Ene
25
Si existen ¿Cómo serían otros universos?
por Emilio Silvera ~
Clasificado en Divagando ~
Comments (1)
Siempre hablamos de visitar otros mundos, otros universos y, en ellos, las condiciones físicas no tienen, necesariamente que ser como en el nuestro. Los mundos, como las estrellas y los universos, pueden tener sus propias características dependiendo de muchos factores que lo podrían conformar de manera muy diferente a como lo está nuestro mundo y vemos que se comporta el universo con sus cuatro leyes fundamentales y sus constantes que, en otro universo, podrían ser de otra manera.
Se sospecha que un universo compañero del nuestro está ejerciendo una gran fuerza gravitatoria sobre las galaxias del nuestro que se alejan las unas de las otras a velocidades injustificadas. ¿Será esa fuerza, lo que induce a los cosmólogos a equivocarse y llamarla “materia oscura”?
Formas de vida diferentes, estructuras asombrosas y para nosotros desconocidas, y, hasta el Tiempo se podría comportar de diferente manera.
Si es cierto lo que afirman algunas teorías, entonces existen en realidad un número infinito de universos paralelos, muchos de ellos con diferentes constantes físicas. En algunos de ellos, quizá los protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch tiene lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un número infinito de estos universos paralelos están muertos, sin las leyes físicas que puedan hacer posible la vida tal como la conocemos.
En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar esta cuestión. Si esto es cierto, entonces quizá no haya que invocar a Dios para explicar por qué la vida, por preciosa que sea, es posible en nuestro universo. Sin embargo, esto reabre la posibilidad del principio antrópico débil, es decir, que coexistimos con nuestros universos muertos y que el nuestro sea el único compatible para vida.
La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger. Empezamos con una función de onda que describe el conjunto de todos los universos posibles. Esto significa que el punto de partida de la teoría de Hawking debe ser un conjunto infinito de universos paralelos, la función de onda del universo. El análisis bastante simple de Stephen Hawking, reemplazando la palabra partícula por universo, ha conducido a una revolución conceptual en nuestras ideas sobre la cosmología.
La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente el estado de una partícula hasta que se haya hecho una observación. Antes de que haya una medida, la partícula puede estar en uno de entre una diversidad de estados, descritos por la función de onda de Schrödinger. Por consiguiente, antes de que pueda hacerse una observación o medida, no se puede conocer realmente el estado de la partícula. De hecho, la partícula existe en un estado ultramundano, una suma de todos los estados posibles, hasta que se hace una medida.
Cuando esta idea fue propuesta por primera vez por Niels Bohr y Werner Heisemberg, Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?“, -o un gato- le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un número infinito de estados, incluyendo el estado de estar en el cielo, de estar explotando, o de no estar allí en absoluto. Es el proceso de medida que consiste en mirarla el que decide que la Luna está girando realmente alrededor de la Tierra“. Decía Einstein con ironía.
Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.
Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato esta descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.
Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.
Sí, a veces la mecánica cuántica parece tan fantástica como el cuento de Alicia
La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás“, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.
Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe. Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.
La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.
El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado. Nadie sabe como puede ser eso“. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.
Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.
Aunque no siempre, lo más simple tiene que ser lo verdadero. El principio de la Navaja de Ockham es fundamental para el reduccionismo metodológico.
Existe un principio de la física denominado Navaja de Ockham, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.
Para seguir fielmente el consejo contenido en la Navaja de Ockham , primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos necesarios para hacer las preguntas adecuadas.
¿Quién puede saber lo que ahí fuera existe? ¡Nadie! Sólo podemos imaginarlo en función de cada Mente y de distintas maneras
Hugo Everett, Bryce DeWitt y ahora Hawking (también otros), han propuesto la teoría de los universos múltiples. En unos universos los protones se desintegran antes haciendo inestable la materia, en otros, el átomo de uranio se desintegra mediante un proceso sin radiaciones, y en otros universos las constantes universales que existen en el nuestro, son totalmente diferentes y no dan posibilidad alguna para la existencia de seres vivos. Está claro que cualquier variación que en principio pudiera parecer sin importancia, como por ejemplo la carga del electrón, podría transformar radicalmente nuestro universo.
Como apuntó el físico Frank Wilczek:
De la película Troya, el personaje de Elena
“Se dice que la historia del mundo sería totalmente distinto si Helena de Troya hubiera tenido una verruga en la punta de su nariz.”
Hasta el momento, se han celebrado varias conferencias internacionales sobre la función de onda del universo. Sin embargo, como ocurre en la teoría de supercuerdas, las matemáticas implicadas en la función de onda del universo, parecen estar más allá de la capacidad de cálculo que cualquier humano en este planeta pudiera resolver, y tendríamos que esperar años antes de que aparezca un individuo genial que pudiera encontrar una solución rigurosa a las ecuaciones de Hawking.
Recordemos aquí de nuevo que, precisamente ahora, un siglo más tarde, en el Congreso Internacional de Matemáticas celebrado en Madrid el mes de Agosto de 2.006, se otorgó la Medalla Field (una especie de Nobel de las matemáticas) al matemático ruso Perelman, extraño ser que ni se dignó comparecer a recogerla con el premio, hizo caso omiso. Perelman ha resuelto la conjetura expuesta por Poincaré planteada en 1.904.
La conjetura de Poincaré de 1.904, en el año 2.000, fue catalogada por el Instituto Clan como uno de los siete problemas del milenio. Para hacer un comentario sobre esta conjetura tengo que referirme a la topología, el nivel de las matemáticas donde está ubicada.
Verdaderamente Perelman es, un extraño personaje metido en su propio mundo
Las últimas fotos que se conocen de él se las sacaron con un celular en un vagón del metro de Petersburgo. Se está quedando pelado pero las mechas largas y desgreñadas le llegan a los hombros, va en zapatillas sucias, un traje arrugado que le queda corto, sin corbata y con la camisa enteramente desprendida, flaco como un Cristo, la barba igual, la mirada perdida, las uñas largas y sucias y curvadas hacia adentro como garras. El vagón va en dirección sur, a Kúpchino, un barrio de monoblocks donde muere el metro. Todos los vecinos de Kúpchino saben quién es Grisha Perelman y cuál es la puerta del ínfimo departamento que comparte con su madre. Pero ninguno va a decírselo a los periodistas y a los fanáticos de la matemática que cada tanto merodean por ahí.
