Abr
14
¿Revoluciones científicas? ¡La Relatividad!
por Emilio Silvera ~ Clasificado en Maravillosa Teoría ~ Comments (0)
Los Pinceles de la Naturaleza construye cuadros que… ¿Ningún pintor puede igualar!
Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado despuès en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.
“Esta ecuación representa cómo cambia la masa de un cuerpo a medida que aumenta la velocidad del mismo. La constante “c” es la velocidad de la luz. A medida que la velocidad del cuerpo se acerca a “c”, el cociente se hace 1. Entonces, el denominador se hace cero, y la fracción tiende a infinito. La masa aumenta infinitamente. Y para aumentar la velocidad de un cuerpo cuya masa tiende al infinito, se requiere infinita energía. No hay infinita energía en el Universo, por lo cual es imposible alcanzar la velocidad de la luz. “
De hecho se han observado muónes en el LHC que, alcanzando velocidades cercanas c, aumentaron su masa 10 veces.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.
En el futuro, grandes estaciones sumergidas en el océano y ciudades en otros mundos rodeadas de campos de fuerza que impedirán la radiación nosiva mientras tanto se va consiguiendo terraformar el planeta. La tecnología habrá avanzado tanto que nada de lo que hoy podamos imaginar estará fuera de nuestro alcance y, viajar a mundos situados a decenas de años-luz de la Tierra será para entonces, lo cotidiano
Eso es lo que imaginamos pero… ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fín aparecido la dichosa “materia oscura”? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.
Una cosa nos debe quedar bien clara, nada dentro de 250 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.
Nuevas maneras de sondear la Naturaleza y desvelar los secretos
Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
Un amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números.
En cualquier evento de Ciencia, ahí aparecen esos galimatias de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.
Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra revolución de la Física se produjo en 1.905, cuando Albert Einstein formuló su teoría de la relatividad especial y nos dio un golpecito en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.
Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:
Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la Longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.
En la invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. El amigo Einstein utilizó este principio como un postulado de su teor´çia de la relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.
La Teoría de cuerdas nos habla de las vibraciones que éstas emiten y que son partículas cuánticas. En esta teoría, de manera natural, se encuentran las dos teorías más importantes del momento: La Gravedad y la Mecánica cuántica, allí, subyacen las ecuaciones de campo de la teoría de la relatividad de Einstein que, cuando los físicas de las “cuerdas” desarrollan su teoría, aparecen las ecuciones relativista, sin que nadie las llame, como por arte de magia. Y, tal aparición, es para los físicos una buena seña.
Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento interferométrico de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse.
Granot y sus colegas estudiaron la radiación de una explosión de rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA con el Fermi Gamma-Ray Space Telescope. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los fotones con energías diferentes llegaron a los detectores del Fermi en diferentes momentos.
Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de rayos gamma en una galaxia lejana.
Cuando nos acercamos a la vida privada del genio… ¡también, como todos, era humano!
De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.
Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad que incluía la Gravedad, es decir la llamada relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta cómo funcionaba la Gravedad, esa fuerza descrita por primera vez por Newton.
Einstein nos decía que el espacio se curva en presencia de grandes masas
En la Teoría Especial de la Relatividad, Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sitemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del obervador.
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación quer así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de su vida media.
El Acelerador de Partículas LHC es una Obra inmensa que ha construido el SER Humano para saber sobre la Naturaleza de la materia y…
Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.
El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura
La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.
Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. En la teoría de Einstein se generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría relativista en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.
Todo lo grande está hecho de cosas pequeñas
Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein de la relatividad quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, Einstein, mucho más tarde reconoció publicamente tal ayuda.
En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.
¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia. La gravedad presente en un agujero negro gigante hace que en ese lugar, el tiempo deje de existir, se paralice y el espacio, se curve en una distorsión infinita. Es decir, ni espacio ni tiempo tienen lugar en la llamada singulariudad.
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espaciotiempo.
Un Agujero Negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de esta teoría relativista: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia de un agujero negro y lo que se denomina una singularidad. De hecho, el Big Bang, se cree que surgió de una singularidad.
Las ecuaciones de campo de la relatividad general de Einstein… ¡Nos dicen tántas cosas!
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados, en la figura de arriba de S. Torres se puede ver que el diámetro es enorme.
Con Einstein llegó la cosmología moderna, otra manera de mirar el Universo
Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein el Universo no fue el mismo.
El análisis de la Gravitación que aquí se miuestra interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.
De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.
Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.
La luz se propaga en cualquier medio pero en el vacío, mantiene la mayor velocidad posible en nuestro Universo, y, hasta el momento, que se sepa, nada ha corrido más que la luz en ese medio. Algunos han publicado ésta o aquella noticia queriendo romper la estabilidad de la relatividad especial y han publicado que los neutrinos o los taquiones van más rápidos que la luz. Sin embargo, todo se quedó en eso, en una noticia sin demostración para captar la atención del momento.
La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:
3×1010 × 3×1010, ó 9×1020.
Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.
El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s, y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco si lo comparamos con la vida media de un hombre.
Emilio Silvera
Abr
13
Sí, ¡todo es Universo! Nosotros también
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (0)
La necesidad agudiza la imaginación
La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los …
“La panspermia (del griego παν- pan, todo y σπερμα sperma, semilla), es una hipótesis que propone que la vida puede tener su origen en cualquier parte del universo, y no proceder directa ni exclusivamente de la Tierra, que probablemente la vida en la Tierra proviene del exterior y que los primeros seres vivos habrían llegado posiblemente en meteoritos o cometas desde el espacio a la Tierra.1 2 Estas ideas tienen su origen en algunas de las teorías del filósofo griego Anaxágoras.”
¿¡Panspermia!?
El último día del Carnaval de Florencia de 1.497 (y lo mismo ocurrió al año siguiente) apareció una construcción muy curiosa en medio de la Piazza Della …
¡La Humanidad! Sus creencias, su complejidad
La Naturaleza y nosotros, una simbiosis de perfecta armonia que nuestra condición, podría llegar a romper si el proceso de humanización ae eterniza y no tomamos conciencia de lo importante que es, todo lo que nos rodea en su estado natural. No tenemos conciencia de que otros seres que, con nostros, pueblan el planeta necesitan de nosotros para poder evolucionar sin que, nuestras actividades nosivas, contaminen el mundo. Todas las formas de vida tienen la misma fuente, el mismo origen.
Los seres vivos que han poblado nuestro mundo, desde el origen de la vida que no ha dejado de evolucionar nunca. Todas las formas de vida, sin excepción, están basadas en el Carbono. Sabemos que actualmente existen sólo el 1% de todas las especies que poblaron nuestro planeta y, seguimos descubriendo especies nuevas mientras que otras desaparecen al no saberse adaptar al entorno. Estar atentos a los mensajes que la Naturaleza nos envía, ser consciente de su grandeza, cuidar nuestro mundo.
La montaña que, curiosa, se asoma por encima de las nubes mientras el Sol la contempla y la baña con su resplandor. El privilegio de poder contemplar la Naturaleza y ver como el Sol tiñe de rojo el paisaje al final del día. La Tierra nos habla, ¡De tántas maneras! Nunca supimos administrar de manera adecuada todo lo que el planeta nos ofrecía para nuestro sustento, y, ambiciosos, esquilmamos bosques y debastamos el
Lisa Kelly The Voice – YouTube
Hay quien cree que la Tierra podría ser tragada por agujero negro. Sin embargo, la posibilidad es muy escasa, diría que casi nula por completo. Treinta mil años-luz nos separan del Centro Galáctico donde reside un Agunero negro que se traga todo lo que por allí pase, pero que su fuerza de atracción nos afecte… Va a ser que no.
