Feb
11
Cassini finaliza su viaje sobre Encélado, la luna de Saturno
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (0)
Reportaje de ABC-Ciencia
Este satélite alberga agua líquida, calor y compuestos orgánicos, lo que le convierte en un buen candidato para albergar vida
Recreación de la sonda en las proximidades del polo sur de Encélado, donde una pluma de hielo es expulsada al espacio a causa del calor interno – NASA/JPL-Caltech
Fue lanzada en 1997 y desde 2004 la sonda «Cassini» ha estado explorando los alrededores de Saturno. Gracias a ella, los científicos han obtenido mucha información sobre la estructura interna y el magnetismo del planeta, y muchos datos sobre las 62 lunas que le rodean. Pero si por algo será recordada esta pequeña nave, es porque ayudó descubrir que dos de estos satélites, Titán y Encélado, albergaban buenas condiciones para posibles formas de vida extraterrestre.
Precisamente hoy, la NASA tiene previsto que la sonda «Cassini» realice su último vuelo sobre la superficie de Encélado, después de las 21 pasadas anteriores que comenzaron en 2005. Esto ocurrirá alrededor de las 18.49 de esta tarde, cuando la nave pase a unos 5.000 kilómetros de distancia de la superficie. Según la NASA, la sonda se centrará en esta ocasión en medir la cantidad de calor que sale del interior del satélite.
«Entender cuánto calor tiene Encélado nos da una idea de cómo es su actividad geológica, y esto convierte a este vuelo en una oportunidad fantástica», ha dicho Linda Spilker, científica del equipo de la misión en el Laboratorio de Propulsión a Chorro de Pasadena, California. Además, con este último vistazo, los científicos completarán la observación de seis años de invierno en el hemisferio sur de Encélado, una región sorprendentemente activa y caliente.
Arriba: Animación de 4 fotografías tomadas a una distancia de unos 15.000 kilómetros de Encélado. Se pueden observar los géiseres que son iluminados por el …
Aunque este satélite apenas mide 500 kilómetros y está recubierto por una corteza de hielo, en 2005 los científicos descubrieron una pluma de hielo que salía despedida desde la superficie del polo sur, como si alguien hubiera quietado el tapón de una botella de champán. Intrigados, la NASA acercaró a «Cassini» para echar un vistazo y con el tiempo se comprobó que en este «chorro» de hielo había también compuestos orgánicos, uno de los ingredientes indispensables para la aparición de la vida.
Los tres ingredientes para la vida
Las exploraciones posteriores no fueron menos interesantes. Los científicos descubrieron que las poderosas fuerzas gravitacionales de Saturno convierten el interior de Encélado en una dinámica fábrica de calor y procesos geoquímicos. Además, junto al calor y los compuestos orgánicos, la NASA halló el último ingrediente necesario para la vida: el agua. Bajo la corteza de hielo, de unos 30 o 40 kilómetros de grosor, Encélado esconde un océano global de agua, descansando sobre un núcleo rocoso.
Visión artística del cielo de Encélado, por David Seal (NASA). Encelado tiene mucha actividad volcánica y también, es poseedor de mucha agua en su interior. Es una de las lunas de Saturno que deben ser estudiadas.
Por todo esto, Encélado se ha convertido en uno de los mejores candidatos para encontrar vida extraterrestre en el Sistema Solar, junto a Marte, Europa, una luna de Júpiter, y Titán, otra de las lunas de Saturno, que la sonda Cassini también ha explorado. Si en Encélado hay agua, calor y compuestos orgánicos, en Titán hay lagos de metano y un océano subterráneo de agua y de amoniaco.
Pero habrá que esperar para encontrar vida. En los próximos años la NASA estudia enviar una nueva misión a Encélado e incluso aterrizar con un módulo de aterrizaje para tomar muestras en las proximidades de las fuentes hidrotermales. Mientras tanto, habrá que conformarse con procesar los datos recogidos por Cassini en su último vuelo y en pasadas anteriores. Aún hará nuevas observaciones en el vecindario de Saturno hasta septiembre de 2017.
