Dic
5
El futuro ya está con nosotros
por Emilio Silvera ~ Clasificado en El libre pensamiento ~ Comments (0)
Ray Kurzweil
Director de ingeniería de Google, experto en inteligencia artificial
“EN 20 AÑOS AMPLIAREMOS NUESTRA EXPECTATIVA DE VIDA INDEFINIDAMENTE”
Alcanzar el puesto de director de Ingeniería en Google, tener un puñado de importantes patentes tecnológicas registradas a tu nombre, ser doctor honoris causa por 15 universidades, o que Forbes te defina como “la máquina de pensar suprema”, debería ser suficiente para sentirse satisfecho. A no ser que se quiera más. Mucho más. Que el objetivo de tu vida sea alcanzar la inmortalidad. Literalmente, no en el plano metafórico. Y esa es precisamente la aspiración de Ray Kurzweil quien, a sus 67 años, continúa pleno de actividad y con la misma energía que cuando creo su primer programa de ordenador en 1963.
Escucharle afirmar con vehemencia que la suya es la última generación que deberá cuidarse a la vieja usanza porque en diez años seremos capaces de revertir los efectos de la edad y mantenernos jóvenes eternamente, resultaría poco menos que increíble si sus predicciones anteriores no le otorgaran, cuanto menos, el beneficio de la duda. Además de un ingeniero brillante, un extraordinario inventor (fue el creador del primer OCR, del primer escáner para ordenador y del primer sintetizador de texto a voz) y un músico pionero (su trabajo con Stevie Wonder se tradujo en un sintetizador capaz de reproducir los sonidos de cualquier instrumento de forma fidedigna), Kurzweil es un reconocido futurista. O, lo que es lo mismo, un teórico de los caminos que seguirá en los próximos años el ser humano en su relación con la tecnología. Sus ideas han sido plasmadas en tres libros La era de las máquinas inteligentes, La era de las máquinas espirituales y La singularidad está cerca, en los que aventura cómo será el desarrollo tecnológico en un futuro (incluso tan lejano como el 2099) y qué influencia tendrá en nuestras vidas. Alguna de las predicciones realizadas en su primera obra, publicada en 1990, como el crecimiento exponencial de Internet, resultaron ciertas, por lo que cuando Kurzweil habla lo mejor es escucharle atentamente.
No está lejos entonces el día en que seamos capaces de hacer una copia de seguridad de nuestro cerebro y subirla a la nube, o que podamos crear un avatar prácticamente idéntico de alguien ya fallecido. Así de radical es Kurzweil en sus ideas: no sólo quiere conseguir la inmortalidad, sino que se atreve a resucitar a los muertos.
Fuente: Reportaje de Prensa.
Dic
4
Nuestra percepción y la realidad: Dos cosas distintas
por Emilio Silvera ~ Clasificado en El Universo de la Conciencia ~ Comments (2)
No todos vemos el mundo de la misma manera
Nuestra realidad es la que cada uno de nosotros percibimos, entendemos y actuamos de manera diferente en la vida. Cada uno poseemos nuestra propia realidad del mundo y de nosotros mismos. Estamos construidos a base de creencias, y esas creencias son las que influyen de manera decisiva en nuestra realidad y en nuestra conducta, por lo tanto, son las culpables de que consigamos o no nuestros objetivos. Básicamente nuestra realidad está formada por nuestras creencias. Tenemos un concepto general de las cosas normales y cotidianas del mundo que nos rodea pero, en nosotos existe ese otro mundo interior que habita en nuestras Mentes y que, en nada se parecen a otros mundos que otros puedan imaginar.,
“Nuestra tarea más urgente es dejar de identificarnos con el pensamiento, dejar de estar poseídos por él” Eso nos aconseja Eckhart Tolle, y, no siempre resulta ser de esa manera, Hay ocasiones en la que, nuestros pensamientos son la guía que nos pueden llevar al buen destino, y, si lo que dice (que no lo aclara) está referido a los pensamientos de los otros, simplemente se trata de discernir dónde radica la verdad, en lo que nos dicen o en lo que nosotros creemos. Claro que, no todos creen siempre en lo correcto.
Lo cierto es que, la única realidad vendrá de los descubrimientos que son desvelados y nos muestran los secretos d ela Naturaleza.
Nosotros los humanos, nunca estamos seguros de nada y, buscando esa seguridad, creamos modelos con los que tratamos de acercarmos más y más a esa realidad que presentimos, y, para ello, encontramos las maneras de aproximarnos a esa realidad “presentida”.
