miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El saber Sí ocupa un lugar en nuestras Mentes

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés. Nuestra curiosidad nos llama a desentrañar los misterios y secretos que, tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar sucediendo ahora, o, en el futuro pusidieran tener lugar, ya que, de alguna manera, todas ellas tienen que ver con nosotros que, de alguna manera, somos parte de la Naturaleza, del Universo y, lo que sucedió, lo que sucede y lo que sucederá… ¡Nos importa!

Cinturón de Gould. La linea indicada como 500 PC (500 Parsecs) equivales a una distancia al Sol (en el centro) de 1.630 años-luz que son 31.000 billones de kilómetros. Las distancias del Espacio no son Humanas, nosotros, aunque estamos y formamos parte del mundo, del Universo, en realidad, no hemos llegado a poder asimilar distancias como las que, en el Cosmos, podemos constatar.

El Cinturón de Gould es un sector del Brazo de Orión. El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista, en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión.

Se ha discutido, argumentado y teorizado sobre la vida durante siglos, quizás milenios. Lo que conocemos como vida es ni más ni menos que una estructura formada de átomos que se han organizado y que lograron crear mecanismos que les permiten mantener esa organización. Decir que los átomos “se han organizado” es una locura. En el mundo material no hay nada más básico que un átomo, y algo tan básico no es capaz de hacer algo tan complejo como “organizarse”.

¿O sí?

Una célula es un sistema muy complejo (célula animal)

La realidad es que sí. Los átomos, en cumplimiento de leyes físicas simples, se organizan en estructuras. La más sencilla es una molécula, que puede estar formada por algunos átomos, pero se llega a estructuras bastante complejas y ordenadas, como los cristales y fibras

naturales y maravillosas formas como las buckyballsBuckyballsBuckyballs es el nombre coloquial utilizado para describir un fullereno. Los avances logrados por la Humanidad, son tan grandes que, estando a nuestro alrededor, no somos conscientes de su verdadero alcance.

Nanomateriales aplicados a dispositivos electrónicos y los tres tipos de geometrías de nanotubos de carbono

Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.

Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética. No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo.

Claro que nada de esto se aproxima al nivel de organización que implica la vida. Recordemos ahora la parte de la frase sobre los átomos que dice “lograron crear mecanismos”, lo cual jamás puede ser cierto… al menos no en la forma directa que uno se imagina al primer momento. Un virus, por ejemplo, es una especie de “máquina” capaz de propagarse. No de reproducirse, al menos no en el sentido que se le da a la palabra en biología, pero sí de activar un mecanismo que permite obtener copias de sí mismo.

Los virus infectan tanto células como bacterias porque no pueden multiplicarse por sí mismos. Al hacerlo, usan las moléculas y enzimas de su desafortunado hospedero para replicar su genoma y construir sus cápsulas virales, las cuales son muy parecidas a unas sondas espaciales pero que, en este caso, sólo transportan ADN o ARN con el único fin de repetir el ciclo en otra víctima.

Antes de seguir quiero hacer una salvedad: todo lo que diga encontrará alguien para discutirlo. Los conceptos básicos que se aplican a la vida aún no están del todo definidos. Por ejemplo, sé que hay corrientes de pensamiento para las cuales los virus no son seres vivos. De acuerdo, sólo es cuestión de definiciones, y no es necesario —ni posible— discutirlas aquí. Yo prefiero incluir a los virus en este análisis porque son algo así como el primer nivel de estructura a discutir (sí, sé que existen estructuras menores, pero no con tanta entidad).

Siguiendo en la línea que venía, la cuestión es que parece haber una barrera entre el nivel de organización que pueden alcanzar los átomos por leyes simples de la física y la estructura que presenta la vida. ¿Es esto cierto? Da para discutir mucho, pero creo, en base a muchas líneas de investigación y descubrimientos que se vienen presentando, que no. La estructuración de la vida es gradual. De un evento físico no surge una célula ni, mucho menos, un ratón, pero la realidad es que cada uno de los pasos intermedios que llevan desde un amasijo de átomos a una de estas formas de vida son dados por fenómenos que tienen que ver con la física, la química y… la propia orientación de lo que es la vida. Digamos que la vida, una vez aparecida, crea un entorno de leyes propias que impulsan su desarrollo. ¿Cómo y por qué se crean estas leyes, en base a qué voluntad? Ninguna. (Y aquí surgirán de nuevo las discusiones.) Simplemente, no puede existir la vida sin esas leyes. El hecho de que estemos en un planeta que tenga vida por doquier, y muy desarrollada, es porque la vida, cuando existe, sigue estas reglas que le permiten desarrollarse, y si no las sigue desaparece. Es como decir que hay leyes físicas, leyes básicas del universo, que han sido puestas especialmente para la vida. De hecho, considerando la vida una forma de la materia, creo que es así. Es decir, la vida —cumpliendo los requisitos— sería algo inevitable en el Universo…

            Kepler-16b, un mundo que orbita dos soles (NASA).

Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus. Otros mundos, más parecidos a nuestra Tierra, ¿por qué no tendrían formas de vida? Lo lógico es pensar que sí, que albergue la vida más o menos inteligente y conforme se haya producido su evolución.

Me estoy extendiendo fuera del tema. No pretendo estudiarlo filosóficamente, sino usar un poco de lógica para llegar a una respuesta para una pregunta que se hacen los científicos, y que nos hacemos todos, excepto aquellos que quieren creer en entidades superiores que se ocuparon de ello (lo cual es, simplemente, pasar el problema a otro nivel, sin resolverlo): ¿Cómo es que la vida evolucionó desde átomos, moléculas, células, seres simples, a una especie como la nuestra, tan tremendamente compleja y capaz de, como lo estoy haciendo yo, reflexionar sobre sí misma, transmitirlo y, además, cambiar el mundo como lo estamos cambiando?

Reactor de fusión Tokamak

Lo estamos cambiando de muchas maneras.  Estuve pensando que, si se prueba que es cierta, esta teoría de los georreactores planetarios se debe aplicar a todos los cuerpos planetarios del universo. Estoy seguro de que ustedes deben conocer la ecuación de Drake que intenta estimar el número de inteligencias que podrían existir en el universo, algo que se tiene en gran consideración en el SETI. ¿Se debería agregar un nuevo valor a esta fórmula que represente el tiempo esperado de vida del georreactor en un planeta tipo Tierra? Quizá en el núcleo de los planetas que forman ese escudo magnético a su alrededor, esté el secreto del surgir de la vida en ellos.

ARN Primigenio

Yo creo en una cosa, y esto puede desatar miles de discusiones: llegar desde materiales básicos a la creación del ser humano se basó en juntar los materiales (átomos), tener las leyes físicas actuando y a la casualidad (o azar). ¿Qué quiero decir con “casualidad”? Que la existencia de la vida está ligada a un sorteo permanente. Que hay una enormidad de cosas que son necesarias para que pueda haber vida (es innegable que se han dado en este planeta) y para que pueda continuar una vez producida. Que fue necesario un transcurso determinado de hechos y situaciones para que los microorganismos aparecieran, se propagaran, compitieran y se fueran haciendo más y más complejos. Que se debieron dar infinidad de circunstancias para que estos organismos se convirtieran en estructuras multicelulares y para que estas estructuras se organizaran en órganos ubicados dentro de seres complejos. Y que se necesitaron enormidad de coincidencias y hechos casuales para que las condiciones llevaran a algunos de estos seres terrestres, vertebrados, pequeños mamíferos (por los cuales durante una enormidad de tiempo ningún juez cósmico hubiese apostado), a evolucionar para convertirse en los animales que más influimos en este mundo: nosotros.

La cantidad de circunstancias, situaciones y condiciones en juego es enorme. En un libro muy interesante de Carl Sagan, anterior a Cosmos, llamado Vida inteligente en el Cosmos (junto a I. S. Shklovskii), se plantea muy bien este tema. Se puede encontrar allí una enumeración de las condiciones que requiere la vida y una especie como la nuestra para existir. Desde las características de nuestra galaxia, su edad, composición, situación, forma; a las de nuestro Sol, su sistema de planetas, la ubicación de la Tierra, su tamaño, su rotación, su inclinación, su composición, los vecinos que tiene… y mucho más.

Llegar a esta red compleja que es nuestra mente, ha costado, más de diez mil millones de años, el tiempo que necesitaron las estrellas para fabricar esos elementos de los que estamos hechos. El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos. Pero sigamos.