Feb
11
El Universo y la Vida
por Emilio Silvera ~ Clasificado en El Universo y la Química de la Vida ~ Comments (0)
Ciencia
Guillem Anglada-Escudé: «Cerca de la Tierra puede haber muchos mundos habitables
El astrofísico lideró el equipo que descubrió Próxima b, el planeta extrasolar potencialmente habitable más cercano
Guillem Anglada-Escudé, en Madrid – Isabel B. Permuy
Guillem Anglada-Escudé (Ullastrell, Barcelona, 1979), profesor de Astrofísica en la Universidad Queen Mary de Londres, es el hombre a la cabeza del equipo que descubrió Próxima b, el planeta potencialmente habitable más cercano a la Tierra, situado a tan solo 4,2 años luz en la órbita de Próxima Centauri. El científico ha sido invitado por la Obra Social «la Caixa» en Madrid para dar a conocer cómo es ese prometedor mundo. «La comunidad científica ha estado esperando muchos años una cosa así», dice.
-¿Qué posibilidades hay de que Próxima b sea capaz de albergar vida?
-De momento, lo que sabemos sobre este planeta es su período orbital y su masa aproximada, un poco mayor que la de la Tierra. A partir de ahí todo es especulación. Una de las más sustentadas es que sea de pequeño tamaño, ya que orbita una enana roja, una estrella también pequeña. Si reúne esas características, la probabilidad de que sea terrestre es muy alta. Todo indica que es un planeta normal, parecido a la Tierra en propiedades.
-¿Y qué tiene en contra?
-Cabe la posibilidad de que gran parte de su atmósfera, si es que la tiene, se haya erosionado a lo largo del tiempo por efecto del viento solar, ya que las estrellas pequeñas jóvenes son muy activas. Sin embargo, si la atmósfera es gruesa y existe un campo magnético mínimo, esa actividad no tiene por qué ser un problema.
-¿Qué hace falta para confirmarlo?
-Lo más importante es averiguar si Próxima b tiene atmósfera. En menos de diez años podríamos tener la respuesta. Puede ser incluso mucho más temprano, pero nos tiene que «tocar la lotería». Hemos hallado el planeta por el movimiento de la estrella, pero ahora mismo estamos trabajando en la detección de su tránsito, es decir, su paso por delante de la estrella. Si eso ocurre, podríamos estar investigando su atmósfera en cuestión de meses, si no semanas.
-¿Por qué es tan difícil ver su tránsito?
-Cuesta distinguir el paso del planeta porque la estrella es activa. Hemos probado a buscarlo en el rango óptico, pero hay demasiadas cosas que parecen tránsitos. No sirve. El problema es la confusión. Por eso nos hemos pasado al infrarrojo, donde se ven menos manchas. La probabilidad de que el tránsito ocurra es de una sobre cincuenta. No es fantástica pero tampoco tan mala. Sería muy relevante. En tres meses, todos los telescopios del hemisferio sur apuntarían a Próxima b para estudiar su atmósfera.
-¿Y entonces?
-Si esa atmósfera existe, es probable que detectemos algunas moléculas y buscaremos evidencias de agua, tal vez oxígeno, tal vez metano… Ciertas combinaciones de estas moléculas no son estables a lo largo del tiempo y solo pueden mantenerse si hay un proceso que las genera, ya sea geológico o biológico. Ese es el motivo, por ejemplo, por el que la misión ExoMars busca metano en Marte, donde podría haber formas de vida microscópicas en el subsuelo que generen ese metano.
-Meses después del anuncio del hallazgo de Próxima b, ¿hay algo nuevo que no se haya contado?
-Estamos más convencidos de que hay un buen rango de parámetros donde este planeta podría tener condiciones óptimas para el desarrollo y sustentación de la vida. Cuando lo anunciamos hablábamos de la zona habitable, pero temíamos por la destrucción de la atmósfera. Parece que no es un problema tan grande como se pensaba al principio. Además, el planeta está acoplado a su estrella, lo que quiere decir que la mitad siempre está en sombra y la otra, siempre luminosa.
-En una mitad es noche perpetua y en la otra un eterno día…
-Sí. Hace diez años se creía que era imposible que un planeta así tuviera una atmósfera y agua líquida, pero ahora sabemos que la atmósfera redistribuye el calor y puede mantener el agua líquida en distintas partes. Así que eso realmente no es un problema.
-Otros investigadores han dicho que puede ser un mundo acuático. ¿Es posible?
-Sí. Estos planetas se forman muy lejos de la estrella, más allá de la llamada línea de nieve, donde la nieve y el hielo pueden mantenerse sólidos. Si ese es el caso, sería muy rico en agua. Se estima un 10%. Al migrar a su posición actual, más cerca de la estrella, no puede deshacerse de tanta agua y acaba como un mundo acuático. En vez de tectónica de placas, tendríamos la litosfera debajo, una capa de hielo de un par de centenares de kilómetros y después un océano de otro par de centenares de kilómetros.