La topología tienen unas matemáticas endiabladamente complejas
La topología es la geometría de los objetos elásticos o flexibles que cambian de forma pero tienen las mismas propiedades que antes de ser estirados, achatados, etc. Se pueden retorcer pero no cortar ni pegar.
Los topólogos no tienen en cuenta la distancia, puesto que se puede variar al deformar el objeto, sino nociones más sutiles. Los orígenes de la topología se remontan a mediados del siglo XVIII, con los trabajos de Euler en teoría de grafos, que llamó “análisis situs”.
A finales del siglo XIX y principios del siglo XX, la topología recibió un gran impulso con los trabajos de Poincaré, matemático francés muy influyente en el posterior desarrollo de diversas áreas de las matemáticas y de la física. En particular, en 1.904 planteó la conjetura que lleva su nombre y que no se ha resuelto hasta el siglo XXI. Este problema ha sido un motor para la investigación en topología de todo el siglo pasado y se ha llegado a su resolución con ideas nuevas y apasionantes.
Henri Poincaré en su estudio trabajando
Para situarnos mejor debemos hablar de las variedades, espacios que tienen una dimensión determinada. Por ejemplo una recta o un circulo son variedades de dimensión uno, puesto que se describen como un parámetro. El plano o la esfera son ejemplos de variedades bidimensionales, al utilizar dos parámetros para describir sus posiciones. El espacio en que vivimos es una variedad tridimensional, y si le añadimos la dimensión temporal, el espacio-tiempo es una variedad de dimensión cuatro. Ya he comentado en este mismo trabajo cómo las singularidades geométricas, las variedades, fueron introducidas por Riemann a mediados del s. XIX y constituyeron una herra-mienta clave para la física del siglo XX. De hecho, la teoría de la relatividad especial de Einstein fue postulada por Einstein en 1.905, pero hasta que no incorporó las variedades contenidas en el tensor métrico de Riemann, no pudo completar la teoría de la relatividad que incluía los espacios curvos.
La pregunta que hizo Poincaré fue la siguiente: ¿Es la esfera la única variedad tridimensional para la cual toda curva se contrae?
Se pasó un siglo entero antes de que un genio de las matemáticas, el extraño G. Perelman, pudiera demostrar la conjetura de Poincaré.
De todas las maneras, avanzar en el conocimiento de las cosas no resulta nada fácil, y, aunque el avance es exponencial (cuanto más datos vamos teniendo más rápidamente avanzamos), hay algunos enigmas de la Naturaleza que, de momento, segurán en la oscuridad de nuestra profunda ignorancia.
emilio silvera
Ene
22
¿La Astronomía? ¡Es la Ciencia más antigua!
por Emilio Silvera ~
Clasificado en Curiosidades ~
Comments (0)
![](https://upload.wikimedia.org/wikipedia/commons/6/6c/Brahe_kepler.jpg)
Tycho Brahe (1546 – 1601) y Johannes Kepler (1571 – 1630).
Tycho era noble, rico y poderoso, y no seguía las ideas copérnicas. Kepler era de origen humilde, ferviente copérnico, siempre buscando (no con demasiado éxito) el amparo de reyes y aristócratas, no ya para poder trabajar en la ciencia que amaba, sino para simplemente vivir, alimentarse él y su familia, y sin embargo, a los ojos de la historia ambos constituyen un dúo inamovible. No fue porque compartiesen logros científicos, sino porque Brahe hubiera sido, acaso, mucho menos conocido para la posteridad de no haber sido por la relación, breve pero intensa, que mantuvo con Kepler, y porque éste seguramente no habría podido producir lo que fueron sus joyas científicas más preciosas sin acceder a los datos de las observaciones (en especial las de la trayectoria de Marte) de Brahe, el observador astronómico más importante en la era anterior a la invención del telescopio.
Brahe, con la ayuda del rey Federico II, construyó un centro astronómico: Uraninburgo, en la isla Hveen de Dinamarca. Le sucedió al frente del mismo su ayudante en Praga J. Kepler que pronto, haciendo uso del material acumulado y sus propias investigaciones, publicó Astronomia Nova en el año 1609, donde presentaba sus dos primeras leyes del movimiento planetario. En 1619 publicó Harmonices Mundi y su tercera ley.
Y así llegamos a Galileo Galilei (1564 – 1642); la antítesis, en cuanto a estilo literario y método científico, de Kepler. Si este es, cuando se lee, la oscuridad, Galileo es la luz. Con él la fuerza de las ideas copérnicas se hizo tan patente que terminaría desencadenando acontecimientos sociales que arrastrarían con ellos al propio físico de Pisa.
Sus observaciones sacaron a la luz las deficiencias del universo aristotélico-ptolemaico. El que Galileo realizara tales observaciones resulta, en principio, sorprendente, ya que era un físico y su preocupación estaba centrada en el estudio del movimiento, por encontrar las leyes que regían fenómenos como la caída de un cuerpo esférico por un plano inclinado o el tiempo que tarda un péndulo en batir, y no un astrónomo. Sin embargo, todo cambió, su vida y a la postre, en más de un sentido, el mundo, cuando conoció la existencia de lentes (telescopios) que agrandaban las imágenes de objetos lejanos.
Las dos caras de la Luna
Construyó su propio telescopio que enfocó hacia la Luna y descubrió todas sus irregularidades con sus montañas y abismos, lo que describió en su libro Siderus Nuncius (1610). Ese mismo año estudió Júpiter y detectó 4 satélites y otras muchas cosas. Galilio adquirió una importante notoriedad.
En 1632 se convirtió en una leyenda con la publicación de su obra inmortal, Diálogo sobre los dos máximos sistemas del mundo, ptolemaico y coperniano, una obra maestra de la literatura científica. Escribió otros grandes libros y, en controversia con la Iglesia, finalizó sus días en arresto domiciliario, ya que la Iglesia negaba el movimiento del mundo alrededor del Sol.
Cuando antes me refería de pasada a mis lecturas, nombré a René Descartes (1596 – 1650), una de las grandes figuras del pensamiento de todos los tiempos. Casi todos le conocen por su condición de filósofo, pero se olvidan de que también contribuyó con su talento en el campo de las matemáticas, fisiología y física (especialmente en la dinámica, óptica, meteorología y astronomía), formando parte de la historia de esas disciplinas.