Yo voy a agregar algunas cosas que me parecen significativas, que han surgido de los últimos descubrimientos y observaciones. Enumero algunas, aunque ya verán que hay más. Extinciones y cambios físicos producidos por impactos de asteroides; influencia de estrellas cercanas, fijas y viajeras; el “clima” interestelar; el “clima” galáctico; las circunstancias que han sufrido los otros planetas; nuestras circunstancias, nada comunes…

Extinciones

Grandes rocas errantes pululan por el Sistema Solar. Los asteroides no son ni cosa del pasado ni riesgos de muy baja probabilidad. Hay pruebas muy concretas sobre diversos impactos de consideración sobre nuestro mundo y, no hace mucho, tuvimos un ejemplo de ello. Encima, hasta parecen tener una regularidad.  No es sólo que tenemos la suerte de que en los últimos 10 millones de años no haya caído un gran asteroide en la Tierra, lo que nos hubiese hecho desaparecer incluso antes de que apareciéramos, sino que tenemos la suerte de que antes de eso sí cayeron de esos asteroides, y de que cambiaran las cosas a nuestro favor. ¿Estaríamos aquí si no hubiese impactado un cuerpo de unos 10 km de diámetro en el Caribe, más precisamente sobre el borde de la península de Yucatán, y hubiese producido una hecatombe para quienes reinaban en el mundo en esa época, los dinosaurios? ¿Quién puede saberlo? ¿Y si no hubiesen ocurrido las extinciones anteriores, fueran por las causas que fueran, estaríamos aquí? Quizás un día se sepa lo suficiente como para simular en computadoras una ecología planetaria entera y ver qué hubiera pasado. Será muy interesante.

Los asteroides cayeron, es un hecho. Y forman parte de las condiciones necesarias —algunos discutirán que no— para que estemos aquí… Veamos algunas nuevas informaciones:

 Los Amonites fueron contemporáneos de los Dinosaurios. Los amonites eran una de las clases de moluscos cefalópodos que existieron en las eras del Devónico hasta el Cretácico. Hay de diferentes tipologías según la profundidad en la que estaban inmersos, dependiente las distintas zonas de todo el mundo. Al ser un fósil, poco se puede saber de las partes blandas de este organismo marino, suponiéndose que fueron similares a los actuales nautilos, cuyo cuerpo constaba de una corona de tentáculos en la cabeza que asoman por la abertura de la llamada concha. El fósil encontrado en las cercanías de El Chaltén pertenecería al cretácico inferior del estrato llamado Río MAYER, con una antigüedad de unos 500 millones de años.

Vivieron en la Tierra como duelo y selñores más de 150 millones de años.

Hace 380 millones de años se produjo una importante extinción entre los animales que poblaban el mar, en especial de los amonites, unos moluscos emparentados con los pulpos y calamares pero cubiertos con una concha espiralada y de tamaños a veces gigantescos. Nunco se supo por qué fue. Ahora surgen pistas de que esta mortalidad estuvo relacionada —igual que hace 65 millones de años, en el momento en que los dinosaurios dominaban nuestro mundo— con el impacto de un cuerpo extraterrestre.

Algunos geólogos dicen que hace unos 380 millones de años, un asteroide llegado desde el espacio golpeó contra la Tierra. Creen que el impacto eliminó una importante fracción de los seres vivos. Esta idea puede fortalecer la discutida conexión entre las extinciones masivas y los impactos. Hasta ahora, el único candidato para hacer esta relación era el meteoro que habría causado el exterminio de los dinosaurios, caído en la península de Yucatán, en México.

Brooks Ellwood, de Louisiana State University en Baton Rouge, Estados Unidos, dice que los signos de una antigua catátrofe coinciden con la desaparición de muchas especies animales. “Esto no quiere decir que el impacto en sí mismo haya matado a los animales; la sugerencia es que tuvo algo que ver.” Y agregó que hoy, aunque no se puedan encontrar rastros del cráter de una roca del espacio, se puede saber dónde ha caído.

Otros investigadores coinciden en que hubo un impacto más o menos en esa época, pero creen que la evidencia de que produjo una extinción masiva es muy débil. Claro que, tal valoración no está avalada por hechos y, si tenemos en cuenta el tiempos transcurrido desde los hechos, buscar pruebas materiales…no es nada fácil

El equipo de Ellwood descubrió rocas en Marruecos que fueron enterradas alrededor de 380 millones de años atrás bajo una capa de sedimento que parece formada por restos de una explosión cataclísmica. El sedimento tiene propiedades magnéticas inusuales y contiene granos de cuarzo que parecen haber experimentado tensiones extremas.

Más o menos para esa época se produjo la desaparición del registro fósil de alrededor del 40% de los grupos de animales marinos.

