sábado, 30 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un final para una gran misión

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

8 cosas sobre Saturno que quiza no sabias

La sonda Cassini se aproxima a su ‘Gran Final’ en Saturno

Se adentrará entre el planeta y sus anillos para acabar desintegrada en la atmósfera del gigante gaseoso

 

 

 

 

La sonda Cassini y Saturno

Desde que en octubre del año 1997 fuera lanzada la sonda Cassini, hasta que el 15 de septiembre de 2017 se destruya, habrán pasado 20 años. Durante ese tiempo ha sido la primera nave que ha orbitado en Saturno, ha retratado el planeta y sus anillos, las lunas Titán y Encélado, buscando la presencia de vida y ayudando a resolver innumerables misterios.

MÁS INFORMACIÓN

 

 

Resultado de imagen de La Sonda Cassini Huygens

 

La nave no tripulada Cassini-Huygens fue lanzada por un cohete Titán 4B y con un peso de 5.670 kilogramos ha recorrido más de 3.500 millones de kilómetros. Cassini llegó a Saturno en el año 2004, y se convirtió en el primer satélite artificial tras una larga maniobra, enviando valiosa información desde que entró en órbita.

En noviembre de 2016 la sonda Cassini empezó a cambiar el rumbo, con el objetivo de sobrevolar el polo norte de Saturno y el anillo más alejado del planeta. A partir de abril de 2017, la nave se ha ido acercando a Titán para aprovechar su empuje gravitatorio y adentrarse en el espacio entre el anillo más interno y el planeta, una extensión de unos 2.400 kilómetros de ancho, realizando 22 órbitas, cada una con una duración de seis días, y acercándose como nunca se había llegado al sexto planeta del Sistema Solar. La información que consiga, según ha explicado la NASA, puede responder a grandes preguntas sobre Saturno, cuál es su estructura interna, cuánto dura un día en el planeta, a qué velocidad gira su núcleo, y cuándo se formaron sus anillos. Será la primera ocasión en la que se van a analizar partículas de hielo de los anillos principales y las capas externas de la atmósfera.

 

 

Resultado de imagen de La Sonda Cassini Huygens

 

 

 

 

El próximo 11 de septiembre realizará su último sobrevuelo, que se ha dado en llamar el ‘beso de despedida’, y que servirá para encaminar a Cassini hacia su desintegración en la atmósfera de Saturno cuatro días más tarde. En estos momentos el combustible se está agotando, y se intenta evitar que sus restos contaminen los lagos de Titán o los mares de Encélado, porque se han descubierto géiseres con compuestos químicos esenciales para sustentar microbios.

Entre la información que ha enviado la sonda, destacan unas fotografías que muestran las vistas de la descomunal tormenta hexagonal que reina en el polo norte del planeta y las imágenes de mayor resolución que se hayan tomado de Pandora, la luna de 84 kilómetros de diámetro en el anillo exterior. También datos publicados sobre el lado nocturno de Titán presenta entre 10 y 200 veces más luz que su lado diurno, los científicos creen que podría deberse a la eficiente difusión frontal de la luz solar por la extensa neblina de su atmósfera, un comportamiento que en nuestro Sistema Solar solo presenta Titán.

Cassini llega al final de su viaje, pero hasta el momento de su desintegración nos seguirá transmitiendo lo que pasa tan lejos de la Tierra.

¿Vida sólo en la Tierra? ¡Qué disparate!

Autor por Emilio Silvera    ~    Archivo Clasificado en Vida en otros mundos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://1.bp.blogspot.com/-gMDZg8QMeQU/Tn7-fwc-U2I/AAAAAAAABFA/JS95PakvPOE/s1600/Image77.gif

La vida que surgió de un protoplasma vivo, de la química de los elementos que la conforman, de los lugares que tenían aquellos parámetros que la permitieron, de células que supieron adaptarse y evolucionar hacia una más completa complejidad que, pasó de procariota a eucariota mediante la adhesión de orgánulos y mitocondrias que le dieron un algo valor adaptativo. Ha surgido en el Universo de manera expontánea y, el Azar, bajo ciertas circunstancias muy especiales que estaban presentes en lugares privilegiados del Universo, dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada que, con el paso del tiempo, sufre alguna mutación que, por lo general, la mejora.