Según sus propias palabras, purificó el alberga, “desembarazándola” de “los múltiples números e inexplicables figuras que la abruman”. Sin duda, la aplicación más conocida de este enfoque fue en la geometría, con las coordenadas cartesianas, o geometría analítica, que presentó en La Géométrie, que apareció – junto a La Dioptrique y Les Météores – como uno de los apéndices de su obra más conocida, Discours de la Méthode (1637).
Descartes, podemos decir sin ningún temor a equivocarnos que es merecedor de toda nuestra admiración, y con él (como con otros muchos) siempre estaremos en deuda.
Me he podido adaptar (mentalmente) en todas mis lecturas a la época del autor, en el tiempo en el que escribió el texto que ahora, muchos años después, podemos leer. Así, se puede comprender mejor lo que estamos leyendo, y sobre todo, resulta más fácil la simbiosis con el autor; lo que nos dice fluye dentro de nuestra mente con diáfana sencillez.
Es curioso observar la evolución de nuestros pensamientos, que a medida que adquirimos conocimientos, se van asentando en niveles superiores capaces de procesar en cada momento aquello que necesitamos, y para ello, obtiene múltiples y diversos datos que reúne en un todo para que exprese aquello que deseamos decir.
Llegará un día (si antes no lo estropeamos), en que la evolución nos llevará a convertirnos en pura energía pensante, seremos todo luz que, confundidos con el universo del que formamos parte, habremos completado el ciclo. Sabemos que nuestro origen está en las estrellas; allí nacieron los componentes de nuestros cuerpos, elementos complejos creados a partir de explosiones de supernovas. Desde allí hemos realizado un recorrido largo hasta llegar a ese punto del camino en el que fuimos conscientes de nuestro SER. Ahora continuamos (en un período joven aún) evolucionando para que, en algunos eones, podamos alcanzar la meta que nos aguarda.
Esta excelente infografía, elaborada por la BBC, nos da un emocionante vistazo de cómo la humanidad, la Tierra, y el Espacio, se comportará durante los próximos 1,000, 10,000 un millón o 10 cuadrillones de años. Como siempre decimos aquí, con el paso del tiempo todo cambia y nada permanece, nuestra civilización no es una excepción a esa regla, y, nuestra especie… ¡Tampoco!
Parece mentira que para algunos de nosotros, el tiempo que estamos aquí (lo que duran nuestras vidas) resulte largo o corto en función de la forma de pensar y de ver la vida. Incluso, para otros individuos, la vida pasa sin sentir, en ellos se van cumpliendo los ciclos, pasa por todas las fases y llega a su final sin haber sido consciente de dónde está ni a qué lugar pertenece, son de personalidad simple y no saben llegar o comprender lo profundo de las cosas.
Algunos, con 50 años ya están pensando en jubilarse (son viejos prematuros); se mira el recorrido de lo que han hecho durante toda su existencia y, desde luego, hay poco que contar. Sin embargo, otros de distinto carácter y forma de enfocar su tiempo, ni piensan en ese final o retirada del trabajo; son gente muy activa y creadora. Su recorrido está plagado de actividad y proyectos. Son incansables y, por supuesto, le sacan un buen provecho a sus vidas.
Tengo conocidos que están en los dos niveles, y al observar sus comportamientos me doy cuenta de la diversidad existente entre nosotros mismos que, de morfología y conformación física común y general, estamos divididos en entes muy distintos o dispares a niveles superiores a los de nuestro cuerpo.
“El mundo es un telón de teatro donde se esconden los secretos más profundos”
Hay pensamientos íntimos que guardamos para nosotros y que, en contadas ocasiones, podemos expresar. En mi caso particular, me ocurre en esos momentos en los que, inmerso en el estudio de las maravillas de la física y del universo en general, siento, literalmente, cómo mi alma está fundida con aquello que, a distintos niveles, llamamos materia y fuerzas fundamentales; paso a formar parte integrante de todo ello y, confundido así con el universo mismo, lo puedo comprender mejor, siento su energía en mí, ya que, de alguna forma, de ella todo está conformado.
“LOS UPANISHADS: EL PROFUNDO MENSAJE ESPIRITUAL DE LA INDIA MILENARIA,”
Ver con ojos nuevos para redescubrir fuera lo que vamos descubriendo dentro, lleva a concienciarnos de que “nada nuevo hay bajo el sol”. Los mismos pasos que hoy damos, otros los dieron antes. Por eso resulta alentador encontrar las huellas de nuestros predecesores en las sendas del espíritu por doquier.
Sólo amando se comprende el amor y no mediante explicaciones o definiciones: amar y saber son, al principio, divergentes, como los lados de un ángulo, pero a medida que se va subiendo por los dos lados, el saber comprende más al amor hasta que al fin son uno. El amor puro transforma el estar en un ser, y en tal sublime transformación, algo finito y temporal se ha convertido en algo infinito y eterno, lo mortal se ha convertido en algo inmortal.
En el saber estudiamos la variedad de las cosas, las definimos y comprendemos, y así las dominamos: es la ciencia. Pero en el amor puro contemplamos las cosas sin deseo de posesión, sólo por el gozo de la contemplación: es la poesía. En el saber nos separamos de las cosas, hay un yo nuestro que estudia y la cosa estudiada deja de tener secretos; pero en el amor nos unimos con las cosas y en la alegría de la contemplación desaparece el sentido de posesión, de egoísmo y de destrucción. Un grandioso árbol milenario puede ser objeto de contemplación en silencio para el poeta, de estudio y gran actividad cerebral para el científico, un objeto de mero lucro para un comerciante que, sin consideración a la grandeza sublime del árbol milenario, está dispuesto a comprarlo, venderlo y hasta quemarlo.
En dos versos sánscritos muy posteriores a los tiempos primeros de los Upanishads, escuchamos la Plegaria que dice: “Que el hombre malo sea bueno y que el hombre bueno tenga paz. Que en la paz se libere sin lazos y que el hombre libre dé libertad a otros”. Uno de los problemas educativos más importantes es el inducir a los que poseen más inteligencia, energía, constancia y otras virtudes, a que las empleen en buena voluntad para ayudar a los otros que no las poseen en tan alto grado y no para fines egoístas, para dominar más o menos a los otros: el camino del hombre sobre la tierra va de lo finito a un Infinito donde no hay más ni menos, pues hay un Todo en el todo.
