Feb
8
Captan la muerte más lenta de una estrella devorada por un monstruoso...
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (0)
Ha durado diez veces más que los procesos similares más duraderos. Creen que es un fenómeno inusual, provocado a la muerte de una estrella muy grande o que fue totalmente engullida
Representación del suceso, ocurrido hace 1.800 millones de años, cuando un agujero negro supermasivo desgarró una estrella – NASA/CXC/UNH/D. Lin et al, Optical: CFHT
Cuando una incauta estrella pasa por las cercanías de un agujero negro, no es raro que acabe desgarrada y convertida en un aperitivo para la oscuridad insondable. Antes de morir, algunos de sus pedazos saltan a gran velocidad hacia el espacio, mientras que otros se calientan antes de caer hacia el interior del agujero y emitir un potente «grito» en forma de rayos X. Después de eso, este material atraviesa el horizonte de sucesos y desaparece del espacio-tiempo.
Este «grito» de rayos X ha permitido a unos investigadores averiguar que ahí fuera, un agujero negro está embarcado en el banquete más largo nunca observado hasta la fecha. El proceso ya lleva más de 10 años produciéndose y es 10 veces más largo que cualquier otro conocido hasta ahora. Este hallazgo ha publicado en «Nature Astronomy». (El artículo se puede leer aquí).
«Hemos sido testigos de la larga y espectacular muerte de una estrella», ha dicho en un comunicadoDacheng Lim, primer autor del estudio e investigador en la Universidad de New Hampshire (Estados Unidos).
En concreto, los científicos han presenciado un evento de disrupción de marea, un fenómeno que ocurre cuando la gravedad desgarra una estrella y que ha sido observado muchas veces desde los años noventa. «Pero ninguno fue, ni de cerca, tan largo como este», ha dicho Lim.
Varios telescopios de Rayos X (como el Chandra, el satélite Swift y el XMM-Newton (de la ESA) permitieron ver este crimen con extremo detalle. Ocurrió en las proximidades de un agujero negro supermasivo llamado XJ1500+0154 y localizado en el centro de una pequeña galaxia situada a 1.800 millones de años luz de la Tierra, en la constelación de Virgo.
Lo que se pudo ver, sorprendió mucho a los científicos. Si normalmente las estrellas emiten un destello de rayos X que se desvanece al cabo de un año, en esta ocasión la llamarada duró más de una década.
Creen que esto indica que, o bien la estrella desgarrada es mucho más masiva que las otras cuya muerte se ha observado, o bien que esta es la primera vez en que se observa cómo una estrella entera es desgarrada y engullida.
Apetito insaciable
Además, los datos de rayos X han mostrado que el agujero negro creció por encima del límite de Eddington, marcado por el equilibrio hidrostático establecido entre la radiación del gas caliente y el tirón gravitacional.
La conclusión de que los agujeros negros supermasivos pueden crecer tan rápido, gracias a estos eventos de disrupción de marea, ayudaría a explicar el rápido crecimiento observado en estos misteriosos cuerpos cuando el Universo tenía menos de 1.000 millones de años. O, como ha dicho Stefanie Komossa, otra coautura del estudio e investigadora en la «QianNan Normal University for Nationalities», en Duyun (China), las increíbles tasas de crecimiento de los agujeros negros «muestran lo precoces que pueden ser».
«Durante casi todo el tiempo en que hemos estado mirando a este objeto, ha estado creciendo rápidamente», ha dicho James Guillochon, coautor del trabjo e investigador en el centro Harvard-Smithsonian de Astrofísica en en Cambridge (Estados Unidos). «Esto nos dice que algo inusual, probablemente una estrella más o menos dos veces más masiva que el Sol, está alimentando al agujero negro».
Los investigadores han predicho que el brillo de rayos X originado en el banquete se reducirá notablemente esta década. Y así, la estrella que fue engullida hace unos 1.800 millones de años, será historia definitivamente.
Feb
7
Marte tenía mucha agua pero estaba casi toda congelada
por Emilio Silvera ~ Clasificado en Marte ~ Comments (0)
La reconstrucción del clima del pasado es un asunto complejo, y mucho más si se intenta hacer con un mundo que se encuentra a más de 50 millones de kilómetros de la Tierra. Durante los últimos años, el trabajo de sondas en la órbita de Marte y sobre su superficie ha obtenido información que sugiere que en el pasado aquel planeta no fue el desierto rojizo que conocemos hoy.