Pero vayamos a algo concreto y pensemos, por ejemplo, en la técnica reiterativa que se utiliza para obtener “soluciones” en casos como el problema de los tres cuerpos (por ejemplo) tiene un inconveniente. A veces no funciona, no siempre podemos decir a priori si va a funcionar o no. La técnica que se aplica para “resolver” las ecuaciones diferenciales pertinentes (recordemos que no se pueden resolver analíticamente) implica realizar aproximaciones sucesivas, en las cuales, como es sabido, el primer paso del proceso de cálculo sólo da una solución aproximada; el segundo paso añade (con un poco de suerte) una correccción para obtener una aproximación más precisa de la realidad; el tercer paso nos da una aproximación aún mejor, y así sucesivamente hasta que nos parezca que la aproximación es lo suficientemente buena para el objetivo que nos hayamos propuesto. Pero nunca podremos conseguir con exactitud la “respuesta” que encaja a la perfección con el comportamiento de los objetos del mundo real en lo que se centra nuestro interés en ese determinado momento y sobre ese objetivo en particular.
Ninguna idea nos ha llegado de manera instantánea y depurada en todos sus conceptos, sino que, han sido ideas que han tenido que ir siendo depuradas más y más a conseguir esa realidad que buscábamos haciendo que, el esquema encontrado, se parezca lo más posible al mundo que nos rodea y que podemos observar. Esa es, en pocas palabras la historia de la Relatividad de Einstein que ajunto muchas ideas y conceptos para conseguir sus teorías que están muy cercas de lo que el mundo es.
Lo que hacemos es sumar una serie de números -en principio, una serie de números infinitamente larga- A los matemáticos les interesa estas series infinitas para sus propios objetivos, independientemente de la importancia quer puedan tener para los estudios del comportamiento de las cosas tales como los planetas que orbitan alrededor del Sol, y conocen una gran cantidad de series infinitas cuyas sumas se comportan lo suficientemente bien como para ofrecer una aproximación cada vez mejor de un número concreto.
En esta aproximación muestra la prueba de texturizado del modelo 3D finalmente seleccionado.
Un buen ejemplo lo constituye uno de los procedimientos que se utilizan habitualmente para calcular el valor aproximado de π, el cociente entre la circunferencia de un círculo y su diámetro. Se puede calcular realmente el valor de π/4, con tanta precisión como se desee, sumando la serie numérica:
1 – 1/3 + 1/5 – 1/7 ….
Esto nos da una primera aproximación del valor de π que sería (4 x 1), que no es muy brillante; una segunda aproximación cuyo valor sería 2,6666… (4 x 2/3), que es algo mejor, y que, curiosamente, se encuentra al otro lado de la respuesta «correcta»; una tercera aproximación que sería 3,46666…, y así sucesivamente. Estas aproximaciones van siendo cada vez mejores y convergen en el verdadero valor de π, en este caso concreto desde ambos lados. Pero el proceso es tedioso -la suma del primer millón de términos de la serie nos da para pi (π) un valor de 3,1415937, que sólo es correcto en sus cinco primeras cinco cifras decimales, Ni obstante, se puede calcular π de este modo hasta el grado de precisión que se desee (hasta alguna cifra de los decimales), si tienes la paciencia necesaria.
Hacemos una parada aquí para dejar una nota que nos dice que independiente de cualquier otra consdideración, lo cierto es que, en matemáticas y la teoría del caos y entre otros temas. Si hablamos de Pi mos topamos con múltiples sorpresas y él está representado en el diseño de la doble espiral de ADN el Efecto mariposa y la Torah, entre otras muchísimas cosas que se escriben con Pi. Es un número misterioso que lo podemos ver por todas partes reopresentado de una u otra manera. Desde la más remota antigüedad, fascinó a los más grandes pensadores.
No pocos están convencisos de la existencia de patrones que se repiten en los distintos órdenes de la vida. Descubrirlos implicaría, nada más y nada menos, que deducir el mundo. Yo no dejaría de lado, en todo esto la Teoría del Caos que podría definirse (¡en forma muy simplona!) como el estudio de sistemas complejos siempre cambiantes. Los resultados que consideramos ´impredecibles´ ocurrirán en sistemas que son sensibles a los cambios pequeños en sus condiciones iniciales. El ejemplo más común es conocido como “el efecto mariposa” “. La teoría supone que el batir de alas de una mariposa en la China durante un determinado período de tiempo podría causar cambios atmosféricos imperceptibles en el clima de New York.
Pi es la decimosexta letra del alfabeto griego y el símbolo que representa el misterio matemático más viejo del mundo: la proporción de la circunferencia de un círculo a su diámetro.
El registro escrito conocido más temprano de la proporción viene del año 1650 antes de Cristo en Egipto, donde un escriba calculó el valor como 3.16 (con un pequeñísimo error). Aunque ahora, nosotros tenemos métodos para calcular los dígitos de pi (3.1415…) sus restos de valor exacto todavía son un misterio.
Desde 1794, cuando se estableció que Pi era irracional e infinita, las personas han estado buscando un patrón en el cordón interminable de números.