A solas y confundido y fundido con la Naturaleza… Somos mejores
Podemos alcanzar estadios de inspiración o de espiritualidad que ya nos anuncia lo que será el futuro, cuando evoluciones. Con increíble claridad he podido ver en otros la bondad del SER bueno y puro. Con mucha más frecuencia veo cada día la fealdad maligna de muchos que disfrazan su verdadera condición con falsas sonrisas y actitudes engañosas que sólo buscan confundirnos, ahí agazapados, esperando nuestra distracción y falta de desconfianza para lanzar el zarpazo. Así es, de momento, la condición humana, desgraciadamente en un 90 por ciento.
la Infinita imaginación aparece con el conocimiento
Es tan grande el poder de nuestra mente que nada hay tan distante que no pueda traerse ante nosotros. Somos capaces ya de escrutar el espacio y vislumbrar los confines del universo en edades muy cercanas a su nacimiento y, merced a los microscopios, nos acercamos al universo atómico para explorar los componentes de la materia. Parece que nada podrá (con el tiempo) escapar a nuestro control, con lo que todo nuevo “mundo” se revelará a nuestro entendimiento.
Nunca estamos satisfechos de los logros alcanzados y siempre surgirán seres especiales (Copérnico, Kepler, Galileo, Hooke, Newton…) que nos guiarán por el camino iluminado de su genio para mostrarnos la auténtica sabiduría mediante un pensamiento evolutivo que siempre dará un paso adelante, superando así el pensamiento nuevo al anterior.
La prueba de ello la podemos encontrar en Newton y Einstein. ¿Quién puede dudar de la grandeza de Newton? La pregunta está contestada de antemano. Sin embargo, los ejemplos de la historia son muy elocuentes: Newton con su física, Leibniz con su metafísica, con sus principios filosóficos como el de la razón suficiente. Y la física ganó a la metafísica; Newton a Leibniz.
Durante mucho tiempo, espacio y tiempo se entendieron como entes absolutos, hasta que llegó Einstein con sus dos teorías de la relatividad, la especial y la general, y aunque los caminos que siguió para conseguirlos no fueron metafísicos, no podemos negar la intervención de un genio de inspiración superior que, a veces, nos puede llevar a pensar que, en algún sentido, finalmente Leibniz había sido en más acertado, ya que las teorías einstenianas pueden ser clasificadas dentro de un orden del pensamiento superior.
Así, la evolución continuó su camino imparable y el espacio y el tiempo absolutos de Newton, resultaron ser menos absolutos de lo que se pensaba; eran relativos y, además, eran una misma cosa, que a partir de ahí pasó a llamarse espacio-tiempo unidos y no separados. Así fue deducido por Minkouski al leer la teoría de Einstein.
Joseph-Louis de Lagrange Pierr Simón Marqués de Laplace
Quiero mencionar en este punto a dos grandes newtonianos: Lagrange y Laplace.
La obra de Newton, como todas las grandes obras, fue discutida y sometida a estudios rigurosos, analizada y removida. La ciencia del genio, claro, permaneció al margen de todas las críticas para dejar de ser discutida y pasar a ser desarrollada.
Recordemos en este sentido la cumbre de la física y de las matemáticas del siglo XVIII que es la Méchanique analytique (Chez la Veuve Desaint, París 1788), de Joseph-Louis Lagrange (1736 – 1813), un íntimo amigo de d’Alembert, en la que la mecánica de Newton alcanzó un nuevo nivel de pureza al reducir el sistema a un conjunto de fórmulas generales de las que se podían deducir todas las expresiones necesarias para resolver un problema. O los cinco tomos del Traité de mécanique céleste (Crapelet para J. B. M. Duprat, París 1799 – 1827) de Pierre-Simón Laplace (1749 – 1827), en los que se erradican numerosas anomalías de las explicaciones originales de Newton sobre los movimientos de los cuerpos celestes.
El testo de Laplace, al igual que el de Lagrange, era de difícil lectura para legos en las ciencias matemáticas, y tal complejidad dio lugar a versiones posteriores más sencillas para el entendimiento general, que finalmente hizo posible divulgar los enormes conocimientos alcanzados a partir de Newton, gracias a estos dos genios.
Un respiro en el camino:
- El ignorante, teme o adora lo que no comprende.
- Los ingratos acaban por disuadir a los virtuosos de poner en prácticas sus bondades.
- Amigo leal y franco, mirlo blanco.
Esto me recuerda aquella aseveración atribuida indistintamente a Séneca y Aristóteles:
“¡Oh, amigos míos, no hay ningún amigo!”
Puede que a esa tierna edad la amistad sea auténtica.
Hay otra que nos da a entender que los amigos egoístas y poco dispuestos a prestarnos su ayuda, en momentos necesarios son inútiles y no importa, pues, prescindir de ellos:
“Amigo que no presta y cuchillo que no corta,
que se pierdan poco importa.”
¡Esto de los amigos! Hay otra que dice:
“El que tiene un amigo, tiene un tesoro.
El que tiene un tesoro, tiene muchos ‘amigos’.”
“Si un amigo se comporta como la sombra que,
cuando luce el Sol nos abandona, no era un amigo.”
Nikola Tesla un genio de aquel tiempo
Pero volvamos al trabajo y continuemos repasando cosas interesantes y viajemos hasta el siglo XIX, que fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la Naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.
Pero, esa será otra historia, la de hoy ha finalizado ya.
emilio silvera
Ene
18
Hubo un Tiempo en el que la Cosmología era Religión
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (0)
Hacia principios del siglo pasado, se hicieron una serie de observaciones desconcertantes, que condujeron al esclarecimiento de secretos que permanecçian muy bien guardados por la Naturaleza. El inglés William Crookes, logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio. Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que ésta procedía exclusivamente de dicha impureza, que él denomino “uranio X”. Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas. Si se dejan reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera: por su propia radiactividad, el uranio se convertía en el uranio X, más activo aún.
Sir William Crookes
¿Qué no será capaz de inventar el hombre, para descubrir la Naturaleza?