Los rayos Gamma son los fotones más energéticos conocidos, ¿Será ese nuestro final? ¡Convertirnos en pura energía! Bueno, sabemos que aparecen en las explosiones de supernovas y en otros sucesos similares. ¿Seremos nosotros algún día fuentes de luz conscientes?
¿Sabremos alguna vez comprender dónde estamos y para qué?
¡Es tan grande el Universo! ¿Podremos comprenderlo alguna vez? Sabemos que el Universo es todo lo que existe incluyendo la materia y el Espaciotiempo. Sin embargo, lo que no podemos saber (con plena certeza) es como empezó todo ni cómo terminará. Tampoco podemos dar una explicación de si el universo está sólo o, por el contrario, deambula acompañado por otros universos por un inmenso Metacosmos que engloba múltiples universos.
Hemos puesto una serie de imágenes ahí arriba que quiere significar la diversidad que en el Universo existe, y, ni se pueden incluir todos los ejemplos que nos gustaría ni tampoco los tenemos a mano, ya que, la mayoría de los que podríamos poner, no están a nuestro alcance ni al alcance de nuestras tecnologías.
El Universo continúa, en muchos aspectos, siendo un gran misterio que pretendemos desvelar, pero como nos decía hace unos días Max Planck, el problema está en que nosotros, en último término, formamos parte de ese misterio que pretendemos .
Por ahí arriba podemos contemplar imágenes de bonitos paisajes de la Tierra cambiante, del Sol y de Nebulosas y galaxias. También de algunos seres humanos a los que el Universo, les ha otorgado el don de pensar (aunque no siempre lo demostremos). Algunas imágenes son de explosiones luminosos que nos enseñan y muestran las mayores energías que en el Universo se pueden generar, a través de explosiones de supernovas que son fuentes de potentes rayos gamma.
¿Plasma de Quarks-Gluones? No cejamos en nuestro empeño de saber que es… ¡la materia!
La Materia y sus componentes han sido y son el objeto de muchos investigadores y pensadores que quieren profundizar y saber el por qué, a partir de lo que llamamos materia inerte, pudo surgir, mediante cambios producidos en muy especiales…¡La Vida!
Nos encontramos con el problema de la posible existencia de eso que llaman “materia oscura”, y, a primera vista, puede parecer que la materia oscura es sólo una pequeña pieza del enorme rompecabezas que resulta ser nuestro universo, un parámetro más, ni más ni menos importante que tantas otras. Claro que, este sería un punto de vista razonable si la materia oscura sólo formase una pequeña del Universo. En ese caso, la podríamos considerar como poco más que una nota a pie de página de la materia luminosa, más importante, ya que, de ella, estamos hecho nosotros. Además, es mucho más fácil detectar la materia Bariónica hecha de Quarks y Leptones que esa otra que, ni sabemos de qué estará hecha.
Sin embargo, ese punto de vista estaría equivocado, toda vez que, según todos los indicios, esa “materia oscura” supone casi el total del Universo junto con la “energía Oscura”, es decir, más del 90% de la materia-energía del universo, es oscura. Puede que las brillantes espirales de las Galaxias sirvan simplemente marcadores pasivos, testimonios mudos de fuerzas que operan en un nivel invisible para nosotros.
El Universo y la Vida… El Tiempo que inexorable pasa…
Es posible que, cuando sepamos más sobre nuestro Universo reconozcamos que nuestros conocimientos del universo visible, tan difícilmente obtenidos, son poco más que el primer paso en el camino hacia la comprensión de cómo son en realidad las cosas. Muchas de las nuevas teorías tratan de buscar nuevos caminos que divergen de los que seguimos y, buscando por otros lugares no explorados, es posible, sólo posible que, podamos encontrar algunas respuestas que nos son negadas en las teorías actuales.
Es inquietante que, a estas alturas, con seguridad, ningún Astrónomo sepa darnos una respuesta fiel de cómo se pudieron formar las Galaxias, y, todos, sin excepción, nos responden con hipótesis y conjeturas que, de ninguna manera, podemos asimilar a la realidad de como fueron las cosas en aquellos comienzos del Universo.
¿Qué fuerzas ocultas estaban ahí presentes para posible que las galaxias se pudieran conformar, y formarse los cúmulos de galaxias antes de que, la materia recien creada, se dispersara por todo el universo sin más? Seguramente, esa fuerza no podría ser otra que la generada por la Materia Oscura que, a decir verdad, podría ser la materia primaria que permea todo el Universo y, a partir de la cual, se puede estar formando (al evolucionar) la materia que sí podemos ver.
A mí todo esto me sobrepasa, y, “conociendo” de qué está formada la materia de la que están hechas las estrellas y las montañas, los ríos y los océanos, o los delfines y también nosotros, no deja de sorprenderme (más bien maravillarme) que, de esa materia pudieran surgir seres vivos y que, algunos, como nosotros mismos, podamos pensar y ser conscientes de toda esta grandeza.
Alguna vez, hemos podido sentirnos en un estado de euforia al sentirnos los “amos” del universo, nuestros conocimientos nos hacen grandes y, posiblemente, nada se resistirá ante tanta sabiduría. Sin embargo, ese estado de “gracia” suele durarnos muy poco. De inmediato caemos en la de que, la realidad, es muy distinta y recordamos lo que nos dijeron aquellos grandes pensadores como Sócrates. Platón y más cercano a nosotros Popper: “Nuestro conocimiento es limitado, nuestra ignorancia infinita”. Y, lo malo de dicha conclusión, es que era, y, sigue siendo cierta.
Así que, amigos míos, procuremos aprender, enterarnos de las cosas, ser conscientes de lo que no sabemos y, sobre todo, procurar entender lo que en la Naturaleza ocurre, ella siempre nos marca el camino a seguir pero, nosotros, no siempre prestamos la debida atención.
emilio silvera
Abr
13
Creo…¡¡Que no estamos solos!!
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (0)
Ningún lugar podría representar mejor nuestros orígenes que el que podemos admirar en la imagen de arriba. Esta nueva imagen del Telescopio Espacial Hubble de la NASA muestra un cúmulo de estrellas azules brillantes y masivas “recien” formadas que han abierto una cavidad con la energía luminosa irradiada en el ultravioleta y que abre, por medio de los intensos vientos solares, ese enorme hueco en el centro de la nebula de donde nacieron, en la Pequeña Nube de Magallanes.
Explosiones Supernovas que dejan remanates estelares
Lugares así abundan en nuestro Universo. Todas las galaxias están llenas de ellos y, todos sabemos su origen: Es el resultado de explosiones supernovas que riegan elespacio minterestelar de los materiales eyectados por la estrella moribunda. De un lugar similar, nació todo nuestro Sistema Solar, y, por supuesto nosotros. La Bioquímica necesaria para que surja la vida, sólo es posible fabricarla en las estrellas y, en ellas está nuestro origen primero. Más tarde, mucho más tarde, si un planeta está equipado y situado en el lugar adecuado, comenzarán a surgir los primeros signos de vida, una primera célula que será capas de replicarse, y, a partir de ahí…comienza otra historia.
En los lugares y con las temperaturas adecuadas, surgieron y se formaron células muy complejas. De toda aquella producción de células extrañas e inviables, las que no tenían posibilidades de supervivencia eran destruidas de inmediato, pero de vez en cuando surgía una combinación que tenía más posibilidades de supervivencia que sus congéneres. Estas células competían con ventaja contra sus antecesoras más simples y en pocas generaciones eran capaces de acabar con su anterior supremacía.