Cosa curiosa, Pi puede encontrarse por todas partes, en la astronomía, en la física, en la luz, en el sonido, en el suelo, etc. Algunos cálculos advierten que tendría más de 51 mil millones de dígitos, pero hasta el momento no se ha detectado un patrón discernible que surja de sus números. De hecho, la primera sucesión 123456789 aparece recién cerca de los 500 millones de dígitos en la proporción.
En la actualidad hay algunas computadoras superpoderosas tratando de resolver la cuestión. En el film, la computadora bautizada por Max como Euclid literalmente “estalla” al acercarse a la verdad del cálculo. ¿Y entonces?… Azar, fe, creencias, ciencia, métodos…y siempre un misterio último sin resolver.
¿El hallazgo de patrones será la respuesta? Tal vez por eso los pitagóricos amaban la forma/patrón espiral… porque ella está por todas partes en la naturaleza: en los caracoles, en los cuernos del carnero, en las volutas de humo, en la leche sobre el café, en la cara de un girasol, en las huellas digitales, en el ADN y en la Vía Láctea.
3.1415926535897932384626433832795028841971693993…
Sí, son muchas las mentes más claras que se han interesado por este fascinante número π. En su libro de 1989 “La nueva mente del emperador”, Roger Penrose comentó sobre las limitaciones en el conocimiento humano con un sorprendente ejemplo: Él conjeturó que nunca más probable es saber si una cadena de 10 7s consecutivo aparece en la expansión digital del número pi . A tan sólo 8 años más tarde, Yasumasa Kanada utiliza una computadora para encontrar exactamente esa cadena, empezando por el dígito de pi …. 17387594880th
Sin embargo, al final, algunos creen que, como todo esta relacionado, sabremos reconocer el mensaje que trata de enviarnos π y que, hasta el momento no hemos sabido comprender. Y, por otra parte, existen otras cuestiones que también estamos tratandode dilucidar para aproximarnos a esa realidad incomprendida que, estándo aquí, no podemos ver. Por ejmplo:
Roger Penrose dedicó bastante más tinta en defender los argumentos de Shadows of Mind que en escribir dicha obra. En una de sus contrarréplicas, publicada en la revista Psyche (Enero, 1996), nos ofrece una de las versiones más claras de su famoso argumento.
Supongamos que todos los métodos de razonamiento matemático humanamente asequibles válidos para la demostración de cualquier tesis están contenidos en el conjunto F. Es más, en F no sólo introducimos lo que entenderíamos como lógica matemática (axiomas y reglas de inferencia) sino todo lo matemáticamente posible para tener un modelo matemático del cerebro que utiliza esa lógica (todos los algoritmos necesarios para simular un cerebro). F es, entonces, el modelo soñado por cualquier ingeniero de AI: un modelo del cerebro y su capacidad para realizar todo cálculo lógico imaginable para el hombre. Y, precisamente, ese es el modelo soñado porque la AI Fuerte piensa que eso es un ser humano inteligente. Así, cabe preguntarse: ¿Soy F? Y parece que todos contestaríamos, a priori, que sí.
¿Es la verdad inalcanzable?
Sin embargo, Roger Penrose, piensa que no, y para demostrarlo utiliza el celebérrimo teorema de Gödel, que venimos a recordar a muy grosso modo: un sistema axiomático es incompleto si contiene enunciados que el sistema no puede demostrar ni refutar (en lógica se llaman enunciados indecidibles). Según el teorema de incompletitud, todo sistema axiomático consistente y recursivo para la aritmética tiene enunciados indecidibles. Concretamente, si los axiomas del sistema son verdaderos, puede exhibirse un enunciado verdadero y no decidible dentro del sistema.
Si yo soy F, como soy un conjunto de algoritmos (basados en sistemas axiomáticos consistentes y recursivos), contendré algún teorema (proposiciones que se infieren de los axiomas de mi sistema) que es indecidible. Los seres humanos nos damos cuenta, somos conscientes de que ese teorema es indecidible. De repente nos encontraríamos con algo dentro de nosotros mismos con lo que no sabríamos qué hacer. Pero en esto hay una contradicción con ser F, porque F, al ser un conjunto de algoritmos, no sería capaz de demostrar la indecibilidad de ninguno de sus teoremas por lo dicho por Gödel… Una máquina nunca podría darse cuenta de que está ante un teorema indecidible. Ergo, si nosotros somos capaces de descubrir teoremas indecidibles es porque, algunas veces, actuamos mediante algo diferente a un algoritmo: no sólo somos lógica matemática.
Claro que, cómo podría un robot imitar nuestros múltiples, locos y dispares pensamientos:
- Los Computadores nunca podrán reemplazar la estupidez humana.
- El hombre nace ignorante, la educación lo idiotiza.
- Una persona inteligente resuelve problemas, el genio los evita.
- Las mujeres consideran que guardar un secreto, es no revelar la fuente.
- Todas las mujeres tienen algo bonito… así sea una prima lejana.
- La felicidad es una lata de atún, pero con el abrelatas un poco distante.