-¿Y un planeta así sería habitable?
-Podría ser, pero como no tenemos ningún mundo de este tipo en el Sistema Solar, es un escenario que se ha explorado poco. Un hemisferio podría estar congelado, y el otro ser un océano. Podría haber continentes flotantes…
-¿Cuál sería el aspecto de Próxima b? ¿Nos podemos imaginar cómo es?
-Si tiene atmósfera, no va a tener cráteres, como ocurre en la Tierra y Venus. Si esta es muy tenue, tipo la de Mercurio o Marte, sería un mundo de color rojizo anaranjado. Bastante oscuro, porque la mayoría de la energía viene por el infrarrojo, como bajo las luces de los bares, que dan calor y se ve naranja. Si hubiera plantas, a nuestro ojo se verían negras, porque no hay luz azul. No habría puesta de sol. El cielo no sería azul y veríamos las estrellas de día. Las formas de vida, los animales, podrían ser similares a los que conocemos. Aunque si hay algo, lo más probable es que sea microscópico. Pero nunca se sabe. Aquí también fue microscópica la vida durante muchos años.
-¿Enviaremos una sonda hasta allí algún día?
-De momento, es el destino que tenemos, el más cercano. Al menos si vamos allí sabremos que hay un sitio para mirar, no sé si para aterrizar. Una sonda podría hacer una pasada y sacar fotos, como se hizo con Plutón. Pero no es el único destino, también hay otros lugares que merecen la pena.
-¿Qué le parece la iniciativa Starshot de Steven Hawking de lanzar sondas microscópicas interestelares?
-Bueno, no va a funcionar exactamente como lo tienen planeado, pero en estas cosas sabes hacia dónde vas y en el camino aprendes un montón de cosas. Con esa justificación, habrá un desarrollo tecnológico.
-Próxima b orbita una enana roja. ¿Son las mejores candidatas para encontrar planetas?
-No necesariamente, pero sí donde podemos detectarlos más fácilmente. La detección en estrellas solares no es factible. Ni entendemos la estrella ni los instrumentos nos dan la precisión. Lo bueno es que un 80% de las estrellas existentes son enanas rojas. Tenemos un montón donde mirar. El proyecto español-alemán CARMENES tiene un instrumento optimizado para buscar estos planetas en las enanas rojas más cercanas.
Gliese 581
-¿Puede haber más mundos como Próxima b cerca de la Tierra?
-Sí, muchos. De hecho, tenemos sospecha de bastantes. Estuvimos detrás de Próxima b cuatro años y no fue la única señal que observamos. Nos fijamos en entre 300 y 400 estrellas y miramos todo tipo de señales que podían indicar planetas. Según las estadísticas obtenidas a partir de los datos del telescopio espacial Kepler de la NASA, al menos un 30% de las enanas rojas deberían tener planetas parecidos en órbitas templadas. Es decir, si coges las cien estrellas más cercanas, pues treinta.
-¿Cuándo encontraremos el «gemelo de la Tierra»?
-No va a ser ahora. Próxima b no anticipa ese descubrimiento. Si tenemos mucha suerte, quizás demos con el «gemelo de la Tierra» en el tránsito de una estrella cercana al Sol, tipo Alfa Centauri A y B, pero la probabilidad es muy baja. Para detectar planetas realmente análogos a la Tierra necesitamos telescopios espaciales que nos permitan separar bien la luz del planeta de la de la estrella. Y eso es muy difícil, porque el contraste es de diez a la nueve. Por cada fotón que te llega del planeta, te llegan mil millones de la estrella. Hay algunos planetas de Kepler que pueden ser «gemelos de la Tierra», pero están tan lejos y son tan débiles las estrellas que hay pocas expectativas de poder aprender nada más. En 2025 la misión PLATO de la ESA mirará estrellas cercanas y brillantes para buscar el tránsito de planetas terrestres, dar con el más cercano, ver su atmósfera y buscar moléculas.
Kepler 186 f
-¿Cuáles son para usted los candidatos conocidos más prometedores?