La reproducción de aquellas primeras células seguía siendo delicada y se producían errores con bastante frecuencia. A veces unos componentes de la célula empezaban a replicarse antes que otros, lo que llevaba a la destrucción de la misma. Otras veces la célula mezclaba los cromosomas de distintos componentes de la célula y de ello salía algo totalmente distinto, una mutación. Casi siempre las mutacioes llevaban a la destrucción de las células pero algunas mutaciones eran capaces de seguir sobreviviendo y hasta de reproducirse generando una variedad diferente de la célula original. A veces se producían mutaciones beneficiosas, y eso hizo que las células descendientes fueran más capaces de sobrevivir que sus antecesoras.
Con el tiempo se formaron células muy complejas, algunas de tamaños inusitados para nuestra experiencia, se han encontrado células fosilizadas que podían medirse ¡en centímetros!.
Desde “seres” microscópicos, la evolución nos trajo hasta donde ahora nos encontramos.
Una célula…
Es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.
La aparición del primer organismo vivo sobre la Tierra suele asociarse al nacimiento de la primera célula. Si bien existen muchas hipótesis que especulan cómo ocurrió, usualmente se describe que el proceso se inició gracias a la transformación de moléculas inorgánicas en orgánicas bajo unas condiciones ambientales adecuadas; tras esto, dichas biomoléculas se asociaron dando lugar a entes complejos capaces de autorreplicarse. Existen posibles evidencias fósiles de estructuras celulares en rocas datadas en torno a 4 o 3,5 miles de millones de años (giga-años o Ga.). Se ha encontrado evidencias muy fuertes de formas de vida unicelulares fosilizadas en microestructuras en rocas de la formación Strelley Pool, en Australia occidental, con una antiguedad de 3,4 Ga. Se trataría de los fósiles de células más antiguos encontrados hasta la fecha. Evidencias adicionales muestran que su metabolismo sería anaeróbico y basado en el sulfuro.
Hoy, sabemos que sólo existe el uno por ciento de todas las especies que han existido en la Tierra, y, estas son, como no puede ser de otra manera, aquellas formas de vida que supieron adaptarse a los cambios. Claro que, hace algún tiempo que no se produce un cambio sustancial en el planeta, si exceptuamos el que nosotros mismos estamos tratando de hacer con nuestra insconciencia.
Mucho tiempo ha tenido que pasar para llegar hasta nosotros. ¿Qué vendrá después? Seguiran cambios naturales, o, por el contrario serán sólo los artificiales que nosotros mismos podamos construir. ¿Habremos llegado al nivel máximo de evolución humana? La verdad, no parece que nuestras conciencias avancen de manera visible para que puedan comprender que todos somos unos, que no deben existir diferencias entre los seres humanos, que todos tienen derecho a la dignidad en el transcurrir de sus vidas.
Pocas historias atraen más a los humanos que la de sus orígenes, la de cuál fue el camino que llevó a ser lo que somos, incluyendo, claro, con quiénes estamos emparentados, y cómo y cuándo nos separamos de tales ancestros. De todo eso hemos estado tratando en estás mismas páginas en las que hemos realizado algunos viajes a través de las brumas del tiempo para explorar acontecimientos pasados relacionados con nuestra evolución.
¿Qué es lo que nos apartó tan decisivamente de todas las otras especies con las que compartimos el planeta? ¿En qué momento de nuestra historia evolutiva aparecieron las diferencias que nos separaron de los demás criaturas? ¿La denominada “mente” (o mundo mental) es algo específico de los humanos o se trata de un rasgo general de la psicología animal? ¿Por qué surgió el lenguaje? ¿Qué es eso que llamamos cultura, y que muchos consideran el sello de la Humanidad? ¿Somos la única especie que puede presumir de ella? Y quizás la pregunta más crucial de todas: ¿por qué estas diferencias nos escogieron a nosotros y no a otras especies?
Son preguntas que, a veces, no sabemos contestar y, sin embargo, sabemos que alma-mente y cuerpo, conforman un conjunto armonioso que hacen de nosotros seres únicos en el Universo.
Tenemos unos sensores que nos permiten sentir emociones como la tristeza, la ternura, el amor o la alegría. Nos elevamos y somos mejores a través de la música o la lectura de unos versos. Igualmente podemos llegar al misticismo de pensamiento divino, o incluso profundizar en los conceptos filosóficos de las cosas hasta rozar la metafísica.
La música es el lenguaje de las emociones, pero ¿qué es el amor? ¿Quién no ha sentido alguna vez ese nudo en el estómago y perdido las ganas de comer? ¿Quién no ha sentido alguna vez ese sufrimiento profundo de estar alejado del ser amado y el inmenso gozo de estar junto a ella?
Felicidad y tristeza. Sentimientos del ser humano.
Al igual que todo lo grande está hecho de cosas pequeñas, lo que entendemos por felicidad esta compuesto de efímeros momentos en los que ocurren cosas sencillas que, la mayoría de las veces, ni sabemos apreciar. Esas lágrimas corriendo por las mejillas de la niña mojando su carita inocente…¡Es todo un Mundo!
Lo que llamamos inteligencia está dentro de todos nosotros, unos tienen más cantidad de ese ingrediente y otros tenemos menos. Aparece con el lenguaje, pero ya desde la cuna el niño muestra una actividad sensorial y motriz extraordinaria que, a partir del primer año, presenta todos los caracteres de comprensión inteligente. Con la ayuda de su entorno, el niño va realizando las adaptaciones sensoriales elementales construidas por reflejos.
¿QUÉ ES LA INTELIGENCIA?
Mas tarde, aparecerán los numerosos estadios de las adaptaciones intencionales de libre inclinación que acabaran conduciendo al individuo a desarrollar una personalidad única, con el poder de inventar mediante la deducción o combinación mental de los hechos que ve y conoce por el mundo real y que puede dar lugar a crear situaciones y mundos de fantasía, es la creación de la mente. Con las vivencias del entorno, lo que se enseña y lo que aprende por el estudio, se forma una personalidad más o menos elevada según factores de índole diversa que nunca es la misma para todos.
Aquí están los mejores años de nuestra vida
Todos quedamos marcados para el resto de nuestras vidas en relación a lo que de niño nos han enseñado, nos han querido y el entorno familiar en el que nos tocó vivir, son cosas que se gravan a fuego en la mente limpia del niño que de esta manera, comienza su andadura en la vida condicionado por una u otra situación que le hace ser alegre y abierto o taciturno, solitario y esquivo con una fuerte vida interior en la que, para suplir las carencias y afectos, se crea su propio mundo mental y privado.
La mente Humana es (iba a decir un bien divino pero…no estamos tratando con la fe, aquí hablamos de ciencia), es un algo sublime, la obra más compleja que pueda existir en nuestro Universo (al menos de lo conocido), no se trata de una cosa más, es algo muy especial y tan complejo y poderoso que, ni nosotros mismos, sus poseedores, tenemos una idea clara de dónde puede estar el límite. Bueno,si es que lo hay.
La mente guarda nuestra capacidad intelectual, tiene los pensamientos dormidos que afloran cuando los necesitamos, es la que guía nuestras actitudes y comportamientos, la voluntad y todos los procesos psíquicos conscientes o inconscientes, es la fuente creadora o destructora y, en definitiva, es lo que conocemos por ALMA y que, en realidad, es la inteligencia. Aunque empiezo a sospechar que, el Universo, se vale de nsootros para poder contemplarse así mismo.