Un trabajo publicado en 2015 y liderado por Gerónimo Villanueva, un ingeniero argentino de la NASA, afirmaba que hace 4.500 millones de años, nuestro planeta vecino albergó suficiente agua como para cubrirlo por completo con un mar extenso pero superficial, con una profundidad media de solo 137 metros. Aquel estudio aseguraba también que Marte fue húmedo durante unos 1.500 millones de años, mucho más tiempo del que fue necesario para que surgiera vida en la Tierra.
El robot Curiosity, que avanza lentamente sobre el planeta rojo desde 2012, nos ha enviado gran cantidad de información sobre el cráter Gale, la zona junto al ecuador donde le enviaron a explorar los científicos de la NASA. Sus imágenes y sus mediciones muestran secuencias de sedimentos que quedaron depositadas en el fondo de un lago hace 3.500 millones de años. Los minerales que contienen esos sedimentos, como barros y sulfatos, indican que la superficie de aquel cráter estuvo en contacto con agua líquida.
Estudios anteriores habían apuntado a la presencia de agua templada sobre el planeta
En diciembre del año pasado, más datos recabados por Curiosity, que por primera vez encontró boro en la ladera del Gale, proporcionaban indicios de que el agua que fluyó por aquella región pudo estar templada, con una temperatura de entre 0 y 60 grados. John Grotzinger, uno de los responsables del robot explorador, afirmaba entonces que la complejidad química detectada sobre Marte apuntaba a “una larga historia interactiva con el agua”.
Añadido al reportaje:
“Este será el destino elegido por la misión, el Cráter Gales de Marte. Después de un viaje de ocho meses hacia aquel planeta, Curiosity se posará a los pies de una montaña de 4,8 kilómetros de altura, una montaña en medio de un cráter de impacto. ¿El impacto no debería de haberlo aplastado y dejado plano? Algunos científicos piensan que el cráter de 155 kilómetros de ancho se llenó con sedimentos a lo largo del tiempo y los vientos implacables de Marte tallaron una montaña en el centro, donde ahora se erige casi tres veces más alta que la profundidad del Gran Cañon. Debido a su historia, esta montaña extrañamente esculpida es el lugar ideal para que Curiosity lleve a cabo su misión de exploración hacia el pasado del Planeta Rojo.”
Esta semana, sin embargo, un artículo publicado en la revista PNAS y elaborado a partir de datos recogidos por Curiosity en las laderas del cráter Gale cuenta una historia diferente. O, al menos, complica el relato sobre el agua marciana.
El grupo internacional de científicos analizó muestras del terreno para calcular los niveles de dióxido de carbono de la atmósfera de Marte hace 3.500 millones de años. Este gas con efecto invernadero sería esencial para hacer posible la combinación de un Sol joven y tenue con las pruebas que se tienen sobre una superficie cubierta de agua. Sin embargo, el análisis de este equipo indica que los niveles de CO2 eran entre 10 y 100 veces inferiores a los requeridos para que la temperatura en la superficie estuviese por encima del nivel de congelación del agua.
Ahora, como explica en un artículo que hoy publica EL PAÍS Alberto González Fairén, uno de los coautores del estudio, será necesario buscar una manera de dar sentido a datos aparentemente contradictorios. González Fairén plantea que “o bien no se han desarrollado aún los modelos climáticos adecuados para explicar las condiciones ambientales de Marte al principio de su historia; o bien todas las secuencias sedimentarias de Gale se formaron en realidad en un clima muy frío”.
En su opinión esta segunda hipótesis es la más probable. El agua líquida en el Marte antiguo habría sido muy salada, permitiendo seguir estable a muy bajas temperaturas. El paisaje de aquella época sería similar a las costas del Ártico terrestre actual, con el hielo como forma dominante del agua en la que los lagos de agua líquida estarían cubiertos de agua sólida.
Feb
7
Sí, el Universo tiene memoria
por Emilio Silvera ~ Clasificado en El Universo ~ Comments (4)
Sí, hay cosas malas y buenas pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.
Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.
Hemos hecho un largo viaje: ¡Desde los átomos a las estrellas!
Gordon Kane (en 2003), un físico teórico de la Universidad de Michigan, decía:
“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones”.
De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.