Los distintos valores de las constantes de la Naturaleza están “escogidos” de forma bastante fortuita cuando se trata de permitir que la vida evolucione y persista. Echemos una mirada a otros ejemplos: La estructura de los átomos y las moléculas están controlada casi por completo por dos números de los que ya hemos hablado aquí alguna vez: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina α, que es aproximadamente igual a 1/137. Supongamos que permitimos que estas dos constantes cambian su valor de forma independiente y supongamos también (para hacerlo más sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué sucede al mundo si las leyes de la Naturaleza siguen siendo las mismas?
Presentar a estas alturas a Isaac Asimov, sería un ejercicio inútil por ser alguien al que todos conocen por su faseta de escritor científico y de ciencia-ficción. Él escribió más de trescientos libros que iban desde la bioquímica y la física hasta Schakespeare y la Biblia. Todo lo quería tocar y, se introdujo en las más diversas ramas del saber humano para explicar sus ideas con respectos a esas muchas cuestiones que abordó con más o menos éxito. En lo que más destacó y se hizo más popular, fuen en la rama de la Ciencia-Ficción en las que nos dejó novelas inolvidables que, como la Saga de La Fundación conocida en todo el mundo. Como hoy tratamos sobre cosmología, se me ocurre que, podríamos utilizar una de sus obras como comienzo de este sencillo trabajo:
Una de sus mejores obras fue temprana. En 1941 publicó “Nightfall”, una historia sobre una civilización condenada a un destino funesto y ubicada en el planeta Lagash, que no giraba en torno a un único Sol, como lo hace la Tierra, sino que estaba inmerso en el campo gravitatorio de generado por seis soles independientes. Él no explicaba, en la obra, cómo era la órbita de ese planeta -sería un problema nada menos (y nada más) que de siete cuerpos-, nada fácil de explicar.
Para los habitantes de un planeta con más de un Sol, no sería fácil sobrellevar las diferencias que esto supondrían. Los planetas ahora desvelados, llamados Kepler-34b y Kepler-35b-, giran alrededor de un par de estrellas unidas gravitatoriamente que se orbitan entre sí. El primero se encuentra a 4.900 años luz de la Tierra y el segundo, aún más lejos, a 5.400 años luz. Si tuvieran habitantes, ¿qué sensación tendrían con esos dos focos luminosos sobre ellos?
Pero sigamos con la historia de los habitantes de Lagash que, en tal situación de estar iluminados por seis soles era que, recibían luz constante proveniente de los soles, cuando no eran unos eran los otros los que les enviaba sus rayos de luz y su calor.
Dado que no conocían ningún tipo de cielo nocturno, los astronómos extrapolan la idea de qué en su universo sólo existen unas pocas docenas de estrellas. Se trataba de unas luces misteriosas apenas visibles contra el resplandor de los seis soles. Así, los que consideraban importantes las estrellas estaban en minoria y eran considerado como gente “especiales” y, algo raras.
Además, en Lagash existía una silenciosa sensación incómoda. Los arqueólogos habían hallado restos de nueve culturas anteriores, cada una de las cuales había podido alcanzar una cultura muy avanazada del nivel de la cultura presente y luego, habían desaparecido. Los estratos geológicos indican que cada una de aquellas civilizaciones había permanecido durante un período de alrededor de dos mil años.
La historia de Asimov nos parece una fantasía pero, lo que hasta ahora sólo había sido cuestión de ciencia ficción, un grupo de astrónomos trabajando con el satélite espacial Kepler han encontrado a un planeta desde el que, si se pudiera uno parar en él, se podrían apreciar amaneceres y atardeceres con dos soles, justo cómo el que apareció en la primera entrega de Star Wars desde el planeta Tatooine.
Así es, resulta que este planeta recientemente descubierto, que por lo pronto lleva el nombre de Kepler-16b, se encuentra orbitando a un sistema binario de estrellas. Esto es, un par de estrellas girando una al rededor de la otra, mientras que el planeta gira al rededor de ese sistema.
Nos podríamos preguntar cómo serían en ese mundo de seis soles las cosas. La fotosíntesis de una planta queda afectada por el color de la luz que recibe. En la Tierra, la mayoría de las plantas evolucionaron al color verde con el fin de aprovechar el color amarillento de la luz solar que recibe la superficie de nuestro planeta. Nuestro sol, clasificado como una estrella enana amarilla, puede parecer de un brillo blanco visto desde el espacio, pero nuestra atmósfera nos hace verlo amarillo.
Existen muchas otras clases de estrellas que no son como el Sol en el vasto Universo, y muchas de ella están, como el el mundo de Lagahs compartiendo órbitas múltiples con otros tipos de estrellas: enanas rojas, estrellas azules, gigantes rojas, enanas blancas…Las estrellas poseen diferentes colores dependiendo de su composición, edad, tamaño y temperatura. Quizás estemos acostumbrados al amarillo, pero la naturaleza realmente no tiene preferencias, y, en un sistema de seis soles…para el planeta que depende de ellos, la cosa no sería fácil.
Aquí teneis a Gliese 667, un sistema solar múltiple de dos estrellas. Lástima que no haya podido encontrar ninguna imagen que pusiera representar el sistema Solar de Lagahs, el planeta de seis soles que, tendría que ser una verdadera alucinación para sus habitantes.
Al final de la Historia del planeta Lahahs que estaba en un sistema de seis soles, se descubrió la terrible verdad de por qué, casi de dos mil en dos mil años, desaparecían las civilizaciones que estaban allí aposentadas y firmemente establecidas. Cada 2.049 años los seis soles se ponen y cae la noche, algo totalmente desconocido para los lagashianos que consecuentemente, sienten un inmenso terror hacia la oscuridad y el frío (seis soles les enviaban su luz y su calor durante todas sus vidas). El Miedo y el terror de aquel nuevo y aterrador escenario, les hace volverse locos y comienzan a provocar fuegos hasta que la cultuira muere y, como las anteriores, desaparece.
La oscuridad total del mundo parece ser un denominador común en todas esas profecías. Seguramente por eso la escogería Asimov. Un físico, Anthony Peratt, que ha trabajado en el National Laboratory de los Álamos y en el Departamento de Energía, afirma que a los lagashianos los destruyó algo más que el fuego. La aparición del cielo nocturno y de incontables estrellas destruye su cosmología; socava su fe y los cimientos filosóficos de su sociedad, que entonces se derrumba.