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

 

 

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

 

Así se expresaba Fred Hoyle.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

Resultado de imagen de LOs cañones de marteImagen relacionadaImagen relacionada

¿Quien puede negar la presencia de agua en este lugar en el remoto pasado, o…, puede que no tan lejos. El paisaje marciano nos habla de correntías violentas que surcaron la tierra  oradándola y dejando a la vista esos inmensos cañones naturales.

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

Visión artística de Encélado

Visión artística del cielo de Encélado, por David Seal (NASA). Encelado tiene mucha actividad volcánica y también, es poseedor de mucha agua en su interior. Es una de las lunas de Saturno que deben ser estudiadas.

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Resultado de imagen de Imágenes de Odisea del Espacio 2.001Imagen relacionadaImagen relacionada

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

Interior de Europa pq

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

                                                    Tenemos motivos -también- para estar orgullosos

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

No estaría nada mal construir un Hotel en Titán y, por la venta, ver todas las mañanas la magnificencia de Saturno y todo el entorno que con el camino por el espacio interestelar.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió.

                                                                             La sonda Huygens

De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera

¿Limpieza? SÏ pero… ¡Sin pasarse!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El problema de un exceso de higiene

 

 

Resultado de imagen de La suciedad de las poblaciones en la Edad MediaImagen relacionada

 

 

 

Las mejoras en la higiene han producido muchos beneficios para la salud, pero es posible que también hayan tenido algunos efectos secundarios. Esto es lo que trata de explicar otro de los artículos seleccionados por Springer Nature. En un trabajo que lidera Christopher Lowry, de la Universidad de Colorado en Boulder, se cuenta cómo la falta de exposición a algunos microbios con los que convivimos desde hace miles de años ha podido dejarnos con un sistema inmune “desentrenado”.

En el sistema de defensa del organismo frente a los patógenos, la inflamación es fundamental. Sin embargo, ese mecanismo también puede producir enfermedades. Se sabe que la inflamación puede provocar problemas psiquiátricos como la depresión. Esto se ha observado, por ejemplo, en personas a las que se aplican inyecciones de interferón alfa, un tratamiento para enfermedades como la hepatitis B o algún tipo de cáncer. Las proteínas que componen este medicamento producen un efecto inflamatorio y esto a su vez hace que algunos de los pacientes que lo reciben se depriman.

Imagen relacionada

 

 

El exceso de higiene ha podido eliminar los microbios que preparan nuestro sistema inmune

 

Las dolencias producidas por la inflamación no deseada como las alergias o el asma se han incrementado durante los últimos años. Sin embargo, aún no se conocen bien los mecanismos que provocan esos efectos. Una de las hipótesis que se plantean para explicar este fenómeno es la de los viejos amigos. Esta epidemia se debería, en parte, a una menor exposición a microorganismos con los que convivimos, preparan los circuitos que regulan el sistema inmune y suprimen la inflamación inapropiada. La falta de contacto con nuestros viejos amigos haría más vulnerables a los habitantes del mundo moderno a problemas del desarrollo neurológico como el autismo o la esquizofrenia o cuestiones relacionadas con el estrés o la ansiedad.

Además de plantear que se estudie mejor la relación entre los microorganismos con los que convivimos y los fallos en el sistema inmune, proponen la posibilidad de tratar estas enfermedades con probióticos. En este sentido, recuerdan que ya se han empleado saprófitos, un tipo de microbios que se alimentan de material en descomposición, como inmunoterapia en un ensayo clínico con enfermos de cáncer. Aunque no sirvió para prolongar la vida de los pacientes, sí mejoró su capacidad cognitiva y su salud emocional.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://4.bp.blogspot.com/_XGCz7tfLmd0/TDUaKVAfCZI/AAAAAAAAGeA/pNphHD4hT8U/s1600/quapul02.jpg

En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.

   Esta es la imagen que de un púlsar tenemos pero…

¿QUE SON LOS PÚLSARES?