Podríamos hablar del viaje de la luz, desde que surgió a partir del Big Bang (si fue ese el comienzo de todo), y suponiendo que ya tengamos los aparatos tecnológicos precisos para poder leer, los mensajes que la misma luz lleva escritos de lo que allí, en aquellos comienzos, pudo pasar. La Luz que es emitida por los cuerpos celestes y que nos trae su memoria que están recogidas en el interior de las partículas elementales que son las que dan forma a todos los objetos grandes constituídas en moléculas. Es realmente un canto a la Luz, a su compleja estructura que no hemos llegado a comprender. La luz nos trae mensajes y recuerdos de los orígines en remanentes de estrellas supermasivas que dieron lugar a la creación de otras estrellas y sistemas planetarios y, ¿quién sabe? si también formas de vida.
Lo cierto es que, el Universo, como un todo, nos presenta y manifiesta correlacions bien afinadas que desafían cualquier explicación de sentido común y, desde luego, no es que nuestro sentido común no sea el más común de los sentidos, se trata simplemente de que, no llega a captar la esencia verdadera de lo que el Universo nos quiere transmitir.
Decir Universo es decirlo todo,
Inmensas galaxias cuajada de soles,
Donde orbitan los mundos,
Donde, de la vida, surgen los crisoles.
Todo es fuerza y energía,
Inmersas en un espacio-tiempo,
Transiciones de fase que guían,
Grandes acontecimientos.
La Memoria del Universo,
La Huella que deja el Tiempo,
Quedan gravados los sucesos,
Que descubre el conocimiento.
Sí, el Universo es mucho más que simples estrellas o las galaxias que las acogen, el Universo es también el Tiempo y el Espacio, son Universo las interacciones fundamentales que hace que nuestros mundos sean tal como los conocemos y, gracias a la variedad, la diversidad, las fuerzas y las constantes que en él están presentes, podemos decir que, los muchos mundos que son, algún día lejano en el futuro, nos darán la oportunidad de conocernos, nosotros los huamanos de la Tierra y otros seres de más allá de nuestras fronteras que ahora, por imposibilidades físicas y tecnológicas, no podemos hacer una realidad.
En las rocas más antiguas de la Tierra, fósiles con miles de millones de años nos contemplan
El primer signo de vida en nuestro planeta data de 3,850 millones de años. Son simples formas fósiles encontradas en Groenlandia Sí, también eso de arriba es Universo. Cuando se creó la vida, surgieron unos seres que, evolucionados, llegaron a ser conscientes de su ser y pudieron desarrollar ideas y pensamientos y…también sentimientos que nos llevan de manera directa, mediante fuerzas irresistibles de la Naturaleza, a crear Entropía Negativa para compensar la que acompaña al Tiempo y que tanto daño hace en las cosas vivas o inertes.
Lo cierto es que, las ecuaciones de campo de la Relatividad General, son la mejor muestra de lo asombroso de la Mente humana. Ahí, en esa colección de ecuaciones, está reflejado el Universo entero.
Hemos realizado muchos estudios y llegado a muchas conclusiones que, finalmente, resultaron prematuras. Las mediciones actuales, por ejemplo, del fondo cósmico nos indican que, aun cuando toda la materia del Universo se hubiera originado en el (supuesto) big bang, sin embargo, el espacio-tiempo es plano: el universo se equilibraría con precisión entre la expansión y la contracción. Y, sin embargo, ¡las galaxias se están expandiéndo! Quizá después de todo, existe una constante cosmológica o fuerza similar no descubierta que es el que mantiene el cosmos en estadode expansión.
Los cosmólogos dudan del vacío cuántico y no creen que sea el origen de las energías extrañas representadas representadas por estas constantes. El espacio está lleno de partículas virtuales, en constante variación. La energía de las partículas virtuales concuerdan con los efectos que le atribuyen, incluso cuando tienen una existencia tan breve que no se puede medir. Se cree que esta energía, la “constante cosmológica positiva” es la responsable de la expansión acelerada de las galaxias. Esta suposición que no es nueva, es una más de las muchas que circulan por el mundo científico de la cosmología en el que, los “expertos” cosmólogos, andan locos por averiguar de qué se trata todo esto que no llegan a comprender.