Todos sabemos que la Cosmoogía es el estudio del Universo como un todo, de su historia y de su origen. Habitualmente, aunque no siempre, se basa en la Astronomía, así como en la religión y en las creencias sociales.
El antropólogo George P. Murdock hizo una lista de sesenta y ocho civilizaciones que han configurado sus cosmologías. Algunas de estas civilizaciones han desarrollado poco la ciencia y escasamente la astronomía. Nosotros los seres humanos, en cuanto identificamos un puñado de estrellas, pretendemos construir una imagen de todo el universo. La Directora del Programa de de religión del Hunter College de la City University de Nueva York, expresa su desacuerdo con la cifra de las 68 civilizaciones de dadas por Murdock: “Todas las civilizaciones tienen cosmologías de algún tipo que dicen como está estructurada la realidad. Al decir “realidad” se refiere a sus distintos universos, como ellos lo podían percibir”.
No pocas de aquellas Civilizaciones antiguas coincidieron en muchas cuestiones del “mundo que veían” y, destacaron de las demás: Sumerios, Babolonios, Hindúes, Chinos, Egipcios y Griegos, todos ellos, nos dejaron su impronta y, el resultado de todas aquellas culturas, fue recopilado y traducido por el mundo del Islam cuando llegó el oscurantismo en la Edad Media. Mucho despúes, en el Renacimiento, volvieron a florecer aquellos saberes del mundo para que pudieran lelgar hasta hnuestros días.
Existe un monstruo en el centro de nuestra galaxia está a punto de alimentarse del material presente en esa nube de gas. En efecto, recientes observaciones del VLT indican que una nube de gas pronto se aventurará peligrosamente cerca del agujero negro supermasivo que ocupa el centro de nuestra galaxia. La nube está siendo desgarrada, estirada y calentada. Los investigadores predicen que durante los próximos dos años parte de la nube será engullida por el agujero negro. ¿Os podeis imaginar que, nuestro mundo estuviera cerca de un monstruo estelar semejante? ¿Cuál sería nuestra reacción cuando el planeta comenzara a ser espaguetizado por esa fuerza de atracción descomunal? ¿Que reacciones y fuerzas se desatarían en el planeta?
Hoy, nuestros conocimientos del Universo son bastante aceptables y hemos podido comprobar que, nuestros modelos cosmológicos, se acercan a la realidad que podemos observar. Aqueloos tiempos lejanos en los que prevalecian las creencias y la intuición, han pasado para dar paso a la auténtica Ciencia que guía el camino que tenemos que seguir.
El Cosmos nunca podrá ser contemplado en su conjunto y, sólo regiones determinadas podrán ser contempladas por seres inteligentes que, confinados en sus mundos, se tendrán que valer de ingenios tecnológicos para poder captar esas imágenes lejanas y para ellos, situadas casi en el infinito de los confines de “mundo”.
Claro que, si alguien me pidiera una justificación de la cosmología como ciencia, me vería en un gran apuro para poder dar una respuesta. La raíz de la palabra Cosmos nos remite a una palabra que abarca el todo. ¿Cómo se puede tener una Ciencia basada en que conozcamos todo? Cuando ni siquiera sabemos cuál puede ser el tamaño real del Universo.
Claro que, aunque eso resulta ser así, no por ello, la Cosmología deja de ser interesante y también, importante. Dado quen está estrechamente entrelazada con las creencias y aptitudes generales de nuestra sociedad, la cosmología puede ser una clave para conocer la psicología colectiva de una civilización. Generalmente, también suele haber algo de ciencia en esto.
emilio silvera
Ene
17
¡La Física! ¡El Universo! ¡Nosotros!
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Los ladrillos del cerebro
El éxito alcanzado por la Física desde finales del siglo XIX hasta esta primera década del siglo XXI no sólo ha transformado nuestra concepción del espacio-tiempo, sino que ha llegado a poner en nuestras mentes una nueva percepción de la Naturaleza: la vieja posición central que asignábamos a la materia ha cedido su lugar a los principios de simetría, algunos de ellos ocultos a la vista en el estado actual del Universo.
Está claro que, los físicos, cada día más ambiciosos en su “querer saber” y su “querer descubrir”, buscan sin descanso nuevos caminos que les lleve a desvelar ocultas maravillas que tienen su hábitat natural en lo más profundo de la Naturaleza misma de la que no sabemos, aún, entender todas sus voces.
Son muchos los obstáculos que se encuentran en ese camino que nos lleva inexorable hacia esa soñada teoría final. Los científicos discrepan de los filósofos que no siempre, están de acuerdo con el hecho de que se pueda llegar a esa teoría última que lo pueda explicar todo, y, la firme creencia de que el Universo siempre tendrá secretos para nosotros, es una constante de la filosofía que la Ciencia, no deja de combatir.
Representación en 3D de la primera colisión en ATLAS. Más imágenes en ATLAS event displays.
Estamos embarcados en una enorme aventura intelectual que eleva al ser humano a la categoría más alta que en el Universo pueda. La Física de altas energías nos llevan a conocer las entrañas de la materia y nos cuenta como se producen esas interacciones en el corazón de los átomos y aunque no sabemos cómo puedan ser las leyes finales ni cuanto será el tiempo que tardaremos en encontrar las pistas que nos guíen por el camino correcto, lo cierto es que, el progreso continúa y cada vez se construyen aceleradores más potentes y sofisticados y telescopios más modernos y con mayor capacidad para transportarnos hacia regiones profundas del Universo en las que podemos contemplar galaxias situadas muy cerca de ese comienzo que llamamos Big Bang.
Como no podía ser de otra manera dado nuestro carácter siempre dispuesto a la controversia y nuestras mentes de pensamientos diversos, la propia idea de una teoría final nos ha llevado a la más profunda discrepancia entre unos y otros. Por una parte, están los partidarios de esa teoría que nos podrá hablar de un Universo de más altas dimensiones, donde la relatividad general de Einstein y la mecánica cuántica de Planck, conviven en la soñada concordia que muchos físicos han soñado y, por la otra, están aquellos que discrepando de los primeros se agarran al pensamiento de la imposibilidad de conseguir una teoría de esas características y, ellos hablan de física-ficción.