El geólogo Paul Wignall, de la Leeds University, Reino Unido, dice que hay una fuerte evidencia del impacto. Si se lo pudiese relacionar con una extinción masiva sería un gran hallazgo. Si fuera cierto, el potencial letal de los impactos crecería enormemente.

Pero no está claro cuántas desapariciones se produjeron en la época del impacto. Wignall dice que la mortalidad puede haber sido mucho menor que lo que sugiere el equipo de Ellwood. Él piensa que los paleontólogos deberían buscar las pistas que les den una mejor imagen de lo que pasó en aquella época.

El paleontólogo Norman MacLeod, que estudia las extinciones masivas en el Natural History Museum de Londres, coincide en que aunque 40% es el valor correcto para aquel período de la historia de la Tierra, no es una extinción masiva, sino parte de una serie de sucesos mucha más extensa. MacLeod duda de que las extinciones masivas sean resultado de intervenciones extraterrestres. “Los impactos son un fenómeno bastante común”, dice. “Pero no coinciden significativamente con los picos de extinción.”

Las estrellas vecinas

 

Aunque nuestro entorno es inmenso, hemos llegado a conocer muy bien nuestra vecindad

Nuestro vecindario galáctico es muy humilde. Nada de supergigantes o exóticas estrellas de neutrones. La mayoría de estrellas vecinas -unas 41- son simples enanas rojas (estrellas de tipo espectral M), las estrellas más comunes del Universo. Cinco son estrellas de tipo K, dos de tipo solar (tipo G, Alfa Centauri  A y Tau  Ceti), una de tipo F (Procyon) y una de tipo A (Sirio). Los tipos espectrales se ordenan según la secuencia OBAFGKM, siendo las estrellas más calientes (y grandes) las de tipo O y las más pequeñas y frías las de tipo M (siempre y cuando estén en la secuencia principal, claro). Además tenemos tres enanas blancas y tres candidatas a enanas marrones. Como vemos, no nos podemos quejar. Hay toda una multitud de posibles objetivos para nuestra primera misión interestelar. ¿Cuál elegir?

El llamado Grupo Local de galaxias al que pertenecemos es, afortunadamente, una agrupación muy poco poblada, sino podríamos ser, en cualquier momento (o haber sido aún antes de existir como especie) destruidos en catástrofes cósmicas como las que ocurren en los grupos con gran población de galaxias. Los astrónomos comprenden cada vez más el porqué de las formas de las galaxias, y parece que muchas (incluso la nuestra) han sufrido impactos contra otras para llegar a tener la figura que tienen. Gracias al telescopio espacial Hubble se están viendo en los últimos tiempos muy buenas imágenes de colisiones entre galaxias.

El “clima” interestelar

La Nube Interestelar Local se encuentra dentro de una estructura mayor: la Burbuja Local. La Burbuja Local es una acumulación de materia aún mayor, procedente de la explosión de una o varias supernovas que estallaron hace entre dos y cuatro millones de años. Pero aunque estemos atravesando ahora mismo la Nube Interestelar y la Burbuja locales, nuestra materia no procede de ellas. Sólo estamos pasando por ahí en este momento de la historia del universo. Entramos hace unos cinco millones de años, y saldremos dentro de otros tantos. Nuestro sistema solar –y la materia que contiene, incluyéndonos a ti y a mí– se formó mucho antes que eso, hace más de 4.500 millones de años.

Cinturón de Gould

“Banda de estrellas calientes y brillantes que forman un círculo alrededor del cielo. Representa una estructura local de estrellas jóvenes y material interestelar inclinada unos 16º con respecto al plano galáctico. Entre los componentes más prominentes del cinturón se encuentran las estrellas brillantes de Orión, Can mayor, constelación de la Popa, Carina, Centauro y Escorpio, incluyendo la asociación Sco-Cen. El cinturón tiene el diámetro de unos 3.000 años luz (alrededor de una décima parte del radio de la Galaxia), hallándose el Sol en él. Visto desde la Tierra, el Cinturón de Gould se proyecta por debajo del plano de nuestra Galaxia desde el borde inferior del Brazo de Orión, y por encima en la dirección opuesta. El cinturón se estima que tiene unos 50 millones de años de antigüedad, aunque su origen es desconocido. Su nombre proviene del astrónomo Benjamin Apthorp Gould, quien lo identificó durante la década de 1879.”