- El único animal que no resiste aplausos es el mosquito.
- El amor está en el cerebro, no en el corazón.
- Definición de nostalgia “es la alegría de estar triste”.
- “Mi segundo órgano favorito es el cerebro”.
Vale, ¿y qué consecuencias tiene eso? Para la AI muy graves. Penrose piensa no sólo que no somos computadores sino que ni siquiera podemos tener un computador que pueda simular matemáticamente nuestros procesos mentales. Con esto Penrose no está diciendo que en múltiples ocasiones no utilicemos algoritmos (o no seamos algoritmos) cuando pensemos, sólo dice (lo cual es más que suficiente) que, habrá al menos algunas ocasiones, en las que no utilizamos algoritmos o, dicho de otro modo, hay algún componente en nuestra mente del cual no podemos hacer un modelo matemático, qué menos que replicarlo computacionalmente en un ordenador.
Además el asunto se hace más curioso cuanto más te adentras en él. ¿Cuáles podrían ser esos elementos no computables de nuestra mente? La respuesta ha de ser un rotundo no tenemos ni idea, porque no hay forma alguna de crear un método matemático para saber qué elementos de un sistema serán los indecidibles. Esto lo explicaba muy bien Turing con el famoso problema de la parada: si tenemos un ordenador que está procesando un problema matemático y vemos que no se para, es decir, que tarda un tiempo en resolverlo, no hay manera de saber si llegará un momento en el que se parará o si seguirá eternamente funcionando (y tendremos que darle al reset para que termine). Si programamos una máquina para que vaya sacando decimales a pi, no hay forma de saber si pi tiene una cantidad de decimales tal que nuestra máquina tardará una semana, seis meses o millones de años en sacarlos todos o si los decimales de pi son infinitos. De esta misma forma, no podemos saber, por definición, qué elementos de nuestra mente son no computables. A pesar de ello, Penrose insiste en que lo no computable en nuestra mente es, nada más y nada menos, que la conciencia, ya que, explica él, mediante ella percibimos la indecibilidad de los teoremas. Es posible, ya que, aunque a priori no pudiéramos saber qué elementos no son decidibles, podríamos encontrarnos casualmente con alguno de ellos y podría ser que fuera la conciencia. Pero, ¿cómo es posible que nuestro cerebro genere conciencia siendo el cerebro algo aparentemente sujeto a computación? Penrose tiene que irse al mundo cuántico, en el que casi todo lo extraño sucede, para encontrar fenómenos no modelizables por las matemáticas y, de paso, resolver el problema del origen físico de la conciencia.
Las neuronas no nos valen. Son demasiado grandes y pueden ser modelizadas por la mecánica clásica. Hace falta algo más pequeño, algo que, por su naturaleza, exprese la incomputabilidad de la conciencia. Penrose se fija en el citoesqueleto de las neuronas formado por unas estructuras llamadas microtúbulos. Este micronivel está empapado de fenómenos cuánticos no computables, siendo el funcionamiento a nivel neuronal, si acaso, una sombra amplificadora suya, un reflejo de la auténtica actividad generadora de conciencia. ¡Qué emocionante! Pero, ¿cómo generan estos microtúbulos empapados de efectos cuánticos la conciencia? Penrose dice que no lo sabe, que ya bastante ha dicho…
O sea señor Penrose, que después de todo el camino hecho, al final, estamos cómo al principio: no tenemos ni idea de qué es lo que genera la conciencia. Sólo hemos cambiado el problema de lugar. Si antes nos preguntábamos cómo cien mil millones de neuronas generaban conciencia, ahora nos preguntamos cómo los efectos cuánticos no computables generan conciencia. Penrose dice que habrá que esperar a que la mecánica cuántica se desarrolle más. Crick o Searle nos dicen que habrá que esperar a ver lo que nos dice la neurología… ¡Pero yo no puedo esperar!
Además, ¿no parece extraño que la conciencia tenga algo que ver con el citoesqueleto de las neuronas? La función del citoesqueleto celular suele ser sustentar la célula, hacerla estable en su locomoción… ¿qué tendrá que ver eso con ser consciente? Claro que en el estado actual de la ciencia igual podría decirse: ¿qué tendrá que ver la actividad eléctrica de cien mil millones de neuronas con que yo sienta que me duele una muela?
Todo eso está bien pero, ¿Qué es PI?
Es mucho más que todo eso
“Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo”.