Lo cierto es que, a pesar de lo que digan los detractores de estas ideas avanzadas (no pocas veces por envidia y por el simple hecho de que ellos no tienen la capacidad de entender los nuevos conceptos y sus complejas matemáticas), la Física prosigue su camino y en no pocos campos, la lista de los Grupos Especializados que existen en la RSEF es un ejemplo del lugar que la Física ocupa en el ámbito de la Ciencia y en la Sociedad en todo el mundo civilizado.
Real Sociedad Española de Física
Grupos Especializados dentro de la RSEF:
De Adsorción, de Astrofísica, de Calorimetría y Análisis Térmico, de Coloides e interfases, de Cristalografía y crecimiento cristalino, de Didáctica e Historia de la Física y la Química, de la Física Atómica y Molecular, de la Física del Estado Sólido, de la Física en las Ciencias de la Vida, de Física Estadística y No Lineal, de Física de Altas Energías, de Física de la Atmósfera y del Océano, de Física de Polímeros, de Física Médica, de Física Nuclear, de Física Teórica, de Información Cuántica, de Materiales Moleculares, de Reología, de Termodinámica… Yo estoy adscrito a los Grupos especializados de Física Teórica y Astrofísica que son las dos disciplinas que más me gustan.
Todo esto demuestra el enorme interés que la Física tiene en todos y cada uno de los apartados que la puedan afectar y, lo mismo trata de conseguir un líquido de quarks y gluones que, a temperatura ambiente se convierta en el mejor superconductor, que encontrar el Bosón de Higgs para completar y mejorar el Modelo Estándar, investigar en los campos del electromagnetismo y de la radiación con la mirada puesta en la salud con fines médicos que hagan mejor nuestras vidas (tomografía por emisión de positrones computerizada: un buen uso, no un abuso, de la radiación ionizante, neuroimagen por resonancia magnética, estudio de fisiología cardíaca mediante Ecocardiografía Doppler, Radioterapia con radiación sincrotrón, radioterapia del melanoma ocular, una perspectiva de la biología y la medicina desde la teoría del caos y la geometría fractal, etc. etc.), innumerables y sustanciosas colaboraciones con la Astronomía (Astrofísica), con las ciencias de la vida (Biofísica) y, sería interminable la lista de aquellos apartados del saber de la Humanidad en los que la Física está presente.
Independientemente de los muchos proyectos en marcha (ordenadores cuánticos, energía de vacío, semiconductores magnéticos diluidos (materiales para la espintrónica), nanotecnología y nanociencia, modelos de las dinámicas de las ondulaciones en la nanoarena, materia extraña, tecnologías de la telecomunicación y de la información, capacidad de almacenar información, física de fluidos, estudios del efecto de la irradiación sobre el metano, la física de materiales, teletransportación cuántica, estudio del cristal aperiódico de la vida, interacciones fundamentales, sensores de radiación y detección de alimentos irradiados, simetrías exóticas, fibras ópticas, nanotubos… y seguir enumerando lo que la Física es y la infinidad de campos en los que interviene requeriría muchas horas y muchas páginas de las que no disponemos.
Desde lo peuqeño a lo grande, todo está hecho de lo mismo
No prestamos atención pero el futuro se nos echa encima para hacerse presente
Hemos llegado a saber desde lo muy grande hasta lo muy pequeño que, estando en este mundo nuestro, parece que están en diferentes mundos, toda vez que, lo uno se sitúa en el macro mundo, mientras que lo otro está situado en ese otro “universo” inifinitesimal de la cuántica. Sin embargo, ambos “mundos” no han dejado nunca de estar conectados y todo lo grande está hecho de cosas pequeñas. La técnica avanza y los conocimientos nuevos nos posibilitan hacia un futuro que ni podemos imaginar.
A todo esto, nos damos de bruce con problemas tan complejos que la idea que podemos tener hoy de la realidad que sea compatible con los más recientes resultados teóricos y experimentales de la mecánica cuántica. Yo tengo amigos banqueros, Ingenieros, oficinistas, constructores, camareros, mecánicos o marineros que, cuando se les habla de estos temas, miran para otro lado y silban. Poca gente se interesa por estos asuntos que, de su enorme importancia, no sólo depende nuestro bienestar, sino que, en esos conocimientos reside el futuro de la Humanidad.
Si profundizamos, por curiosidad, en los conocimientos que actualmente tenemos de la Astronomía y de la Física o la Química (siempre acompañadas de los números), veremos con admiración que las semillas se pusieron hace ya más de 2.500 años, cuando Tales, Anaximandro o Anaxímes sintieron la curiosidad de conocer y miraron el mundo desde la lógica y, dentro de sus posibilidades trataron de desvelar los secretos de la Naturaleza. Allí, en ese momento, nacio la Ciencia, o, incluso puede que antes en aquellos pensadores de Oriente que ya hablaron de vacío y de átomos y también, de sustancia cósmica.
A medida que el tiempo avanzó, nos dimos cuenta de que, nuestras experiencias cotidianas se alejaban del mundo real y, nuestro sentido común, no siempre nos guiaba en la correcta dirección para poder comprender el mundo. Con frecuencia nos preguntamos: ¿Qué es lo real? ¿Si dentro de nuestras mentes conformamos un “universo” a la medida de nuestras limitaciones –por falta de los datos que nos impide ver la realidad-, cómo podremos llegar a saber la clase de Universo que nos acoge? Aquí nos topamos con el determinismo.