 

 

Al parecer, la Vía Láctea, nuestra galaxia, reside dentro de una “burbuja local” en una red de cavidades en el medio interestelar que probablemente fue esculpida por estrellas masivas que explotaron hace millones de años. Se le llama Medio Interestelar a la materia que existe en el espacio y que se encuentra situada entre los sistemas estelares. Esta materia está conformada por gas en forma de iones, átomos y moléculas, además de gas y rayos cósmicos.

Nuestra Burbuja Local forma a su vez parte del Cinturón de Gould que presentamos más arriba.  El Cinturón de Gould es ya una estructura mucho más compleja y mayor. Es un anillo parcial de estrellas, de unos 3.000 años luz de extensión. ¿Recuerdas aquella nave espacial tan rápida que utilizamos antes? Pues con ella, tardaríamos 12.800.000 años en atravesarlo por completo. Vaya, esto empieza a ser mucho tiempo.

binocular

La Burbuja Local es una cavidad en el medio interestelar en el Brazo de Orión de la Vía Láctea. Tiene al menos un diámetro de 300 años luz. El gas caliente y difuso en la Burbuja Local emite rayos X.

Vivimos dentro de una burbuja. El planeta, el Sistema Solar, nuestro grupo local. El estallido de una supernova ha dejado un resto fósil en nuestro entorno: creó una enorme burbuja en el medio interestelar y nosotros nos encontramos dentro de ella. Los astrónomos la llaman “Burbuja local”. Tiene forma de maní, mide unos trescientos años luz de longitud y está prácticamente vacía. El gas dentro de la burbuja es muy tenue (0,001 átomos por centímetro cúbico) y muy caliente (un millón de grados), es decir, mil veces menos denso y entre cien y cien mil veces más caliente que el medio interestelar ordinario. Esta situación tiene influencia sobre nosotros, porque estamos inmersos dentro. ¿Qué pasaría si nos hubiese tocado estar dentro de una burbuja de gases ardientes resultantes de una explosión más reciente o de otro suceso catastrófico? ¿O si estuviésemos en una zona mucho más fría del espacio? No estaríamos aquí.

En algunos lugares de la Tierra, podemos ir viajando por caminos y carreteras y encontrarnos de frente con imágenes que, por su magnificencia, ¡asustan! Nuestra galaxia está en movimiento constante. No es una excepción en relación con el resto del universo. La Tierra se mueve alrededor del Sol, este último gira en torno a la Vía Láctea, y la gran mancha blanca a su vez forma parte de súper cúmulos que se mueven en relación a la radiación remanente de la gran explosión inicial. Pero hablemos del…

 ”Clima” galáctico

Resultado de imagen de El clima galactico

Dado que la Vía Láctea se está moviendo hacia la constelación de Hydra con una velocidad de 550 km / s, la velocidad del sol es de 370 km / s, …

La galaxia en que vivimos podría tener una mayor influencia en nuestro clima que lo que se pensaba hasta ahora. Un reciente estudio, controvertido aún, asegura que el impacto de los rayos cósmicos sobre nuestro clima puede ser mayor que el del efecto invernadero que produce el dióxido de carbono.

Según uno de los autores de este estudio, el físico Nir Shaviv de la Universidad Hebrea de Jerusalén, en Israel, el dióxido de carbono no es tan “mal muchacho” como dice la gente. Shaviv y el climatólogo Ján Veizer de la Universidad Ruhr, de Alemania, estiman que el clima terrestre, que exhibe subas y bajas de temperatura global que al graficarse forman una figura de dientes de sierra, está relacionado con los brazos espirales de nuestra galaxia. Cada 150 millones de años, el planeta se enfría a causa del impacto de rayos cósmicos, cuando pasa por ciertas regiones de la galaxia con diferente cantidad de polvo interestelar.

               

Los rayos de todo tipo se nos vienen encima desde todos los rincones del Universo, y, algunos no llegan a la superficie de nuestro planeta gracias al escudo protector que salvaguarda nuestra integridad física.


Los rayos cósmicos provenientes de las estrellas moribundas que hay en los brazos de la Vía Láctea, ricos en polvo, incrementan la cantidad de partículas cargadas en nuestra atmósfera. Hay algunas evidencias de que esto ayuda a la formación de nubes bajas, que enfrían la Tierra.