-Kepler 186 f (del tamaño de la Tierra y en zona habitable); una supertierra en la estrella de Kapteyn, porque es muy vieja, 11.000 millones de años, un tiempo más que suficiente para la formación de la vida; Próxima b, porque está cerca y es pequeño…
-¿Y Gliese 667 Cc, en cuyo descubrimiento participó?
-Ese también es un buen candidato. Creemos que se trata de un sistema múltiple. No hay un solo planeta, sino seis, y tres de ellos en zona habitable.
-Cuando anunció Próxima b, dijo que era «la experiencia de toda una vida». ¿Aún lo cree?
-Sí, pero la ciencia no ha sido lo más difícil. La tecnología para conseguirlo estaba presente desde hace diez años. Sin embargo, hemos tenido que pelearnos para demostrar que vale la pena invertir tiempo y esfuerzo, incluidas disputas bastante agrias. Pero lo logramos y fue un revulsivo. Desde que publicamos el artículo en la revista Nature ya han aparecido más de 20 estudios de otros investigadores sobre el asunto.
-¿Cree que puede haber vida fuera de la Tierra?
-Lo raro sería que no la hubiera. Si es inteligente o no, eso es otra historia. Ahí le remito a la «paradoja de Fermi»: si hubiera vida inteligente y fuera abundante, deberíamos estar estableciendo contacto con una civilización por año. Yo creo que, de existir, no es abundante y no dura lo suficiente. Es preocupante. Quizás ocurra que la vida inteligente o se destruye a sí misma o algo pasa y nunca sale de su planeta.
Feb
10
Los secretos del microbioma humano
por Emilio Silvera ~ Clasificado en Las bacterias y nosotros ~ Comments (3)
Un cultivo de la bacteria E. coli. CHRISTIAN CHARISIUS AFP/Getty Images
El microbioma (conjunto de microbios que viven en el intestino humano) se ha estudiado hasta ahora aislando y cultivando bacterias por las técnicas convencionales, lo que tiene el problema de que solo algunas bacterias crecen en cultivo. Ahora, el Proyecto Microbioma Humano usa un enfoque metagenómico, consistente en extraer todo el ADN y secuenciarlo en masa, al estilo de lo que se lleva haciendo unos años con el agua de mar. Los científicos empiezan a descubrir así las enzimas y rutas metabólicas que son importantes para los humanos, sobre todo para generar aminoácidos, los componentes de las proteínas.
La investigación del microbioma no solo tiene un interés básico. La composición de nuestras bacterias intestinales afecta a la maduración del sistema inmune humano, y es un factor relevante en el desarrollo de las enfermedades no solo gastrointestinales, sino también cardiovasculares. Sus relaciones con el cáncer y la diabetes están sometidas a investigación activa.
Todo esto quedó atrás y vamos hacia el futuro de la Biología
Emily Balskus y su grupo del departamento de biología química de la Universidad de Harvard, junto a colegas del MIT (Instituto de Tecnología de Massachusetts, también en Boston) y el Instituto Broad, uno de los nodos del proyecto genoma, han desarrollado una nueva técnica llamada enzimología genómica, y presentan sus resultados en Science.
Como todo en biología, las enzimas (proteínas que catalizan reacciones químicas) se agrupan en superfamilias, o grandes grupos de decenas de miles de enzimas relacionadas por su origen común. También suelen compartir aspectos de su mecanismo, pero solo en un sentido profundo de su lógica química que no revela de inmediato su función metabólica concreta, su lugar exacto en el laberinto de reacciones que conforma la cocina de cualquier célula viva. Balskus y sus colaboradores han logrado utilizar los datos masivos del metagenoma de 378 personas, y las poderosas matemáticas de la genómica, para averiguar la función exacta de las enzimas más importantes. Esa es la nueva enzimología genómica.
Los investigadores han logrado utilizar los datos masivos del metagenoma de 378 personas, y las poderosas matemáticas de la genómica, para averiguar la función exacta de las enzimas más importantes
La técnica funciona de manera similar a la construcción de un árbol genealógico, y produce redes de similitud de secuencia (sequence similarity networks, SSN). Al igual que el ADN, las proteínas son textos o secuencias, que se pueden comparar entre sí como dos frases o dos cadenas de números. Los algoritmos de comparación generan árboles evolutivos, donde cada rama agrupa unas secuencias tan similares que es muy probable que tengan la misma función. Luego hay que comprobarlo por métodos bioquímicos convencionales, pero la enzimología genómica focaliza mucho el problema hasta hacerlo tratable.