Por lo que se refiere al Universo, caben dos posibilidades: o existe desde siempre o ha tenido un comienzo. ¿Tendría sentido pensar que existió desde siempre? Y, si no ha existido desde siempre, quiere decir que ha tenido un comienzo. ¿Qué había antes? Tal vez nada. Sin embargo, la Física nos dice que la “NADA” no existe y, en ese caso, lo único que podemos hacer es preguntarnos, ¿De dónde salió? Y si había algo que lo formó, ¿Cómo podemos hablar de un comienzo?, ¿No habría que tratar de ir hacia atrás y, buscar el verdadero origen que lo formó? Ante todo esto volvemos al hecho de que el determinismo se refiere a dos cosas a la vez:
- si todo acontecer natural y
- si todo acontecer humano
Deben estar previamente determinados por unos antecedentes y, el determinismo debe quedar, en su caso, circunscrito al acontecer natural. Si así fuera, tendríamos libertad en nuestras decisiones, pero esto implicaría que entre nuestros constituyentes debería haber una “sustancia” que se sustrae el determinismo, lo cual introduciría el interesantísimo problema del dualismo materia-mente, en la tradición de Platón, Descartes y sobre todo Kant. Aunque, finalmente, tiendo a pensar que no existe nada que no esté escrito en las leyes de la Física y de la Química. Además, si la vida es diferente en este aspecto, ¿Dónde está el borde o el final de lo que el Universo pueda o no pueda hacer? ¿En el Homo Sapiens? ¿Es la propia vida la que pone límites a la creación?
Saber para poder responder estas preguntas, la verdad, no sabemos y, es precisamente por eso, por nuestra enorme falta de conocimientos por lo que no paramos de buscar esas respuestas a preguntas que bullen dentro de nuestras mentes y, tengo la esperanza de que, un día, lejano aún en el futuro, si no al completo, si obtendremos una respuesta satisfactoria que, al menos, sacie nuestra curiosidad y, llegados a ese punto o alto nivel del saber, las cosas serán más tranquilas, los conocimientos nos llegaran escalonados y en los momentos precisos en los que la Naturaleza sepa que, ese saber, ya no nos podrá hacer daño alguno, pues, nuestra capacidad para entonces podrá manejar fuerzas y energías que hoy por hoy, nos destruirían.
emilio silvera
Ene
16
¡Las estrellas! Algo más que puntitos brillantes en el cielo
por Emilio Silvera ~
Clasificado en Estrellas ~
Comments (0)
Nuestra especie es muy homogénea en sus características: somos muy similares a pesar de lo que pudiera parecer a causa de las diferencias del color en la piel o en los rasgos faciales de las diferentes poblaciones. Tanto los datos de la genética homo los de la paleantropología muestran que los seres humanos, como especie, procedemos de un grupo pequeño de antepasados que vivían en África hace unos cuatrocientos mil años.
¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.
Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)
Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.
Sus nombres de izquierda a derecha son Alnitak, Alnilam y Mintaka
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Imagen de Sirio A (estrella grande blanca) y Sirio B (estrella pequeña azul) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Seguimos en la Nebulosa del Corazón (otra región)
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.
La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
* La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol
Aquí se esconde la estrella supermasiva Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo
Betelgeuse tiene 1.000 veces el díametro de nuestro Sol
Pero la estrella más grande conocida es:
VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.
El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacio” estelar.
Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.
Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol un puntito casi imperceptible a su lado, y, sin embargo, el Sol fusiona cada segundo 4.654.000 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Las 4.000 toneladas que ya no aparecen en la segunda fase son enviadas al Espacio en forma de luz y calor de lo que a la Tierra llega una pequeña fracción que es suficiente para la Vida en el planeta.
El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.
- Color azul, como la estrella I Cephei
- Color blanco-azul, como la estrella Spica
- Color blanco, como la estrella Vega
- Color blanco-amarillo, como la estrella Proción
- Color amarillo, como el Sol
- Color naranja, como Arcturus
- Color rojo, como la estrella Betelgeuse.
Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.
Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.
La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).
El Sol
De qué está hecho el Sol
La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.
La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.
En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.
Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.
La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.
El Hubble observa la extraña imagen de una estrella de Carbono
La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.
Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.
Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.
Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.
Las fuerzas fundamentales y sus cometidos
Tipo de Fuerza |
Alcance en m |
Fuerza relativa |
Función |
Nuclear fuerte |
<3×10-15 |
1041 |
Une Protones y Neutrones en el núcleo atómico por medio de Gluones. |
Nuclear débil |
< 10-15 |
1028 |
Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– |
Electromagnetismo |
Infinito |
1039 |
Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones. |
Gravitación |
Infinito |
1 |
Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La |
Las constantes fundamentales sus sí,nolos y valores
Constante |
Símbolo |
Valor en unidades del SI |
Aceleración en caída libre |
g |
9,80665 m s-2 |
Carga del electrón |
e |
1,60217733(49) × 10-19 C |
Constante de Avogadro |
NA |
6,0221367 (36) × 1023 mol-1 |
Constante de Boltzmann |
K=R/NA |
1,380658 (12) × 10-23 J K-1 |
Constante de Faraday |
F |
9,6485309 (29) × 104 C mol-1 |
Constante de los gases |
R |
8,314510 (70) × J K-1 mol-1 |
Constante de Loschmidt |
NL |
2,686763 (23) × 1025 mol-3 |
Constante de Planck |
h |
6,6260755 (40) × 10-34 J s |
Constante de Stefan-Boltzmann |
σ |
5,67051 (19) × 10-8 Wm-2 K-4 |
Constante eléctrica |
ε0 |
8,854187817 × 10-12 F m-1 |
Constante gravitacional |
G |
6,67259 (85) × 10-11 m3 Kg-1 s-2 |
Constante magnética |
μ0 |
4π × 10-7 Hm-1 |
Masa en reposo del electrón |
me |
9,1093897 (54) × 10-31 Kg |
Masa en reposo del neutrón |
mn |
1,6749286 (10) × 10-27 Kg |
Masa en reposo del protón |
mp |
1,6726231 (10) × 10-27 Kg |
Velocidad de la luz |
c |
2,99792458× 108 m s-1 |
Constante de estructura fina |
α |
2 π e2/h c |
Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces. La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de e, c y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si e, h y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.
Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, mundos por doquier y, en muchos de ellos podríamos (con asombro), contemplar nuevas formas de vida.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.
Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.
Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.
No hace mucho estuvimos en el Año Internacional de Luz, y, no debemos perder de vista que la luz tiene tanta importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con un asola nochr eterno, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, encide en una montaña, en el bosque, en el horiozonte del Océano, o, simplemente sew refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.
La luz Natural es un don que nos dio la Natursleza y hace posibre que esa luz y ese calor que el Sol nos envia, haga posible la vida en el planrte, se produzca la tan necesario fotosíntesis, y muchos más beneficiosos fenónomemos que, no siempre sabemos valorar en su justa medida.
emilio silvera