Todas las cosas son, pero no de la misma manera, hay esencia y sustancia que conviven para conformar al sujeto que ES. “Somos” parte del Universo y estamos en el tiempo/espacio para desarrollar una misión que ni nosotros mismos conocemos, vamos imparables hacia ella y actuamos por instinto. Nos dieron las armas necesarias para ello: Inteligencia y curiosidad. Estos dos elementos nos transportan de manera imparable hacía el futuro inexorable que nos está reservado.
Claro que, podríamos ser la primera etapa de lo que vendrá. ¿Quién sabe cómo podremos mutar?
El conjunto de nuestras mentes tiene un poder infinito que, de momento, está disperso, las ideas se pierden y cuando nacen no se desarrollan por falta de medios y de apoyos, es una energía inútil que, invisible, está vagando por el espacio sin ser aprovechada. El día que podemos aunar nuestros pensamientos…¿Qué podría pasar?
Estoy totalmente seguro de que nuestros cerebros ven el mundo que les rodea bajo su propia perspectiva, es decir, lo filtra y en buena medida lo crea, el cerebro no es pasivo, sino que, todo lo que percibe lo transmite “a su manera”, desde su propia percepción, desde su propia realidad, desde su propio mundo físico de todos los eventos y experiencias que tiene registrados para conformar un entorno y un mundo de las propias ideas.
Si pudiéramos “ver” lo que ve un perro, nos quedaríamos asombrados del mundo tan diferente al nuestro que percibe su cerebro con sus propias ideas y percepciones físicas y psíquicas. Una cosa está clara, quieren ser nuestros amigos.
Nosotros, los humanos, somos (al menos lo parece) algo especial y nuestros cerebros no están en proporción con el peso de nuestros cuerpos si nos comparamos con el resto de los animales. Tanto es así que, si el cuerpo del ser humano siguiera las proporciones, con respecto al cerebro, que se dan como media en los mamíferos, nuestros cuerpos deberían pesar casi diez toneladas (aproximadamente lo que pesa un rinoceronte).
Nuestro cerebro es potente y tiene capacidades para “crear” su propio mundo, así pensamos que el mundo que vemos, oímos y tocamos es el mundo “real”, sin embargo, estaría mejor decir que es un mundo real humano, otros lo ven, lo oyen y lo perciben de manera diferente a la nuestra, así que, en nuestro propio mundo, para ellos, la realidad y el mundo es diferente, la que conforme sus cerebros.
No podemos ni comunicarnos con seres que comparten con nosotros el mismo planeta. Estos seres, de diversas morfologías y diferentes entornos en sus formas de vida, tienen un desarrollo cerebral distinto y, a veces, ni sabemos que es lo que tienen (caso de las plantas y vegetales en general).
Claro que, a veces, hay excepciones. Mi mujer le habla a las plantas mientras les da de beber y les pone música clásica. No puedo saber si el contacto se produce verdaderamente pero, una cosa sí que es cierta: Están esultantes de belleza y salud.
Pueden ser inteligentes pero…¿tendrán sentimientos?
Pensemos que si eso es así en nuestro propio mundo, ¿cómo podríamos contactar con seres pertenecientes a mundos situados en Galaxias alejadas miles de millones de kilómetros de la nuestra?
Ni siquiera podríamos comunicarnos con ellos cuyos pensamientos abstractos y matemáticas ¿quién sabe? cómo estarían conformadas, seguramente, de manera muy diferente mediante una organización distinta de sus cerebros que, haría imposible un entendimiento, ya que, ellos y nosotros tendríamos percepciones muy diferentes del Universo, cada uno lo vería en función de las reglas de los respectivos cerebros que, por lógica, serían diametralmente opuestos. Claro que, también existiran civilizaciones y especies basadas en el Carbono como la nuestra y que tengan afinidades más cercanas. La verdad es que creo más en la existencia de estos últimos.
Dicen que los números y las matemáticas es el lenguaje universal, seguramente será así…, sin embargo, nosotros tenemos 1,2,3,4,5,….etc., y, ellos podrían tener para los números otros símbolos, además, su formas operativas y sus reglas podrían llegar a las mismas conclusiones que nuestra geometría, funciones modulares, algebras, etc. ¿Cuánto tiempo nos llevaría aprender los unos de los otros? ¿y, el lenguaje? La verdad es que cerebros tan dispares en su construcción física, verían y estarían en Universos diferentes, no imaginables en su construcción física, química, organizativa y funcional. ¡ Qué complicado es todo ! Claro que, pensandolo bien 1 + 1 = 2.
¿Qué extraños mundos podrán existir?
Así las cosas, el sueño de comunicarnos con otros seres vivos e inteligentes situados en otro lugar de nuestra galaxia o en otras Galaxias lejanas, será difícil de plasmar en realidad. Sin embargo, necesitamos tiempo. Se deduce que, como el niño pequeño que nos hace gestos y al que miramos sin entender, nuestra civilización es muy joven, está en el tiempo del balbuceo, tiene que aprender aún muchas cosas y, a nivel cósmico eso lleva mucho tiempo.
Pero el tiempo está ahí, siempre ha estado ahí, no se irá y, contando con ello, podemos tener la esperanza de que creceremos, nos haremos mayores, nuestros cerebros evolucionaran y aprenderán un lenguaje cósmico y universal que, dentro de muchos eones, nos permitirá esa comunicación que hoy, a muchos (también a mí) les parece, sino imposible, si muy difícil. Pero se impone tener visión de futuro, no ser cortos de entendederas y, sobre todo, conservar la ilusión y la fantasía. Eso sí, sin perder de vista la realidad que podría ser…
La I.A. puede ser el comienzo del fin
Esta podría ser…nuestra realidad futura. Seres de Inteligencia Artificial que, sin duda alguna, tendrán más capacidades y menos carencias que nosotros los humanos. Si somos capaces de conseguir que tengan sentimientos…Habrá alguna esperanza, en caso contrario, la especie humana tiene los días contados. Ella misma, habrá procurado su propia extinción.
Los hay que, cortos de mira, son incapaces de visualizar nuestro destino. No tienen una idea clara de lo que es nuestra mente, de lo que puede llegar a conseguir cuando evolucione lo necesario. En la escala del tiempo cósmico, en realidad, somos unos bebés. ¿ Qué seremos capaces de hacer cuando seamos mayores ?
Pues eso, fabricaremos “seres” que estarán conectados directamente con las máquinas, ya que, ellos mismos, serán máquinas perfeccionadas a niveles inconcebibles, y, podrán tener la información de manera dirtecta, sin intermediarios. Podrán visitar las estrellas sin que la radiación del espaciom les afecte. Podrán colonicar mundos que nosotros no podemos ni soñar. Podrán…Podrán…Podrán…
He dicho muchas veces que nuestro origen está en las estrellas, el único sitio donde se podía fabricar el material del que estamos hechos, y, también me he cansado de decir que nuestro destino está en las estrellas, algún día, tendremos que dejar nuestro querido planeta Tierra para buscar acomodo en otros mundos más o menos lejanos. Pero, ¿seremos nosotros esos viajeros o serán…
Estos otros.
En 1.957, el astrónomo alemán Wilhelm Gliese publicó un catálogo de estrellas cercanas al Sol. La número 581 de su lista era un astro insignificante situado a unos 20 años-luz, con sólo un tercio de la masa solar y la centésima parte de su luminosidad. Una enana roja más, probablemente el tipo de estrella más común en el Universo.