Mapa de altas isotropías de la radiación de fondo de microondas obtenida por el satélite WMAP, una de las pruebas que conducen al problema del horizonte. Lo cierto es que tenemos un modelo cosmológico muy exitoso que explica a) La expansi`´on de Hubble, b) El fondo de radiación cósmico de microondas, y 3 La abundancia de los elementos primordiales. Pero, a pesar del éxito del Modelo Big Bang caliente, existen 3 probemas: El problema del por qué Ω es tan cercano a 1, el problema del Horizonte; el problema del Monopolo.
El problema del horizonte. La coherencia que presentan las relaciones núméricas se ve reforzada por la evidencia de la observación. Ésta última da lugar al llamado “problema del horizonte” : el problema de la uniformidad en la gran escala del Cosmos en todos los puntos del horizonte visto desde la Tierra. Este problema empezó a destacarse tanto en relación a la radiación del fondo del Universo, como en relación a la evolución de sus galaxias.
“Nuestro universo parece ser completamente uniforme. Si miramos a través del espacio desde un extremo del universo visible hacia el otro, se verá que la radiación de fondo de microondas que llena el cosmos presenta la misma temperatura en todas partes.”
“Esto podría no parecer muy sorprendente, hasta que se considera que los dos bordes están separados por casi 28 mil millones de años luz y que nuestro universo tiene apenas algo menos de 14 mil millones de años de edad.”
“Nada puede más rápido que la de la luz, de modo que no hay forma en que la radiación pueda haber viajado entre los dos horizontes para igualar los puntos calientes y los fríos creados en el Big Bang y dejar así el equilibrio termal que hoy vemos.”
Está claro que el problema del Horizonte se les ha ido de las manos a los Cosmólogos que no lo saben explicar y, para ello, tratan de hilvanar extrañas historias y exóticas teorías que, de ninguna manera nos satisfacen.
Imagen: Las fluctuaciones de densidad de 1/100 000 de Kelvin son tratados de la radiación de microondas fósiles 2,73 K. Ellos muestran que alrededor de 380 000 años después del Big Bang, había áreas heterogéneas en el mundo, con un tamaño de entre 100 y 1 000 Mpc.
Como suele pasar siempre que mentes pequeñas quieren expñlicar cosas muy grandes, que no llegan a comprender, se limitan a inventar teorías y hacen conjeturas que, más o menos puedan estar acordes con la realidad que debería ser. El desarrollo de la cosmología física está lleno de enigmas que no podemos explicar y de anomalías que las teorías actuales tratan de desarrollar de la manera más coherente posible y, algunas se acercan y otras, quedan lejos de ser, ni siquiera admisibles por fantásticas e increíbles.
Lo dicho tántas veces…¡Nuestra ignorancia!
emilio silvera
Feb
7
El fino equilibrio que permite la presencia de la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Química de la Vida ~ Comments (0)
Arriba una imagen que ilustra a la Heliosfera, la parte del espacio que está directamente afectada por el Sol a través del viento solar.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Hasta el momento sólo sabemos de la vida en la Tierra
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.
Aquellas magnificas criaturas que, no hubieran sido posible para nosotros, ambas especies nunca podrían haber convivido juntas. Así, su desaparición por la caida de aquel meteorito, vino a solventar el callejón sin salida que suponía la presencia de tan terribles animales para nosotros que, 65 millones de años más tarde, ya estábamos aquí.
Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.
La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrollo la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!
En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
Creo que la clave está en los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.
Hasta rel momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono que, hasta donde podemos saber es el elementos que puede hacer cosas que otros no pueden.
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.
-
C: Carbono
-
H: Hidrógeno
-
O: Oxígeno
-
N: Nitrógeno
-
P: Fósforo
-
Fe: Hierro
-
S: Azufre
-
Ca: Calcio
-
I: Yodo
-
Na: Sodio
-
K: Potasio
-
Cl: Cloro
-
Mg: Magnesio
-
F: Flúor
-
Cu: Cobre
-
Zn: Zinc
-
Glúcidos o Hidratos de Carbono
-
Lípidos
-
Proteínas
-
Ácidos Nucleicos
El el gráfico de arriba están resumidas sus funciones.
A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero, en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.
Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación? Claro que a veces, la realidad supera a lo imaginado.
Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.
¿Cuántos secretos están en esos números escondidos? La mecanica cuántica (h), la relatividad (c), el electromagnetismo (e–). Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!
Extraños mundos que pudieran ser
Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.
Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.
“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”
Las constantes de la naturaleza ¡son intocables!
Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.
Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente.
Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.
La energía oscura, una misteriosa sustancia que se cree culpable de la aceleración de la expansión del Universo existe realmente, según un equipo de astrónomos de la Universidad de Portsmouth y la Universidad LMU de Múnich.
Después de un estudio de dos años dirigido por Tommaso Giannantonio y Robert Crittenden, los científicos concluyeron que la probabilidad de su existencia es de 99,996 por ciento. Sus hallazgos se publican en la revista Monthly Notices de la Royal Astronomical Society.
La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.
Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.
La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?
Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (aF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.
La interacción fuerte, también conocida como interacción nuclear fuerte, es la interacción que permite unirse a los quarks para formar hadrones. La fuerza está mediada por partículas de la familia de los Bosones que se llaman Gluones.
Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que aF > 0,3 a½, los elementos como el carbono no existirían.
No podrían existir químicos orgánicos, no podrían mantenerse unidos.Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida
Nadie pudo escribir la crónica de la Historia de la Vida
Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:
Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.
Co,mo podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.
emilio silvera
Feb
6
El “mundo”, los pensamientos y nosotros
por Emilio Silvera ~ Clasificado en el Mundo y nosotros ~ Comments (0)
Habiendo sido un curioso de todo lo relacionado con la vida, siempre me llamó la atención los comienzos y la evolución que en la misma se produce en los distintos seres vivos que hemos llegado a “conocer”, y, me ha picado la curiosidad que, en nosotros, los humanos, cuando llegamos a una cierta edad, nuestra mente rememora más los hechos del pasado que aquellos que se podrían producir en el futuro, y, tal hecho cierto, nos habla de una especie de decadencia en la que, el ser humano (no siempre consciente), ve como se acerca su final y, de forma intuitiva, regresa a su pasado para repasar su vida, ya que, de alguna manera sabe que lo que le queda por vivir no será mucho y, el futuro, será el futuro de otros y no el suyo, de ahí su falta de interés por él. Se llega a ser consciewnte de que lo pasado es todo lo que tenemos y a eso, no podremos añadir mucho más. Nuestro Tiempo está de paso.
Nuestra estrategia para explicar la base neuronal de la conciencia consiste en centrarse en las propiedades más generales de la experiencia consciente, es decir, aquella que todos los estados conscientes comparte. De estas propiedades, una de las más importantes es la integración o unidad. La integración se rfiere a que el sujeto de la experiencia no puede en ningún momento dividir un estado consciente en una serie de componentes independientes. Es una propiedad que está relacionada con nuestra incapacidad para hacer conscientemente dos cosas al mismo tiempo, como, por ejemplo relacionar en un papel todas las familias de partículas que conocemos mientras que, al mismo tiempo, se mantiene una discusión sobre los agujeros negros.
Un estudio sugiere que la incapacidad para hacer más de dos cosas a la vez puede estar “pre-programada” en nuestro cerebro.
Aplicando la atención hemos llegado a saber que, el electrón tiene una masa en reposo (me) de 9, 109 3897 (54) x 10-31 kg y una carga negativa de 1,602 177 33(49) x 10-19 culombios. Esa realidad, aunque vinieran los sabios físicos de un planeta habitable situado en la estrella Resplandor de una Galaxia muy lejana, cuando hicieran los cálculos matemáticos y los experimentos necesarios, las cifras seguirían siendo las mismas, toda vez que, al tratarse de constantes fundamentales, ni la masa ni la carga pueden tener otra realidad distinta sea cual fuere el observador. Esto nos quiere decir que, hay realidades que nunca varian y, eso, nos puede traer alguna esperanza de que, alguna vez, podríamos conocer el Universo, tal como es.
Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sin la presencia de la luz…¿qué universo sería el nuestro?
Sin embargo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros”, pudiera ser otro mundo distinto al que nosotros percibimos y, podrían “ver” cosas que nosotros no vemos.
Vivímos en nuestra propia realidad, la que forja nuestras mentes a través de los sentidos y la experiencia. Incluso entre nosotrosm mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de algo, sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente. Y, si tenemos en cuenta que somos ya más de siete mil mentes…la diversidad está servida.