Dic
4
Inteligencia artificial: ¿esperanza o amenaza?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
-
Hace tiempo llegó a los cines ‘Ex machina’, una película de ciencia ficción que imagina la creación futura de una máquina que piensa y siente como un ser humano
-
Murray Shanahan, el científico que ha asesorado el guión del filme, cree que los robots serán ‘amigables’ y harán que nuestras vidas sean más fáciles
Exmachina
Ava acaricia una máscara humana buscando respuestas. Ava reviste sus brazos, sus piernas y sus glúteos mecánicos con una segunda piel que le hace parecerse a nosotros. Ava es un prodigioso robot con conciencia que ha sido capaz de seducir a un extraño y que ahora se deja llevar por un impulso vital: escapar. Por méritos propios y ajenos, Ava se ha ganado a pulso un lugar en el olimpo de los seres de inteligencia artificial creados por el cine, junto al Hal de 2001 o a los replicantes de Blade Runner. La fascinante mujer-robot de Ex Machina, interpretada por Alicia Vikander, deja en el aire una serie de inquietantes preguntas que seguirán resonando en nuestro cerebro humano al cabo de los días.
¿La Inteligencia Artificial (AI) es una esperanza o una amenaza? ¿Cuánto falta exactamente para la llegada de ese momento bautizado como la singularidad? ¿Y qué ocurrirá cuando las máquinas conscientes sean más inteligentes que los hombres? ¿Quién nos protegerá de ellas? ¿Cómo se protegerán ellas de nosotros?
«No he intentado hacer una película paranoica al estilo Terminator», se defiende el director Alex Garland, que dio la campanada a los 26 años con la novela La Playa y cayó en las garras del cine cuando Danny Boyle la llevó a la pantalla grande. Ni si siquiera es un filme anti-Inteligencia Artificial, más bien lo contrario».
El estreno de la película, en los cines españoles, ha coincidido con el llamamiento mundial de algunas de las mentes más lúcidas del planeta -entre ellas, la del físico Stephen Hawking y la del emprendedor Elon Musk– advirtiendo sobre los riesgos de la Inteligencia Artificial. La carta, firmada por decenas de científicos y auspiciada por el Future of Life Institute, sostiene que la tecnología se está acercando a una peligrosa encrucijada que nos puede hacer «prosperar como nunca antes o llevarnos de cabeza a «la autodestrucción».
«El desarrollo completo de la inteligencia artificial podría significar el fin de la especie humana», advirtió Hawking hace apenas tres meses, en el momento de estrenar su nueva silla inteligente. Elon Musk, el fundador de Tesla y SpaceX, ha ido aún más allá y asegura que el desarrollo incontrolado de la AI sería más o menos como «invocar al diablo».
Otro de los destacados firmante del manifiesto es el filósofo sueco Nick Bostrom, autor del ensayo Superinteligencia: «El hombre es la mayor amenaza para el hombre. Estamos ante el mayor proceso transformativo de la humanidad, el que tal vez nos abra las puertas al poshumanismo. Pero las mismas tecnologías que nos van a posibilitar ese salto entrañan también grandes riesgos. En cierto modo, somos como bebés jugando con explosivos».
«Mi posición sobre el tema es muy simple: no veo nada de problemático en el hecho de crear una máquina consciente», se defiende el director de Ex Machina Alex Garland. «Y no veo la razón por la que deberíamos oponernos a su existencia. Muchas de las películas se aproximan al tema desde una posición de miedo; yo he decidido hacerlo desde una actitud de admiración y esperanza».
Para hacer más creíble su película, ubicada en un futuro que parece inminente, Garland se ha rodeado de un equipo científico de primera, con el profesor de Robótica Cognitiva Murray Shanahan (del Imperial College) y con el experto en genética y reconocido divulgador Adam Rutherford en primera fila.
«Comparto las preocupaciones de algunos científicos, pero los medios se han dejado llevar por el sensacionalismo», asegura Shanahan. «Lo que frecuentemente se deja de lado es la cuestión fundamental del tiempo y las incertidumbres que siguen habiendo en el camino. No estamos a punto de conseguir un nivel de inteligencia artificial como el que vemos en las películas de ciencia ficción, incluida ésta. Nuestros robots son aún muy primitivos comparados con Ava. Estamos probablemente aún a varias décadas de distancia».
«Es fácil caer en el alarmismo», reconoce, sin embargo, Shanahan. «Aunque creo que sí ha llegado el momento de abrir el debate sobre los riesgos de esta tecnología, y de formularnos preguntas como: ¿queremos que sean los gobiernos quienes controlen estas criaturas o lo dejamos en manos de compañías privadas? Yo en el fondo soy optimista y creo que seremos capaces de desarrollar una tecnología amigable que mejorará nuestras vidas. Tenemos mucho tiempo por delante para abordar la cuestión de la seguridad».
En Ex Machina, el futuro parece, sin embargo, sospechosamente cercano. Una compañía todopoderosa, BlueBlook, ha suplantado a Google como el Gran Hermano de las búsquedas en Internet. Y su artífice es un geek multimillonario llamado Nathan (Oscar Isaac), que vive recluido en un paraje remoto y nórdico, a la busca del santo grial de la Inteligencia Artificial. «Uno de los elementos más reales es el papel que los gigantes de Internet pueden tener en el control del futuro de la inteligencia artificial», advierte el científico Adam Rutherford.