Un buen candidato pàra albergar alguna clase de vida es el planeta Gliese 581 c. Los estudios indican que podría poseer hidrógeno y oxígeno en su atmósfera, denotando la existencia de agua. Es, además, el primero que se descubre que posee temperaturas entre 0º y 40º, que permitan mantener agua líquida en su superficie.
Medio siglo después, Gliese 581 ha saltado a la fama. Allá por el año 2.005, un equipó capitaneado por los veteranos cazadores del planetas: Michel Mayor y Didier Queloz, descubrió, casi pegado a la estrella, un planeta (Gliese 581 b de unas 15 masas terrestres.
Más recientemente, el mismo grupo, ha refinado sus observaciones, que han revelado la presencia de dos compañeros del anterior: a 10 millones de kilómetros de la estrella orbita Gliese 581c, de sólo unas 5 veces la masa terrestre; y, a 37MKilómetros, Gliesed, que pesa como 8 Tierras. Ambos son netamente mayores que nuestro planeta y menores que los gigantes de hielo (Urano y Neptuno, 14 y 17 masas terrestres). En los últimos años, este tipo de planetas, inexistentes en el Sistema Solar, se han venido denominando supertierras.
Nuestro planeta, como sabéis, circula a la respetable distancia de 150 millones de kilómetros del Sol, 1 Unidad Astronómica, lo que permite apreciar lo cerca que están los nuevos planetas de la estrella madre. Los tres serían bolas de fuego si orbitasen en torno a una estrella como la nuestra, pero las enanas rojas son hogueras suaves: sus descubridores han aventurado que Gliese 581c podría mantener agradables temperaturas, entre -3 y + °40° C. Y la ecuación: Posibilidad de agua líquida en un planeta=a vida.
La atmósfera es esencial para la vida
¿Existe atmósfera? Los cazadores son, naturalmente, más cautos. La temperatura dependerá del tipo (o tipos) de superficie del planeta y de la abundancia y composición de sus nubes. Los oscuros bosques y mares de la Tierra absorben hasta el 90% de la radiación solar, mientras que el hielo refleja el 80‰ Pero sobre todo es la composición de la atmósfera de un planeta, su riqueza en gases de invernadero, la que rige, mucho más que la estrella, su clima. Así que, a falta de estos datos, este rango de temperatura es solo una especulación razonable. En lo referente al agua y a la atmósfera, dadas las dimensiones de esos planetas parece un cálculo razonable y razonado.
Todo esto, el comentario, sólo es una muestra pequeña de la inquietud que tenemos en buscar sustitutos a la Tierra, en nuestro subsconciente, sabemos que, algún día, necesitaremos nueva casa.
Sin embargo, en este punto crucial de la exploración planetaria, el descubrimiento de supertierras en sistemas planetarios sin jovianos nos lleva a un panorama nuevo y vertiginoso: quizá los joviamos sean los elefantes del zoo planetario, que podría estar poblado sobre todo por animales más pequeños en números enormes. Podrían existir incontables planetas-insectos.
Los cazaplanetas quieren acelerar el proceso y tratan de responder la eterna gran pregunta: ¿Estamos solos? Para ello consideran necesario desarrollar nuevos y más avanzados medios de observación. Ni los telescopios espaciales Hubble y Spitzer pueden cubrir la tarea, sólo hallar planetas jupiterianos. El flamante satélite Kepler, lanzado por la NASA en marzo, dará mucha información a partir de enero de 2010, “conoceremos muchos nuevos planetas extrasolares”, afirma con ilusión Dimitar Sasselov, de la Universidad de Harvard. ¿Alguno habitable? Seguro que antes de 20 años, dice.
Si el planeta es gaseoso como Júpiter la vida como la nuestra no será posible. Si está muy cerca de su “Sol”, tampoco. Pero si…
Esos enormes planetas, tienen una inmensa fuerza gravitatoria y, seres como nosotros,seríamos literalmene aplastados contra la superficie, allí solo pueden existir seres de peso ínfimo a los que la gravedad no les afecte apenas. ¿Habrá enormes planetas llenos de insectos?
Quiero recordar que, hasta la fecha, son más de 500 planetas contabilizados fuera del Sistema Solar. No tenemos amplios datos sobre ellos, pero sí podemos decir que, ahí fuera, existen cientos de miles de planetas que al ser de distintas características, unos tendrán agua y atmósfera y las dimensiones idóneas para albergar la vida. ¿Inteligente? Esa es otra historia que requeriría muchos trabajos como este y en más profundidad para poder explicar las complejidades requeridas para que la vida…, esté presente.
Sin embargo, pensemos:
Sólo en nuestra Galaxia existen más de 100.000 millones de estrellas. El Universo está poblado por cientos de miles de millones de Galaxias cuyo promedio es también de 100 mil millones de estrellas cada una.
En cada galaxia existen miles de miles de millones de soles con sus planetas, lo que supone una cantidad enorme de mundos.
¿Podemos pensar que de entre cientos y cientos de miles de millones de planetas, solo la Tierra alberga la vida inteligente? Parece algo pretencioso, ¿no te parece?
El Universo nos depara muchas sorpresas.
emilio silvera
Abr
13
Siempre imitando a la Naturaleza
por Emilio Silvera ~ Clasificado en Naturaleza-Imaginación ~ Comments (0)
Las patas de un reptil… La salamanquesa o ‘gecko’ no vive bajo las leyes de la gravedad. Por ello, este pequeño reptil, que asciende paredes verticales y se desplaza boca abajo sin inmutarse, ha fascinado con recurrencia a la comunidad científica. Su milagrosa capacidad, aparte de inspirar mitologías (como el trepamuros Spiderman), ha servido para estudiar los mecanismos de agarre y las fuerzas de sujeción. El secreto de la salmanquesa reside en las nanoespátulas que tiene en sus patas. Gracias a las fuerzas de Van der Waalt, unas atracciones de corto alcance entre átomos, los ‘geckos’ pueden pegarse y despegarse de casi cualquier superficie en cualquier ángulo. FOTO: PIXABAY
..en robots espaciales y hombres-araña Basándose en las habilidades de la salmanquesa, la NASA ha desarrollado el Gecko Gripper (en la imagen), un robot que emula la adherencia del reptil y podría explorar entornos inaccesibles y realizar tareas de mantenimiento en las naves espaciales. DARPA, la Agencia de Proyectos de Investigación Avanzados de la Defensa de EE UU, presentó en su programa Z-Man unas manoplas que permiten a un humano de hasta 100 kilos trepar por una superficie vertical como si fuera el mismísimo hombre-araña. El ‘gecko’ ha inspirado otras aplicaciones, como la reconstrucción de vasos sanguíneos y la reparación de úlceras en el tracto digestivo. “Además de nuevos y más resistentes pegamentos que no dejan mancha”, apunta Aparicio. FOTO: NASA
…y también en ‘gadgets’ trepadores El gecko también ha inspirado otras creaciones en el campo de la investigación: el Sticky Bot, por ejemplo, es un robot desarrollado por la Universidad de Stanford que calca la fisonomía del reptil y que se desplaza de manera autónoma. “Existen también robots que imitan las patitas laterales de los escarabajos y pueden desplazarse por una malla sin caerse”, cuenta Aparicio. FOTO: WIKIMEDIA
La casa de las termitas… “No somos los primeros en construir, no somos los primeros en optimizar el espacio, impermeabilizar o calentar una estructura”. Estas palabras de Janine Benyus, la pionera y ‘madre’ de la biomímesis, pronunciadas durante una charla TED, se aplican perfectamente a los nidos de las termitas. Orientados al sol, sus montículos porosos (que además le dan apariencia de rascacielos) están horadados por cientos de canales que posibilitan un sistema de ventilación único. Gracias a estos túneles, y teniendo en cuenta los postulados básicos de la física, el oxígeno entra y el dióxido de carbono sale. Así, estos prodigios de la arquitectura mantienen niveles estables de humedad y temperatura, especialmente en la parte central, donde vive la reina. FOTO: HONZA SOUKUP (FLICKR)