Mi enorme interés y afición por estos temas de la ciencia me llevó a crear una Asociación Cultural de Física y Astronomía, estándo empeñado en celebrar reuniones periódicas en las que podamos hablar de todos estos temas. No se encuentra mucho apoyo oficial en este sentido. La divulgación de la ciencia está desdeñada y parece que no interesa que la gente sepa. Pero sigamos con el trabajo que aquí se presenta.
No, no será nada fácil despejar las incognitas presentes en esta inmensa complejidad que llamamos Mente. Creo de manera firme que, finalmente, todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “real”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.
Einstein decía: “La mente que se abre a una idea, jamás volverá al tamaño original”
Es tan grande el poder de nuestra mente que nada hay tan distante que no podamos, virtualmente hablando, traer ante nosotros. Somos capaces ya de escrutar el espacio y vislumbrar los confines del universo en edades muy cercanas a su nacimiento y, merced a los microscopios, nos acercamos al universo atómico para explorar los componentes de la materia. Parece que nada podrá (con el tiempo) escapar a nuestro control, con lo que todo nuevo “mundo” se revelará a nuestro entendimiento.
Esta es la nueva instatánea del universo poco después de la gran explosión conocida como Big Bang. El mapa revela las fluctuaciones de temperatura apenas 380.000 años después. La ha realizado el satélite Planck. Está formada por 15 millones de pixels y envejece la edad de nuestro universo unos 80 millones de años hasta colocarlo en 13.890 millones de años.
Nunca estamos satisfechos de los logros alcanzados (menos mal) y siempre surgirán seres especiales (Copérnico, Kepler, Galileo, Hooke, Newton…) que nos guiarán por el camino iluminado de su genio para mostrarnos la auténtica sabiduría mediante un pensamiento evolutivo que siempre dará un paso adelante, superando así el pensamiento nuevo al anterior. Pero, eso sí, esos avances han sido posible gracias a que hombres y mujeres pensaron con la lógica pero…, nunca dejaron de lado la imaginación.
La prueba de ello la podemos encontrar en Newton y Einstein. ¿Quién puede dudar de la grandeza de Newton? La pregunta está contestada de antemano. Sin embargo, los ejemplos de la historia son muy elocuentes: Newton con su física, Leibniz con su metafísica, con sus principios filosóficos como el de la razón suficiente. Y la física ganó a la metafísica; Newton a Leibniz.
Durante mucho tiempo, espacio y tiempo se entendieron como entes absolutos, hasta que llegó Einstein con sus dos teorías de la relatividad, la especial y la general, y aunque los caminos que siguió para conseguirlos no fueron metafísicos, no podemos negar la intervención de un genio de inspiración superior que a veces, nos puede llevar a pensar que, en algún sentido, finalmente Leibniz había sido el más acertado, ya que las teorías einstenianas pueden ser clasificadas dentro de un orden del pensamiento superior.
Así, la evolución continuó su camino imparable y el espacio y el tiempo absolutos de Newton, resultaron ser menos absolutos de lo que se pensaba; eran relativos y, además, eran una misma cosa, que a partir de ahí pasó a llamarse espacio-tiempo unidos y no separados. Así fue deducido por Minkouski al leer la teoría de Einstein.
Laplace
Quiero mencionar en este punto a dos grandes newtonianos: Lagrange y Laplace. La obra de Newton, como todas las grandes obras, fue discutida y sometida a estudios rigurosos, analizada y removida. La ciencia del genio, claro, permaneció al margen de todas las críticas para dejar de ser discutida y pasar a ser desarrollada. Así ha resultado ser la Historia.
Recordemos en este sentido la cumbre de la física y de las matemáticas del siglo XVIII que es la Méchanique analytique (Chez la Veuve Desaint, París 1788), de Joseph-Louis Lagrange (1736 – 1813), un íntimo amigo de d’Alembert, en la que la mecánica de Newton alcanzó un nuevo nivel de pureza al reducir el sistema a un conjunto de fórmulas generales de las que se podían deducir todas las expresiones necesarias para resolver un problema. O los cinco tomos del Traité de mécanique céleste (Crapelet para J. B. M. Duprat, París 1799 – 1827) de Pierre-Simón Laplace (1749 – 1827), en los que se erradican numerosas anomalías de las explicaciones originales de Newton sobre los movimientos de los cuerpos celestes.
El texto de Laplace, al igual que el de Lagrange, era de difícil lectura para legos en las ciencias matemáticas, y tal complejidad dio lugar a versiones posteriores más sencillas para el entendimiento general, que finalmente hizo posible divulgar los enormes conocimientos alcanzados a partir de Newton, gracias a estos dos genios.
