejanas.

Lo que decimos siempre: Nuestra curiosidad nunca dejará de querer saber el por qué de las cosas y, siempre tratará de racionalizarlo todo para hacernos fácil nuestras interacciones con el mundo que nos rodea. Y, aunque algunas cosas al principio nos puedan parecer mágicas e ilusorias, finalmente, si nuestras mentes la pensaron… ¡Pueden llegar a convertirse en realidad!

emilio silvera

¿Cómo será esa primera Colonia de Humanos en Marte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia futura    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

National Geographic recrea en televisión la primera colonia humana en Marte

 

La serie consta de seis capítulos

Planeta Marte misión espacial NASA.

 

 

El viento ha esculpido las características que llamamos “yardangs”, uno de los muchos en esta escena. | Foto por NASA

Por EFE

Año 2033. La nave espacial Daedalus aterriza en Marte con seis astronautas a bordo. Su misión: instalar la primera colonia permanente en el planeta rojo en la ciudad de Olympus. Una futurista aventura que será relatada por el canal National Geographic en un documental, que se estrenará en otoño.

En él se mezclarán escenas de ficción que recrean la vida de los astronautas en Marte con explicaciones de conocidos científicos sobre la posibilidades reales de llevar a cabo una misión así.

National Geographic recrea en televisión la primera colonia humana en Marte

Bajo la dirección del mexicano Everardo Gout, conocido por su película “Días de Gracia” (2011), la serie de seis capítulos mostrará qué condiciones esperan a los futuros colonizadores del planeta y las posibilidades de que su misión tenga éxito.

Entre los actores que participan en el proyecto están el hispano-argentino Alberto Ammann, que interpreta a un hidrólogo mexicano; la rumana Annamaria Marinca, que da vida a una geóloga rusa, y la francesa Clementine Poidatz, en el papel de una psicóloga.

National Geographic asegura que esta serie es la mayor producción nunca hecha por el canal.

Intercaladas en las escenas dramáticas en las que se muestra cómo sería la vida de los astronautas, distintos expertos explicarán desde un punto de vista científico lo que sucede o podría suceder con los humanos y su misión en Marte.

Los seis pioneros, procedentes según el guión de EEUU, México, Nigeria, Rusia y Francia, tendrán que afrontar a lo largo de la serie problemas como la escasez de alimentos, los peligros de un incendio en su base o una tormenta marciana.

Para rodar las escenas que suceden en el planeta rojo se usaron localizaciones en el desierto en Marruecos, pero también se han grabado en estudios en Budapest y se ha recurrido al uso de imágenes generadas por ordenador.

“Hay mucho CGI” (imagen generada por computadora), explica Russel Dogson, director de efectos especiales de la serie, a un reducido número de medios, entre ellos Efe, durante el rodaje en el estudio Origo de la capital húngara.

Dogson explica que uno de los retos más complicados a los que se han enfrentado es la recreación de una tormenta marciana que se acerca.
“También el aterrizaje de la nave fue sorprendentemente difícil, ya que teníamos que tener en cuenta las diferencias de gravedad y presión, fue muy difícil mostrar eso. En general, la gravedad fue un reto”, añade.

Otra de las complicaciones fue la recreación digital de la enorme cueva donde la tripulación crea la colonia de Olympus, cuenta Dogson.

 

 

Las imágenes recién liberadas por la NASA, fueron tomadas el 18 de diciembre, que era día marciano 1,197a del Curiosity en funcionamiento.

En una de las naves más grandes del estudio se han instalado partes de la ciudad, compuesta de una serie de módulos en forma de burbujas y donde los astronautas pueden sobrevivir mientras buscan soluciones a problemas como extraer agua del hielo marciano.

Todo en la ciudad diseñada para la serie responde al principio de eficacia y sencillez, desde el laboratorio al hospital y el comedor y los espacios comunes.

Uno de los espacios más llamativos es el invernadero, donde no sólo se realizan, según el guión, experimentos, sino que es también importante del punto de vista de la supervivencia y la producción de comida.

En las mesas de la cocina, diseñadas con un estilo retro, se pueden ven los restos del desayuno, cereales y café, que han tomado los astronautas en una de las escenas.

Como toque de humor, en una de las mesas hay un ejemplar del libro “Guía del autoestopista galáctico”, olvidado ahí por uno de los astronautas.

El vestuario es muy sencillo, diseños rectos en colores grises y negros, siguiendo la previsión de que “en el futuro todo será más simple” que defiende la responsable de la ropa, la italiana Daniela Ciancio.

Los actores tienen que llevar el traje espacial con un pesado casco en varias escenas, aunque la diseñadora asegura que ha hecho todo lo posible por “hacer más fácil la vida de los actores”.

La serie será presentada en otoño en 171 países y doblada a 44 idiomas.