Shaviv y Veizer crearon un modelo matemático del impacto de rayos cósmicos en nuestra atmósfera. Compararon sus predicciones con las estimaciones de otros investigadores sobre las temperaturas globales y los niveles de dióxido de carbono a lo largo de los últimos 500 millones de años, y llegaron a la conclusión de que los rayos cósmicos por sí solos pueden ser causa del 75% de los cambios del clima global durante ese período y que menos de la mitad del calentamiento global que se observa desde el comienzo del siglo veinte es debido al efecto invernadero.

La teoría, como es normal en la ciencia, no es del todo aceptada. Los expertos en clima mundial están a la espectativa, considerando que algunas de las conexiones que se han establecido son débiles. Se debe tener en cuenta, dicen los paleontólogos, que se trata de una correlación entre la temperatura, que es inferida de los registros sedimentarios, de la cantidad de dióxido de carbono, que se deduce del análisis de conchas marinas fosilizadas, y de la cantidad de rayos cósmicos, que se calculan a partir de los meteoritos. Las tres técnicas están abiertas a interpretaciones. Además, uno de los períodos fríos de la reconstrucción matemática es, en la realidad, una época que los geólogos consideran caliente. De todos modos, también hay muchos otros que están muy interesados e intrigados.

La variabilidad solar afecta la cantidad de rayos cósmicos que impactan a nuestro planeta. El Sol produce radiaciones similares a los rayos cósmicos, especialmente en el período más caliente, llamado máximo solar (maximum), de su ciclo de 11 años. Estudios anteriores no pudieron separar el impacto climático de esta radiación, de los rayos cósmicos que llegan desde la galaxia y de la mayor radiación calórica que llega desde el Sol.

Los otros planetas y la Luna

Recientemente, se ha anunciado el hallazgo de un sistema planetario que podría ser similar al nuestro. En realidad no se ha logrado aún una observación tan directa que permita afirmarlo, sino que se deduce como posibilidad. Este sistema presenta un planeta gaseoso gigante similar a nuestro Júpiter, ubicado a una distancia orbital similar a la que tiene Júpiter en nuestro sistema. El sol es similar al nuestro, lo que deja lugar a que haya allí planetas ubicados en las órbitas interiores, dentro de la franja de habitabilidad en la que la radiación solar es suficiente para sostener la vida y no es excesiva como para impedirla.

Si nuestro sistema no tuviese las características que posee, la vida en la Tierra tendría problemas. Por ejemplo, podría haber planetas, planetoides o grandes asteroides (de hecho algo hay) que giraran en planos diferentes y con órbitas excéntricas y deformes. Cuerpos así podrían producir variaciones cíclicas que hicieran imposible —o difícil— la vida. Venus parece haber sufrido un impacto que le cambió el sentido de rotación sobre sí mismo. Es posible que este impacto también haya desbaratado su atmósfera y su clima. Podría habernos pasado a nosotros, y de hecho parecería que nos ocurrió, sólo que fue durante el génesis del sistema planetario y además (otra gran casualidad y premio cósmico) nos dejó a la Luna, excelente compañera para facilitar la vida.

           ¿Características especiales de nuestro mundo?

Según una teoría del geofísico J. Marvin Herndon, la Tierra es una gigantesca planta natural de generación nuclear. Nosotros vivimos en su delgada coraza, mientras a algo más de 6.000 kilómetros bajo nuestros pies se quema por la fisión nuclear una bola de uranio de unos ocho kilómetros de diámetro, produciendo un intenso calor que hace hervir el metal del núcleo, lo que produce el campo magnético terrestre y alimenta los volcanes y los movimientos de las placas continentales.

La cosa no acaba aquí: si el calor del reactor es el que produce la circulación de hierro fundido (por convección) que genera el campo magnético terrestre, entonces los planetas que no tienen su reactor natural no tendrían un campo magnético (magnetósfera) que los proteja de las radiaciones de su sol —como Marte y la Luna— lo que hace que difícilmente puedan sostener vida.

Pero ésta es sólo una teoría. Lo que está más en firme es que nuestro mundo y su luna forman un sistema muy particular, mucho más estable que si se tratara de un planeta solitario. Gracias a esto —a nuestra Luna— tenemos un clima más o menos estable, conservamos la atmósfera que tenemos y la velocidad y el ángulo de nuestro giro son los que son. Si no estuviese la Luna, el planeta se vería sujeto a cambios en su eje de rotación muy graves para los seres vivos.

emilio silvera

Desde los átomos hasta las estrellas: Un largo viaje

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas  pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.

Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

     Conseguimos tener los átomos en nuestras manos

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos necleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción inifintesimal del total atómico.

Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del nucleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el atomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

Resultado de imagen de el modelo de bohr

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electrón cae  de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obtinadamente todos los intentos de conocerlo”.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

 

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble  (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

                                                                                                    Las Híades

Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.

El progreso en física, mientras tanto, estaba bloquedado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.

La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

                                               Plasma en ebullición en la superficie del Sol

Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículasd de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica.  La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.

emilio silvera

Materia de sombra, Axiones, ¿WIMPs en el Sol? ¿Y la vida?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión ha encontrado ya 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el número total de mundos que podría haber sólo en la Vía Láctea, nuestra galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.

Kepler-452b

Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida reqiere para su existencia.

Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta, a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.

Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.

Dicha estrella se encuentra a 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.

Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sonbra que existe en paralelo al nuestro. Los dos universos se separaron la Gravedad se congeló sepapándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traida y llevada “materia oscura”.

Llegamos a los Axiones.

Resultado de imagen de Axiones

El actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así.  ¡Cómo son!

A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.

                Lo que hay en el Universo…no siempre lo podemos comprender.

Otro de los WIMPs favoritos se llama axión. el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.

mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres combinadas.

Aunque esto es verdad, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

La respuesta a esta cuestión parece que estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.

Las branas son entidades físicas conjeturadas por la teoría M y su vástago, cosmología de branas.  En la teoría M, se postula la existencia de p-branas y d-branas (ambos nombres provienen parasintéticamente de “membrana”). Las p-branas son objetos de dimensionalidad espacial p (por ejemplo, una cuerda es una 1-brana). En cosmología de branas,  el término “brana” se utiliza para referirse a los objetos similares al universo cuadridimensional que se mueven en un sustrato de mayor dimensión. Las d-branas son una clase particular de p-branas.

Un escenario posible imagina que el Universo empieza con todas sus dimensiones espaciales comportándose de una manera democrática, pero luego, algunas de las dimensiones quedan atrapadas y permanecen compactadas de manera tal que son infinitesimales, están el el límite de Planck y permanecen, como digo, estáticas y muy pequeñas desde entonces en ese lugar invisible al que no podemos llegar

   En el mundo cuántico, todo puede ser posible

nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina ( ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

Resultado de imagen de Universo en la Sombra Blog de emilio silvera

          ¿Podeis imaginar la existencia de un Universo en permanente sombra?

La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros candidatos para su materia oscura.

¡ que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!

Partículas y Partículas Supersimétricas

         Partículas y partículas supersimétricas

Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.

Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así, partícula probablemente pesaría al menos cuarenta veces más que el protón.

Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí

En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.

Axiones

El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.

Criostato CDMS

Construímos inmensos aparatos de ingeniosas propiedades tecnológicas tratar de que nos busquen las WIMPs.

¿WIMPs en el Sol?

A lo largo de todo el se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.

Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo ( creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.

El problema de los neutrinos solares se debió a una gran discrepancia el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos” Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados.

La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias entre la teoría y la observación en este campo.

No mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran número de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.

nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs

Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el tipo de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna  del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.

Toda charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio trabajo, ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces de que puedan ser aceptadas en el ámbito puramente científico.

                                                            El el Sol podemos hallar algunas respuestas

Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta ahora que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura cubrir el hueco de nuestra ignorancia.

     Vuelve al trabajo buscando partículas SUSY

Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, comología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?

La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!

Por ejemplo, si vemos la imagen de arriba y un letrero que diga: “Dopar un aislante topológico con impurezas magnéticas rompe la simetría de inversión temporal y abre una nueva vía a la espintrónica.”  Para la mayoría de los presentes, el galimatias no le dirá nada y, sin embargo, para otros al tanto de las cuestiones de física, le parecerá que: “Los aislantes topológicos son materiales que conducen electrones en su superficie exterior, pero actúan como aislantes en su volumen interior. propiedad tiene su origen en la forma en que los electrones se mueven a través del material. Los electrones poseen un espín mecánico-cuántico que apunta hacia “arriba” o hacia “abajo”. El espín es normalmente independiente del movimiento de los electrones, pero dentro de los aislantes topológicos, el espín de los electrones está estrechamente relacionado con su movimiento.”

¡Qué cosas! Lo que digo siempre… ¡Nunca llegaremos a saberlo todo!

emilio silvera