La piel del tiburón… No hay bacteria que pueda penetrar la piel de un tiburón. Su textura denticular, compuesta de miles de nanoescamas, impide que cualquier microorganismo nocivo se pueda adherir a ella y le convierte en un acorazado antiséptico. Su forma de desplazarse por el agua, además, ha sido estudiada por su capacidad hidrodinámica. FOTO: WIKIMEDIA
…para combatir bacterias hospitalarias Inspirándose en este depredador del mar, varias compañías han desarrollado revestimientos para las paredes de los hospitales con el objetivo de repeler a las bacterias hospitalarias, aquellas que se fortalecen sobreviviendo en las condiciones más adversas. La piel del escualo ha inspirado también trajes de natación que disminuyen la resistencia del nadador al agua y que, como los tiburones,”generan vórtices y microrremolinos al nadar y alcanzan grandes velocidades”, especifica Aparicio. De hecho, varios nadadores, entre ellos el plusmarquista y mejor olímpico Michael Phelps, usaron estos trajes hasta que la Federación los prohibió en 2010. FOTO: NIAID (FLICKR)
El caparazón de un escarabajo… El escarabajo de Namibia, pese a vivir en un clima desértico, nunca pasa sed. Sabe cómo almacenar de manera natural el agua que flota en la atmósfera. Un sistema que parece mágico pero que tiene una explicación sencilla: posee unos pequeños bultos, protegidos por lados cerosos, que atraen el agua de contenida en las brisas húmedas, líquido que después se condensa en su caparazón y se desliza directamente hasta su boca. FOTO: WIKIMEDIA
…para botellas que se llenan solas de agua El escarabajo de Namibia impulsó a la empresa NBD Nano al desarrollo de un prototipo de botella que se llena sola. Recubierta de materiales que atraen y repelen el agua, la combinación posibilita que el líquido se condense dentro del envase. La compañía tiene también en su haber una tecnología que hace que las huellas dactilares no se quedan en superficies de metal y cristal para evitar que se repliquen con fines ilícitos. También inspirada en el insecto, la firma Seawater Greenhouse edifica invernaderos que transforman el vapor marino y en agua para los cultivos. FOTO: Public Domain Pictures
Una planta fastidiosa… Las semillas del cardo tienen la particularidad de engancharse a todo lo que toquen. Ovejas y otros animales han sufrido el poder de adherencia de esta planta, y cualquiera que haya paseado por el campo se habrá llevado el cardo a casa enganchado en las perneras del pantalón. Un contratiempo que, a finales de la década de los cuarenta, le sucedió al inventor suizo Georges de Mestral y a su perro. FOTO: WIKIMEDIA
…para un invento universal El inventor desenganchó las semillas de cardo de su mascota y tuvo una revelación: ¿por qué no crear un sistema de agarre basado en esta planta tan pegajosa? De Mestral desarrolló entonces el velcro, término compuesto de las palabras velours (terciopelo) y crouchet (gancho), un sistema que consta de dos tiras que se enganchan entre sí y que se convertiría en universal cuando la NASA comenzó a usarlo en sus trajes de astronauta. “Hay casos en los que la naturaleza nos ayuda por puro azar”, dice Aparicio. El encuentro entre De Mestral y el cardo, a la postre feliz, daría lugar a uno de los productos más comercializados del mundo. FOTO: WIKIMEDIA
La capacidad de adaptación de los cactus… Poblador de los climas más extremos, el cactus se adapta a todo. Los ‘cactae’ son los vegetales que mejor dosifican el agua; además, sus espinas (son hojas que han evolucionado para minimizar la pérdida de líquido) les protegen de todo animal que quiera extraer su agua. Son también un ejemplo de aprovechamiento de recursos: por la noche el cactus traspira, ya que por el día, cuando tienen que soportar temperaturas que superan los 50 grados, ‘elige’ retener el agua en su interior. FOTO: PIXABAY
…para un hotel biointeligente en Catar De igual manera a su inspiración vegetal, el Cactus Sprouts Hotel de Doha (Catar), uno de los múltiples ejemplos de arquitectura biomimética, regula su temperatura. Las persianas inteligentes que protegen sus ventanas dejan pasar más o menos luz solar en función de la temperatura exterior para mantener un ambiente térmico adecuado. El edificio, pensado para adaptarse al clima desértico catarí, convierte además el CO2 en oxígeno gracias a una bóveda repleta de vegetación y acredita huella de carbono cero, además de tener sistemas de reciclaje de agua y abastecerse de energía fotovoltaica. FOTO: PINTEREST
La hoja del loto… para revestimientos impermeables En la flor de loto el agua no cala. Este vegetal, protagonista de impresionantes imágenes en las que se aprecian sus propiedades hidrófugas, ha servido de inspiración para fabricar revestimientos y superficies que aúnan impermeabilidad y cualidades antibacterianas. En la actualidad, además, se están empezando a utilizar materiales inspirados en la flor de loto para recubrir las fachadas de algunos inmuebles y anular los efectos de la humedad y las precipitaciones. FOTO: WIKIMEDIA
(Y toda la naturaleza para las obras de Gaudí) Gaudí, devoto de la belleza de lo natural, hizo de los árboles un motivo técnico y decorativo que emplearía en una de sus obras cumbre, la Sagrada Familia. Las columnas y la bóveda de la exuberante iglesia barcelonesa son una especie de bosque esculpido. Debajo de él yacen otras formas pétreas: moluscos, tortugas, frutas. Gaudí sacó provecho de su amor por la naturaleza en otras construcciones, como el Park Güell, poblado de piedras que podrían ser reptiles, o la Casa Milà, donde impera la línea curva como símbolo del crecimiento orgánico. “Lo hicieron muchos otros artistas, entre ellos genios como Da Vinci o Dalí”, añade Aparicio. FOTO: WIKIMEDIA
Ojos de insectos… Los insectos pueden percibir movimientos fugaces en un rango de casi 360 grados. No ven, eso sí, como si miraran a través de un caleidoscopio, como su visión ha sido representada artísticamente en el cine. Compuestos de muchas facetas individuales, sus ojos perciben las imágenes como si fueran un mosaico pixelado, pero pueden detectar una gama mayor de colores, la polarización de la luz y mandar señales casi instantáneas a su sistema nervioso gracias a sus fotorreceptores. FOTO: PIXABAY
…para sistemas de visión nocturna Algunos insectos nocturnos han desarrollado su visión hasta poder ver en la oscuridad y adaptarse a diferentes grados de brillo y color. De ellos han tomado inspiración varios fabricantes de vehículos, que han creado algoritmos inteligentes para ayudar en la conducción nocturna. Igual que los insectos, el algoritmo puede detectar y procesar en tiempos ínfimos señales lumínicas repentinas, como los faros de un coche que pasa en sentido contrario, y adaptar la imagen de la cámara que llevemos instalada. Por otro lado, investigadores de la Universidad de Wisconsin-Madison han desarrollado unas lentes que permiten ver colores que el ojo humano no está preparado para percibir, y que ciertos animales tetracrómatas (aquellos con cuatro tipos de fotorreceptores por los tres de los humanos) sí aprecian. FOTO: WIKIMEDIA
Una variedad de helecho… La Polystichum munitum, el helecho de espada occidental, es una planta con una estructura peculiar: sus hojas, compuestas de formas fractales, posibilitan un almacenamiento de energía eficiente y una óptima circulación del agua. FOTO: BREWBOOKS (FLICKR)
…para multiplicar por 30 la capacidad de los supercondensadores Basándose en la estructura del helecho, un equipo de la RMIT University ha desarrollado un electrodo de grafeno que podría incrementar 30 veces la capacidad de almacenamiento de los supercondensadores, unos dispositivos de almacenamiento de energía utilizados en, por ejemplo, vehículos eléctricos. FOTO: RMIT UNIVERSITY
Lo cierto es que desde siempre, los humanos, nos hemos fijado asombrados cómo la Naturaleza hacía 2milagros2 ante nuestros propios ojos, y, cuando alcanzamos las tecnologías adecuadas… ¡La imitamos!