Sí, se vislumbra, a lo lejos, una esplendorada luz que, sin embargo, tiene en todo su centro un signo de interrogación que viene a significar lo que no sabemos. Es mucho lo que nos queda por descubrir y, hombres que, como Newton, Lagrange y Laplace y después Planck, Maxwell y Einstein nos han dejado un camino que seguir, sin embargo, no estamos situados aún en esa zona luminosa del saber sino que…
Un respiro en el camino:
- El ignorante, teme o adora lo que no comprende.
- Los ingratos acaban por disuadir a los virtuosos de poner en prácticas sus bondades.
- Amigo leal y franco, mirlo blanco.
Esto me recuerda aquella aseveración atribuida indistintamente a Séneca y Aristóteles:
“¡Oh, amigos míos, no hay ningún amigo!”
Hay otra que nos da a entender que los amigos egoístas y poco dispuestos a prestarnos su ayuda, en momentos necesarios son inútiles y no importa, pues, prescindir de ellos:
“Amigo que no presta y cuchillo que no corta,
que se pierdan poco importa.”
¡Esto de los amigos! Hay otra que dice:
“El que tiene un amigo, tiene un tesoro.
El que tiene un tesoro, tiene muchos ‘amigos’.”
“Si un amigo se comporta como la sombra que,
cuando luce el Sol nos abandona, no era un amigo.”
Pero volvamos al trabajo y continuemos repasando cosas interesantes y viajemos hasta el siglo XIX, que fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.
La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.
Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad –comunicaciones telegráficas, iluminación, tranvías y metros, etc.–) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.
El punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.
Poco después, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).
Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.
En 1821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).
Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón, crea, con su oscilación, su propio campo magnético, y, aunque pequeño, se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.
Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.
Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.
La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.
Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.
Maxwell
Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.
Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.
Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.
Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1.861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”
Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1.859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).
No quiero seguir por este camino de personajes y sus obras ya que están enmarcados y recogidos en mi anterior libreta (primera parte de personajes), así que desviaré mis pensamientos hacia otras diversas cuestiones de mi interés, y espero que también del vuestro. Antes dejaba la reseña de algún refrán o pensamiento sobre la amistad, y en realidad también podemos ver la cara amable de esta forma de sentimiento-aprecio-amor que llamamos amistad.
Nosotros, los seres humanos, nunca vemos a nuestros semejantes como objetos o cuerpos neutros, sino que los miramos como personas con una riqueza interior que refleja su estado de ánimo o forma de ser, y de cada uno de ellos nos llegan vibraciones que, sin poderlo evitar, nos transmiten atracción o rechazo (nos caen bien o nos caen mal).
¿Cuánto nos dice una simple mirada? Cada uno de nosotros lleva dentro un ser “superior” ¿Sabrás sacar el tuyo al exterior, y, que los demás lo vean? El ser humano es esencialmente un animal social y, partiendo de ese principio, no es bueno que esté sólo. El pintor necesita exhibir sus cuadros, el novelista que lo lo lean, el filósofo exponer sus ideas para que sean debatidas, el Astónomo nos cuenta cosas del Universo y, entre todos, conformamos el mundo de las ideas.
Son muchos y diversos los signos sensoriales que, en silencio, nos llegan de los demás y son recogidos por nuestros sensores en una enorme gama de mensajes sensitivos que llamamos indistintamente simpatía, pasión, antipatía, odio, etc.
Está claro que cuando el sentimiento percibido es positivo, la satisfacción se produce por el mero hecho de estar junto a la persona que nos lo transmite, que con su sola presencia, nos está ofreciendo un regalo, y si apuramos mucho, a veces lo podríamos llamar incluso “alimento del alma”. Estar junto a quien nos agrada es siempre muy reconfortante, y según el grado de afinidad, amistad o amor, el sentimiento alcanzará un nivel de distinto valor.
Caigo en la cuenta de que, además de la materia, el espaciotiempo, y las fuerzas de la Naturaleza, aquí existe algo más que, está dentro de nuestras mentes y que, de momento, no podemos comprender. Sin embargo, si podemos sentir los sentimientos o la satisfacción que nos produce el el querer y poder amar, aprender y descubrir.
¡La Humanidad! ¿Quién la entiende?
emilio silvera