«Debemos permanecer vigilantes a lo que está ocurriendo con la inteligencia artificial y sobre todo vigilar de dónde viene el dinero y cuáles son las motivaciones», declara Rutherford. «Al fin y al cabo, lo que están haciendo ahora Google y Facebook es cosechar datos, y no sabemos aún a dónde nos llevará todo esto». En cualquier caso, este experto comparte el optimismo sobre el futuro de la AI y recalca que una de las virtudes de Ex Machina es precisamente darle la vuelta a la cuestión moral: «Hasta ahora nos hemos preguntado cómo nos protegemos de las máquinas, como en la famosas leyes de Asimov. Pero también es necesario plantearse cómo proteger de la humanidad a esas máquinas conscientes que podemos crear. Creo que ningún científico se prestaría a crear robots inteligentes y sensibles que estuvieran predestinados a ser simplemente nuestros esclavos».
¿Cuánto tiempo nos queda, pues, para admirar o temer a una máquina de la precisión, la belleza y la inteligencia de Ava? Alex Garland no pone la mano en el fuego, pero predice que sus hijos llegarán a ver algo parecido: «Nos estamos aproximando al momento en que las máquinas nos puedan decir: ‘No me apagues’. Con el tiempo tendrán la capacidad de querer por sí mismas, de tener sentimientos».
Ha sido publicado en El Mundo
Dic
3
Inmortalidad, cyborgs y dataísmo: el fúturo según Harari
por Emilio Silvera ~ Clasificado en Mundo Futuro ~ Comments (6)
Entrevista de Prensa
El intelectual de cabecera de Barack Obama, Bill Gates y Mark Zuckerberg nos habla de cómo imagina el futuro.
No habrá guerras, ni hambre ni enfermedades… pero tampoco será un mundo feliz.
Un futuro habitado por una masa de inútiles bajo el yugo de una élite de semidioses dopados con biotecnología. Si su nieto no forma parte del grupo de privilegiados lo más probable es que sea un parado crónico. La culpa de su crisis laboral no será de un chino que demuestra ser más productivo en la jungla de la globalización, sino de un ordenador. Pero, tranquilo, la frustración que sentirá él va a ser anestesiada con una nueva fe predicada desde el púlpito de Silicon Valley, pastillazos… y quizás vídeos de gatitos.
Así es el mañana que aventura al ser humano Yuval Noah Harari, posiblemente el antropólogo más influyente de este siglo.
«No predigo el futuro. Me limito a plasmar las distintas posibilidades que ofrece», puntualiza el intelectual. Esta frase es su defensa en el juicio de la posteridad, como si necesitara protegerse de la imagen que proyecta de superestrella del ensayo pop que ha seducido a Obama, Bill Gates y Mark Zuckerberg con sus provocaciones. Harari (Haifa, 1976) es ante todo una especie de la mitológica Casandra que nos advierte de los peligros que acechan a la Humanidad y las posibilidades reales de que nuestro futuro sea una distopía.
No se encuentra muy bien por culpa de un catarro. Harari es un hombre de apariencia frágil, exquisitamente educado, judío mizrajim (de origen libanés aunque nacido en Israel), homosexual y vegano. Antes de empezar a conversar, se llega a un acuerdo para no hacer la sesión de fotos en la calle para no agravar su destemplanza bajo la lluvia de Madrid.
- Como representante que soy, al menos por comparecencia, de la próxima raza de los ‘inútiles’ que vivirán en el lumpen laboral, querría preguntarle si esa división social se realizará sin violencia.
- Este cambio es inevitable. Los taxistas, los médicos o los traductores perderán sus empleos víctimas de la sofisticación de los coches autónomos, robots de diagnóstico y un traductor de Google mejorado. Son sólo unos ejemplos, pasará con muchas profesiones. Esto no quiere decir que no surjan nuevos trabajos, pero será difícil reciclar a gente con empleos tradicionales y convertirlos en diseñadores de mundos futuros.
- Históricamente las sociedades con mucha población poco productiva se han derrumbado.
- Alimentar a la población no será en este caso un problema gracias a la tecnología. Sí lo será dotar de sentido a las vidas de todas esas personas. Algunos expertos apuntan a que la realización colectiva pasará por juegos informáticos de realidad virtual y el uso de drogas y medicinas capaces de manipular el estado mental. Eso no es una profecía. En la actualidad ya lo hacemos para tratar el estrés, el Trastorno por Déficit de Atención (TDA) y la depresión. Ésta última es una epidemia global que va a más. Es probable que en 50 años la mayoría de la gente consuma drogas.