Abr
12
El Vacío superconductor: La máquina de Higgs Kibble
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
De vez en cuándo debemos mirar atrás.
Resulta que el vacío está lleno a rebosar de partículas virtuales y…
Por su parte, el científico británico Peter Higgs, de más años, que dio su nombre a la llamada “partícula divina” en 1964, afirmó que cree que su Bosón seríaá hallado gracias al Gran Colisionador. “Creo que es bastante probable” dijo pocas horas después de que entrara en funcionamiento el gigantesco acelerador. Y, según parece, se está saliendo con la suya.
De todas las maneras, estaría bien saber, a ciencia cierta, cómo es el campo de Higgs del que toman la masa todas las partículas, y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e interracionan con él, es el efecto frenado el que les otorga la masa.
Claro que, esa, como otras conjeturas sobre los Océanos de Higgs y su dichosa Partícula “repartidora de masa”, no son más que conjeturas que, más adelante, debemos ir comprobando para poder escribirlas con letras de oro en el Libro de la Física, o, por el contrario, desecharlas como se ha hecho con tántas otras ideas y teorías frustradas que nunca llegaron a ninguna parte.
¡Los fotones de Yang-Mills adquieren su masa y el proncipio gauge se sigue cimpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente penso que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs” había sido puesto ahí “a propósito” y la “partícula de Higgs”, en sí misma, no era una “partícula gauge”. Si se admitía esto, ¿por qué no introducir más partículas y campos arbitrarios? Estas ideas se consideraron como simples modelos con los que jugart, sin mucho significado fundamental al que ahora se quiere llegar con el LHC pretendiendo hacer bueno todo aquello y, al menos los físicos, insisten en que, el campo y la partícula están ahí…¡ya veremos en qué queda todo esto! Son muchos los cabos sueltos y las cosas sin explicar.
En segundo lugar estaba lo que se llamó “teorema de Goldstone”. Ya se habían priducido antes modelos de partículas con “rotura espontánea de simetría”, pero para la mayoría de esos modelos, Jeoffrey Goldstone habia probado que siempre contenían partículas sin masa y sin espín. Muchos investigadores, por lo tanto, pensaron que la teoría de Higgs también debía contener esa partícula de Goldstone, sin masa y que esto era un inconveniente porque entre las partículas conocidas no había ninguna partícula de Goldstone. Incluso el propio Goldstone había advertido que el Modelo de Higgs no satisfaccía las condiciones para su demostración, así que no tenía que ser válido para este caso, pero todo el mundo estaba tan impresionado con las matemáticas del teorema que el Modelo de Huggs-Kibble no tuvo éxito durante mucho tiempo.
El bosón de Higgs pretende ser una parte integral de nuestra comprensión de la Naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa (al interaccionar con el Campo dónde, probablemente, ve frenada su marcha y su desplazamiento es más lento debido al medio por el que discurre su viaje). La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas particulas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.
Y así, el teorema de Goldstone se utilizó como un “teorema de imposibilidad”: si el espacio vacío no es simétrico, entonces no se puede evitar la presencia de partículas sin masa y sin espín. Ahora sabemos que, en nuestro caso, la letra pequeña invalida el teorema; las partículas de Goldstone se hacen incisibles debido a la invariancia gauge y no son más que las “partículas fantasmas” que encontró Feynman en sus cáculos. Además, debemos recordar que el Mecanismo Higgs no es una auténtica rotura de simetría.
Ingenios que quieren entrar en los campos de Higgs
Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.
Claro que, algunos, me piden más profundidad en las explicaciones y, no se conforman con pasar por encima de las cuestiones, hay que entrar más en materia y dejar sentados algunos de los parámetros maemáticos que en todo esto están presente, y, para ellos…
Los físicos han buscado al bosón de Higgs por cerca de 50 años porque su descubrimiento completaría el Modelo Estándar de la física de partículas. El bosón de Higgs y su campo asociado explican cómo la simetría electrodébil se rompió justo después del Big Bang, lo que le dio a ciertas partículas elementales la propiedad de la masa. Sin embargo del Modelo Estándar no predice la masa de Higgs, y varios programas experimentales en el LEP del CERN, en el Tevatron de Fermilab y ahora el LHC del CERN habían intentado medir la masa de la partícula.
En el seminario llevado a cabo hoy en CERN como preludio a la mayor conferencia de física de partículas de este año, el ICHEP2012 en Melbourne, los experimentos ATLAS y CMS presentaron sus resultados preliminares en la búsqueda del Bosón de Higgs. Ambos experimentos observaron una nueva partícula en la región de masa entre 125-126 GeV.
“Observamos en nuestros datos claras señales de una nueva partícula, al nivel de 5 sigma, en la región de masa alrededor de 126 GeV. El impresionante rendimiento del LHC y ATLAS y el gran esfuerzo de mucha gente nos trajo a esta excitante etapa”, dijo la presentadora del experimento ATLAS Fabiola Gianotti, “pero se necesita más tiempo para preparar estos resultados para su publicación”
“Los resultados son preliminares pero la señal 5 sigma alrededor de 125 Gev que estamos viendo es dramática. Ésta es de hecho una nueva partícula. Sabemos que tiene que ser un bosón y es el bosón más pesado que hemos encontrado hasta ahora,” dijo el presentador del experimento CMS Joe Incandela. “Las implicaciones son muy significantes y es precisamente por esta razón que debemos ser extremadamente diligentes en todos nuestros estudios.”
¿Donde aparece el Higgs en todo esto?
Pues pasemos a hablar de teoría cuántica de campos, en ese tendremos unas densidades lagrangianas que dependerán del campo de cada partícula, dependiendo de su spin será un lagrangiano o otro, por ejemplo para N (a = 1,….N) campos escalares(omito fórmula).
.Al buscar el mínimo del potencial (en realidad un extremal de la acción, pero para lo que nos interesa a nosotros serán mínimos) resulta que hay varios posibles (con el mismo valor) pero para que la energía se minimice hace falta fijar un vacío (debido a que el Hamiltoniano depende del potencial y de unos términos positivos que van con las derivadas del campo). Ahora bien, inicialmente nuestra acción podría tener una simetría gauge global, es decir que al efectuar una transformación de un grupo sobre los campos la acción no cambia, al fijar el vacío la simetría se reduce a un subgrupo y algunos campos obtienen masa (originalmente ninguno tiene masa), pues bien el teorema de Goldstone lo que dice es que campos se quedan sin masa, estos son los bosones de Goldstone.
¿Y el higgs?