El aparto digestivo está repleto de ellas
Hay otra peculiaridad de las bacterias que resulta de suma utilidad. Los genes de las enzimas con funciones relacionadas, como las que catalizan sucesivas reacciones de la misma ruta metabólica, están a menudo contiguos en el genoma. Conociendo algo de una ruta metabólica, esto da una pista importante sobre la función de cualquiera de ellas.
Para explicar el hallazgo principal de los científicos de Boston, hay que utilizar un poco de nomenclatura bioquímica, que no es el más atractivo de los géneros literarios. Una de las enzimas clave, hasta ahora desconocida, interviene en la ruta metabólica que produce la L-prolina, un aminoácido fundamental en las proteínas: la enzima se alimenta de un compuesto llamado trans-4-hidroxiprolina, lo deshidrata y lo pone en condiciones de generar la L-prolina. Balskus y sus colegas han comprobado que esa enzima es universal en los microbiomas de todas las personas analizadas.
“El metabolismo de la prolina”, escribe en un comentario Margaret Glasner, del departamento de Bioquímica y Biofísica de la Universidad de Texas A&M, “puede ser un nexo importante entre el microbioma del intestino y la salud humana, porque el metabolismo de ese aminoácido se asocia en humanos con el cáncer y con las respuestas celulares al estrés”.
Nuestra química más fundamental
El trabajo abre perspectivas inexploradas hasta ahora. La enzima de la prolina es la más importante caracterizada, pero es miembro de una superfamilia, muchos de cuyos miembros son también ubicuos en todos los metagenomas analizados. Y la técnica, por otra parte, puede utilizarse para descubrir enzimas en otros contextos, como los suelos contaminados y los ambientes extremos.
El microbioma humano se ha revelado en los últimos tiempos como un colaborador necesario de nuestra química más fundamental. Sin él, de hecho, no seríamos seres vivos autónomos. Nuestras bacterias nos ayudan a metabolizar (transformar) los componentes de la dieta que nosotros no sabemos digerir; sintetiza nutrientes y vitaminas esenciales para el funcionamiento de nuestras células (las vitaminas suelen ser coenzimas, o factores que las enzimas necesitan para su funcionamiento); y gestiona compuestos cuyas combinaciones afectan a la salud. La propensión a la obesidad, por ejemplo, tiene relación con la composición del microbioma.
El Proyecto Microbioma Humano es una iniciativa de los Institutos Nacionales de la Salud (NIH) de Estados Unidos, la locomotora de la investigación biomédica pública mundial. Aunque se fundó en 2008 con fondos (115 millones de dólares) para cinco años, sus muestras y resultados siguen siendo una fuente de exploración, como muestra la investigación actual. Su objetivo es el estudio exhaustivo de las bacterias del intestino, sobre todo en relación con las condiciones patológicas. También incluye las bacterias de la boca, la nariz, la piel y la vagina.
Feb
10
El «eslabón perdido» de los agujeros negros a 13.000 años luz
por Emilio Silvera ~ Clasificado en Agujeros negros ~ Comments (0)
Situado en el centro de un cúmulo, tiene una masa de 2.200 soles y puede ser el primero de tamaño intermedio descubierto
Los agujeros negros de tamaño medio tienen una masa entre 100 y 10.000 soles – CfA / M. Weiss
El tamaño importa. Al menos en el caso de los agujeros negros, uno de los objetos más extraños y fascinantes de todo el Universo. Desde hace tiempo se conocen dos tipos extremos de estos devoradores de materia: los pequeños, que tienen el peso de varios soles; y los supermasivos, unos gigantes inconmensurables con la masa de millones o miles de millones de soles que suelen estar situados en el centro de las galaxias. Pero los astrónomos llevan mucho tiempo barruntando la existencia de una tercera categoría, una intermedia, con una masa de entre 100 y 10.000 soles. Quizás ya tengan la respuesta. Un equipo del Centro Harvard-Smithsoniano de Astrofísica (CfA) ha encontrado pruebas de un agujero negro de tamaño mediano, con una masa de 2.200 soles, que se esconde en el centro de un cúmulo globular llamado 47 Tucanae, a 13.000 años luz de la Tierra.
Photo of the globular star cluster 47 Tucanae taken with the Very Large Telescope, in Chile. Right: NASA/ESA Hubble Space Telescope photo of the core of 47 Tuc. The
¿Y qué tiene esto de particular? «Queremos encontrar agujeros negros de masa intermedia porque son el ‘eslabón perdido’ entre los de masa estelar y los supermasivos. Pueden ser las semillas primordiales que se convirtieron en los monstruos que vemos hoy en los centros de las galaxias», explica Bulent Kiziltan, autor principal del estudio.