Los antepasados de los superhumanos, aquellos que dominarán a los inútiles, rinden culto a Harari, el autor de moda entre el establishment mundial, de Silicon Valley a la Casa Blanca. Primero este catedrático de la Universidad Hebrea de Jerusalén contó todo lo que nos ha pasado en Sapiens, un ensayo sobre la evolución humana que vendió 300.000 ejemplares en un país de ocho millones de habitantes. De Israel saltó a Europa y América para vender otro millón de copias de una obra que combina antropología, historia y biología. Hoy charla con PAPEL sobre lo que podría pasarnos, una visión de un futuro sin hambres ni guerras ni pestes que ha descrito en Homo Deus (Editorial Debate). De él salen palabras como inmortalidad, cyborgs y dataísmo en un tono que a veces suena más a profeta bíblico (con más plagas que milagros) que al joven ateo que hizo el doctorado en Oxford sobre tácticas militares de la Edad Media.
- Dios ha muerto, Marx ha muerto… Y además usted es un relativista. Sin embargo el ser humano siempre ha necesitado guiarse por alguna creencia trascendental.
- Sin duda, por eso creo que en el futuro habrá un auge de tecnorreligiones surgidas en Silicon Valley. Éstas harán las mismas promesas que las religiones tradicionales, pero con una diferencia importante: el paraíso no estará detrás de la muerte, sino en la vida.
- Eso ya lo intentó el comunismo…
- Marx y Engels nos dijeron que no esperáramos al cielo y fundaron la primera tecnorreligión de la historia. Pero su aplicación fue un fracaso. El nuevo paraíso se basará en la informática y la biotecnología. Hay mucha gente en Silicon Valley que se toma muy en serio lo de alcanzar la inmortalidad a través de la Inteligencia Artificial. Imagine cuando eso se consiga: si alguien ofrece un paraíso en vida, mientras las religiones competidoras lo ofrecen en el más allá, es más que probable que la primera opción resulte más seductora, ¿no?
- Habla del fin de la muerte gracias a los avances médicos, pero hace pocas semanas un artículo publicado en la revista ‘Science’ explicaba que la comunidad científica fija en 125 años el límite de la vida humana…
- Leí ese artículo que usted menciona y es cierto que nuestro límite biológico está en esa edad. Hasta ahora la ciencia médica se ha limitado a evitar una muerte prematura… Eso se puede ver cómo en pocas décadas las estadísticas de mortalidad infantil han caído espectacularmente. Si curamos el cáncer o el Alzheimer viviremos hasta nuestro límite. El objetivo futuro será utilizar la ingeniería genética para rediseñar el cuerpo humano. Se podrán rejuvenecer órganos, usar células madre, crear vida inorgánica y convertirnos en cyborgs. O incluso trasladar la conciencia humana a los ordenadores y vivir para siempre. Dudo de algunas de estas ideas, aunque sé que hay profesores muy competentes que trabajan en su desarrollo. Sí estoy seguro que cuando se pueda derrotar a la muerte, evolucionaremos y seremos una entidad mucho más diferente respecto al homo sapiens de lo que somos hoy nosotros respecto a los chimpancés.
- ¿Entonces el diseño inteligente se impondrá a la evolución?
- Exacto. Después de 4.000 millones de años de evolución natural, desarrollaremos humanos ayudados por ordenadores y vida inorgánica. Podría ser la mayor revolución de la historia de la biología, un impulso para plantearnos de verdad la vida fuera de la Tierra. En la actualidad, colonizar otros planetas con nuestras características biológicas es una quimera.
Si hay algo que aleja a Harari de los grandes autores de la ciencia-ficción es el tema de la conciencia. La evolución de los ordenadores ha desarrollado una capacidad de cálculo brutal, si bien en ningún momento se ha producido una evolución sentimental. Robots y algoritmos no van a reproducir nuestros conflictos morales. No tendrán que ser regidos con las hermosas leyes de la robótica que inventó Isaac Asimov ni debatirán emocionalmente como el Nexus 6 de Blade Runner para confundirse como lágrimas en la lluvia. Nada de poesía. Solamente datos.
El dataísmo ya está llamando a la puerta. Según Harari, podría conquistar el mundo y reducir a cenizas al humanismo. Supongamos que nuestra concepción del universo radica en flujos de datos y que el valor de cualquier fenómeno o entidad está determinado por su contribución al procesamiento de información. Los organismos son algoritmos bioquímicos, nada más. Para formar parte de este universo estamos dispuestos a renunciar a nuestra privacidad y, sobre todo, a nuestro concepto de individuo. Vamos, usted va a pasar a ser un microchip y dejar de ser Pepe Pérez, y sus experiencias sólo tendrán valor si son compartidas en las redes.
- Lo más inquietante del dataísmo para mí es que pretende acabar con lo que podría llamarse soledad elegida. ¿De verdad placeres individuales como leer un libro, cantar en la ducha o el onanismo acabarán siendo pasto de las redes sociales?