Ya llegamos, en el apartado anterior hemos considerado transformaciones globales, pero por ejemplo en electromagnetismo tenemos transformaciones locales, así que hay que mirar lo que pasa en las transformaciones locales. Lo primero que pasa es que la derivada parcial no preserva los vectores (lo que hemos llamado antes psi igual que pasa en relatividad general, al hacer una transformación que depende de las coordenadas la derivada ya no es covariante, así que hay que buscar una covariante para seguir con lo que sabemos (en este caso la transformación se debe a un grupo gauge arbitrario, que no tiene porque ser el de difeomorfismos como en relatividad general. En este contexto aparecen los campos gauge que jugaran un papel similar al de la conexión en relatividad general y en el caso del electromagnetismo el campo gauge es el potencial electromagnético). Ahora al ser transformaciones locales, aparecen campos gauge que por similitud con el electromagnetismo escribiremos el lagrangiano de Yang-Mills igual que en el electromagnetismo F depende de los campos gauge, pero debido a que no es abeliano hay un termino extra que tiene que ver con las constantes de estructura del álgebra de Lie, . Ahora ya vien lo bueno, aparte del lagrangiano de la partícula también tenemos el de Yang-Mills, resulta que debido a la simetría local:
- Los bosones de Goldstone desaparecen, es decir no son partículas físicas.
- campos gauge obtienen masa
Pues eso es el efecto Higgs. Ahora para llegar ya al famoso bosón, en el modelo estandar no se pueden construir terminos de masa para las partículas debido a que no se pueden acoplar adecuadamente para ese propósito los campos de Yang-Mills y las partículas, debido a las simetrías que deben satisfacer (en general el famoso aunque cada campo tendrá una simetría concreta) y ahí es donde entra el bosón de Higgs, ya que el modelo más sencillo para añadir masa es justamente ese, añadir un doblete de campos escalares complejos y al romper la simetría …….. Higgs !!!!
Dos prestigiosos investigadores habñían sugerido de forma independiente que se podían construir modelos realistas dde partículas en los cuales, el sistema de Yang-Mills fuera responsable de la interacción débil y el mecanismo de Higgs-Kibble la causa de su corto alcance. Uno de ellos era el paquistaní Abdus Salam que estaba buscando modelos estéticos de partículas y pensó que la belleza de la idea de Yan-Mills era razón suficiente para intentar construir con ella un modelo de interacción débil. La partícula mediadora de la interacción débil tenía que ser un fotón de Yang-Mills y el mecanismo de Higgs-Kibble la única explicación aceptable para que esta partícula tuviera una cierta cantidad de masa en reposo.
Una simetría puede ser perfecta en el plano de las ecuaciones y resultar rota en el plano de las soluciones. Como decía Weinberg: «Aunque una teoría postule un alto grado de simetría, no es necesario que los estados de las partículas muestren la simetría. Nada me parece tan halagüeño en física como la idea de que una teoría puede tener un alto grado de simetría que se nos oculta en la vida ordinaria».
La teoría que unifica las interacciones electromagnéticas y débil se debe a Glashow, Salam y Weinberg que obtuvieron por ella el Premio Nobel de física de 1979. La dificultad esencial de esta teoría es que los bosones del estado inicial simétrico debían ser de masa nula (masa nula de los bosones de interacción origina una fuerza a gran distancia), mientras que se necesitan bosones intermedios (partículas que originan la fuerza) muy masivos para justificar la interacción débil (corto alcance) . El mecanismo de Higgs, permite resolver esa dificultad, mediante la ruptura espontánea de simetría hace masivos los bosones W y Z (interacción débil) y mantiene nula la masa del fotón (interacción electromagnética).
Los famosos diagramas de Feynaman, nos explican algunos mecanismos de los que se pueden producir (de hecho se producen) en ese misterioso campo de las partículas elementales cuando están presentes en cuertos lugares y se juntas con otros individuos de la especie.
Salam que estaba muy cerca de poder alcanzar la gloria…no llegaba a poder explicar y aplicar las reglas de Feynman y tuvo quer admitir que la teoría parecía estar llena de partículas fantasmas que estaban a punto de estropearlo todo. En estas, llegó el otro investigador, Steven Weinberg, que supo dar un paso más al formular con mucho más detalle un modelo sencillo en el cual indicaba con precisión los campos que existían y cómo podían interactuar. Pero se limitó a los leptones. Weinberg comprendió que, junto al fotón ordinario tenía que haber tres fotones de Yang-Mills pesados::
– Uno cargado positivamente.
– Otro cargado negativamente.
– Otro Neutro.
El panorama completo
En lo que se refiere a los fotones cargados, todo el mundo estaba de acuerdo en que estos se necesitarían para describir la interacción débil: serían los famoso bosones vectoriales intermediarios, W+ y W–. De acuierdo con Weinberg, sus masas tenían que ser mayores de 60.000 MeV. Pero solos, estos bosones, vectoriales cargados eran suficientes para explicar todos los procesos de interacción débil que conocían en aquella época. Que aparte de ellos y del fotón ordinario, y, también se necesita otro componente neutro (Weinberg le llamó Zº) no era evidente en absoluto. Se encontró que la masa del Zº tenía que ser un poco mayor que la de los bosones cargados.
De todo aquello surgió una tería para las interacciones débiles en las cuales jugaban un papel dominante distintos diagramas de Feynman, de los que se podían plasmar un número infinito para mostrar, de manera gráfica, los sucesos que acontecían en aquellos fenómenos de la radiación producida en la interacción débil. Pasado el tiempo y mirado con una mejor perspectiva, es fácil comprender todo aquello pero, en aquellos momentos en que se estaba gestando, las cosas no resultaban tan fáciles.
Después de todo aquello, se prestó más atención al mecanismo Higgs-Kibble y, algunos, como Veltman fueron muy escépticos con aquellas ideas, y, desde luego, no fue fácil converlo de que pudiéramos llamar vacío a algo lleno de partículas invisibles. ¿No delatarían dijo, su presencia por sus campos gravitatorios? La teoría puede ser formulada de tal manera que esos campos gravitatorios se compensen exactamente con otras partículas invibles o por una contribución misteriosa del propio espacio vacío.
Cómo consigue la Naturaleza enmascarar tan exacta y eficientemente esos factores de la gravedad que no podemos notar nada, es un misterio que continua siendo muy debatido hoy en día. Claro que, todo esto dejará de ser un misterio cuando un día (lejos aún en el futuro), podamos comprender la Gravedad Cuántica.
Miehntras todo esto sucede… ¡Dejémos volar nuestra imaginación! con ideas y teorías como la de los ¡Campos de Higgs! ¡Bosones que, generosos ellos, regalan masas a otras partículas! ¡Materia que no podemos ver pero que, dem manera acérrima, nos empeñamos en que sí está! ¡Fluctiaciones de vacío que rasgan el espacio-tiempo, y, que de vez en cuando, hace surgir nuevos universos! ¡Universos paralelos que nacieron sin vida! ¡Ciclos eternos en el que las cosas se repetin una y otra vez hasta el infinito! ¡Nuevos Big Bangs después del nuestro! ¡Agujeros negros en nuestro universo y, blancos al otro lado, en otro universo. Aquí recoge materia y, allú, la expulsa por el contrario, un Agujero Blanco! ¡Agujeros de Gusano que nos podrían llevar a otras galaxias! ¡El sueño de vencer (mejor burlar) a la velocidad de la luz, ese muro que nos tiene confinados en nuestro pequeño mundo, el Sistema Solar!
Después de leer todo esto, ¿por qué no dedicais aunque sólo sea una hora para pensar sobre ello?
emilio silvera