La caza de este tipo de agujeros ha estado llena de contradicciones y sinsabores. En 2005, los astrónomos creyeron detectar uno intermedio en un cúmulo de la galaxia vecina Andrómeda, pero modelos alternativos demostraron que los datos podían ser explicados sin ese objeto. En 2014, el candidato M82 X-2 resultó no ser un agujero negro, sino una estrella de neutrones. Y otros propuestos tenía una masa demasiado pequeña. En resumen, que ese «eslabón perdido» seguía perdido.
Así que los astrónomos de Harvard se fijaron en 47 Tucanae, un cúmulo globular de 12.000 millones de años que se encuentra en la constelación austral de Tucana, el tucán. Denso y poblado, contiene miles de estrellas y dos docenas de púlsares en un globo de solamente 120 años luz de diámetro.
En realidad, no es la primera vez que este cúmulo es examinado en busca de un agujero negro central, pero los intentos anteriores no tuvieron éxito. En la mayoría de los casos, estas regiones del espacio se encuentran por la pista de los rayos X procedentes de un disco de material caliente que gira alrededor de ellas. Pero este método sólo funciona si el agujero se está alimentando activamente del gas cercano. El centro de 47 Tucanae no tiene gas, dejando hambriento a cualquier agujero negro que pueda estar al acecho allí.
El agujero negro supermasivo en el centro de la Vía Láctea también revela su presencia por su influencia en las estrellas cercanas. Años de observaciones infrarrojas han mostrado un puñado de estrellas en nuestro centro galáctico girando alrededor de un objeto invisible con un fuerte tirón gravitacional. Pero el concurrido centro de 47 Tucanae hace que sea imposible ver los movimientos de las estrellas individuales.
Estrellas disparadas
Así que, en este caso, los investigadores tuvieron que arreglárselas y buscar otras evidencias. La primera fueron los movimientos de estrellas de todo el cluster. El ambiente de un cúmulo globular es tan denso que las estrellas más pesadas tienden a caer hacia el centro de la agrupación. Un agujero negro de tamaño mediano en el centro del cúmulo actúa como una «cuchara» cósmica y revuelve la olla, causando que esas estrellas sean catapultadas a velocidades más altas y mayores distancias. Esto imparte una señal sutil que los astrónomos sí pueden medir.
En efecto, mediante el empleo de simulaciones por ordenador de movimientos estelares y distancias, y comparándolas con las observaciones en luz visible, el equipo encontró que un agujero negro intermedio era la única explicación para semejante agitación gravitacional.
Los púlsares, restos compactos de estrellas muertas cuyas señales de radio son fácilmente detectables, también pusieron sobre aviso a los investigadores. Estos objetos también son impulsados por la gravedad del agujero central, haciendo que se encuentren a una mayor distancia del centro del cúmulo de lo que se esperaría si no existiera ningún agujero negro.
En conjunto, para los astrónomos estas pistas sugieren la presencia de un agujero negro de alrededor de 2.200 masas solares dentro de 47 Tucanae. Como este agujero ha eludido ser detectado durante tanto tiempo, los astrónomos creen posible que existan otros parecidos escondidos en otros cúmulos globulares. Habrá que continuar la búsqueda.
Feb
9
¿Vida fuera de la Tierra? Antes de que termine el siglo
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (0)
“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”
Así se expresaba Fred Hoyle.
Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.
Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).
Valle Marineris en Martes hecho por inmensas correntías del pasado
Las grandes correntías que en el pasado hicieron el Gran Cañón de Marte, dejó su huella en el presente
los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.
Cuando los técnicos de la Misión Cassini-Huygen la vieron partir hacia Saturno, nunca imaginaron lo mucho que de aquel Proyecto obtendría la Humanidad en conocimientos para el futuro.
Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.
Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.
Sí, según parece en Europa hay más agua que en la propia Tierra. Así lo confirma un estudio realizado por la Sonda Galileo adquiridos en un estudio de obervación desde 1995 a 2003.
En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.
Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.
Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.
Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.
Del extraordinario viaje emprendido dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.
No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran era aquel “mundo”.
Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.
Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.
La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.
La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.
¡Ya veremos!
emilio silvera