- Soy el primer interesado en valorar la soledad, pero el mundo ha cambiado ya delante de nuestros ojos. A mi sobrina le encanta ver en internet jugar a otros niños. Cuando lo descubrí, no me lo podía creer. ¿Por qué no jugaba ella, que seguro que es más divertido?, me preguntaba. Los jóvenes se graban todo el rato y lo exhiben. Quien tenga hijos pequeños lo comprueba cada día. Recuerdo que en los noventa se puso de moda entre los adolescentes escribir un diario. La idea era proteger la intimidad, incluso algunos venían con candado. Hoy todo es diferente, un crío escribe un blog o una entrada en Facebook porque quiere que le gente le lea.
- El sector financiero ha utilizado durante largo tiempo algoritmos para predecir fluctuaciones en el mercado, pero también están siendo usados en el “trading …
- ¿Qué ocurrirá cuando existan algoritmos tan poderosos que calculen perfectamente los intereses y prejuicios de cada votante?
- Me temo que tanto en economía como en política los seres humanos perderemos nuestro poder. Eso es terrible porque el Estado y las élites nos van a ver como prescindibles. En el siglo XX los políticos invertían en hospitales y carreteras, incluso los dictadores, porque necesitaban a la gente ya fuera como votantes, soldados u obreros para las fábricas. Actualmente se ve más claramente en algunos campos, como el bélico: con la tecnología y el profesionalismo el valor militar de un ciudadano es prácticamente cero. Y en política sólo hay que ver el apoyo que han obtenido Donald Trump y los populismos europeos. Esto es una señal de que la gente empieza a ser consciente de su pérdida de influencia y busca rebelarse.
- Si las estructuras políticas actuales no son capaces de procesar rápidamente toda la información que hay, ¿quién lo hará? Si quedara en manos privadas, ¿es necesario vigilar, como advierten analistas como Evgeny Morozov, el mercadeo de nuestros datos desde Silicon Valley?
- No veo que empresas como Google o Facebook sean malas en sí. Para mí el problema es que el sistema político no hace su trabajo. No hay ningún partido que piense en el futuro de la humanidad. Pongamos el caso de Rusia. Hace 100 años Lenin tenía una visión futurista y disponía de una tecnología pobre. Pensó en cómo crear una sociedad nueva y en destruir la que encontró. Hoy Vladimir Putin cuenta con una tecnología mucho más sofisticada que Lenin, aunque su mayor ambición se reduce a intentar recuperar para Rusia el imperio de los zares. Hay que entender que la política ha perdido la capacidad de tener visiones con sentido de la humanidad, aunque fueran equivocadas y crueles.
- Los gobiernos aún no tienen una postura clara sobre internet.
- Resulta que la mayor revolución de la historia reciente no ha salido de ningún programa político. Las principales decisiones sobre la Red (intimidad, seguridad, mercado laboral…) no han sido tomadas en parlamentos, sino por ingenieros y empresarios que no representaban a nadie. La política se ha alejado totalmente de la tecnología. En los próximos 50 años, la Inteligencia Artificial y la ingeniería genética serán determinantes en nuestras vidas, pero nadie las menciona, ni siquiera en unas elecciones tan importantes como las recientemente celebradas en Estados Unidos. ¡La tecnología más sofisticada citada en campaña fue la relacionada con los emails enviados por Hillary Clinton desde un servidor equivocado!
- Esa noticia es una muestra más de la velocidad informativa y de lo difícil que es para el consumidor discernir cuál es la información realmente útil.
- En el pasado, el rey o el abad del monasterio guardaban los libros bajo llave y su acceso era muy restringido. Ahí anidaba el poder de la élite: ellos eran los únicos que sabían leer. La censura de hoy no limita la información como antes, sino funciona con una estrategia contraria: avasallar a la gente con datos. El poder de los que mandan radica en saber qué se puede pasar por alto y qué es lo importante entre tanta información. Esto lo demuestra la actitud del consumidor común de internet. Se mete en la Red a ver vídeos de gatitos cuando podría estar accediendo fácilmente a publicaciones de expertos sobre, por ejemplo, el calentamiento global, algo mucho más relevante en su vida que los gatos. Pero no lo hace.
Dic
2
El colapso del núcleo de las estrellas
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
El vacío superconducto – La máquina de Higgs-Kibble
El vacío superconductor – La máquina de Higgs-Kibble II
Lo único que no resulta ser lo mismo cuando se mira a través a través del microscópico electrónico (o, en la jerca de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopìo y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.
Granos de arena vistos al microscópico electrónico
Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.
En el mundo cuántico se pueden contemplar cosas más extrañas
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.
Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.
Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas
En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.
NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, es la estrella más masiva conocida hasta en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.
En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella supermasiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.
Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.
Resultado de imagen de El pulsar escondido en la Nebulosa del Cangrejo
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova.Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.
El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.
Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.
La densidad de estas estrellas es increiblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.
Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.
Las estrellas mueren cuando dejan la secuenbcia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son supermasivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.
La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.
El remanente estelar después de la explosiòn puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!
¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
emilio silvera