Resultado de imagen de Púlsares

                   En realidad son los relojes más precisos de la Naturaleza

Un púlsar es una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Han sido catalogados cerca de un millar de púlsares desde que se descubriera el primero en 1967. Los Púlsares son Estrellas de Neutrones en rápida rotación, con un diámetro de 20-30 Km. Las estrellas se hallan altamente magnetizadas (alrededor de 10 exp.8 tesla), con el eje magnético inclinado con respecto al eje de rotación.

La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s pero varían desde los 1,56 ms (púlsares de milisegundo) hasta los 4’3 s

Los períodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas. Las medidas precisas de tiempos en los púlsares han revelado la presencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los Púlsares del Cangrejo y Vela.

La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutrones después de una acreción de masa de una estrella compañera. (Púlsar reciclado).

Un púlsar expulsa el chorro cósmico más largo de nuestra galaxia

        Un gigantesco chorro de materia expulsado por un púlsar que han captado los aparatos de la NASA

La gran mayoría de los púlsares conocidos se encuentran en la Vía Láctea  y están concentrados en el plano galáctico. Se estima que hay unos 100.000 púlsares en la Galaxia. Las observaciones de la dispersión interestelar y del efecto Faraday en los púlsares suministran información sobre la distribución de electrones libres y de los campos magnéticos de la Vía Láctea.

Cuando un púlsar está en órbita con otra estrella, estamos hablando de un púlsar binario, cuya existencia es revelada por un cambio cíclico en el período de pulsación a medida que las dos estrellas orbitan la una en torno a la otra. Se conocen alrededor de 50 púlsares binarios, con períodos orbitales que varían entre menos de 1 hora y varios años, y períodos de pulsión entre 1,6 ms y más de 1 s.

                                           Imagen más aclaratoria del PSR 1913+16

El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.

El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.

         Púlsar evaporando estrella © Crédito: NASA/ESA. PSR 1957 + 20

Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su  pequeña estrella compañera. Algunos púlsares binarios se saben ahora que son púlsares reciclados que han adquirido altas velocidades de rotación debido  a la acreción de gas procedente del compañero.

El púlsar del milisegundo brilla cada pocas milésimas de segundo. El primero en ser descubierto, PSR 1937 + 21, tiene un período de 1,56 ms, siendo aún el del período más corto conocido y próximo al mínimo teórico para una estrella de neutrones en rotación. Han sido descubiertos más de 60 púlsares con períodos de menos de 20 milisegundos, muchos de ellos en cúmulos globulares. Los púlsares de milisegundo poseen una rotación extremadamente estable y mantiene una regularidad mayor que la de los relojes atómicos.

También está el púlsar de rayos X. Aquí estamos hablando de una binaria de rayos X que tiene una variabilidad regular, en la que la pulsación está asociada al período de rotación de la compañera compacta, una estrella de neutrones magnetizada.

Los períodos varían desde unos pocos segundos hasta unos pocos minutos. Estas pulsaciones se piensa que están provocadas por el campo magnético que canaliza el gas en acreción hacia los polos de la estrella produciendo “manchas calientes” localizadas que se hacen visibles o no a medida que rota la estrella. Un ejemplo de dicho sistema es Hércules X-1.

La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutrones después de una acreción de masa de una estrella compañera. (Púlsar reciclado).

Otro tipo de púlsar es el llamado óptico que sufre pulsaciones en la parte visible del espectro, además de en longitudes de onda de radio y de otros tipos. El primer púlsar cuyas pulsaciones ópticas fueron descubiertas fue el Púlsar del Cangrejo, en 1969, seguido del Púlsar Vela en 1977.

El púlsar denominado “reciclado” es un púlsar con un campo magnético inusualmente bajo (1-100 tesla), un ritmo de frenado pequeño y un período de pulsos frecuentemente muy bajo, encontrándose a menudo en sistemas binarios.

Púlsar J1023 antes y después del apagado de su baliza

Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían  períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.

Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.

emilio silvera

La Biología en la Tierra ¡Qué maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hablamos de Agujeros de Susano y otros temas similares, o, de Universos paralelos, siempre pensando en que el nuestro, nuestro Universo y primero nuestro mundo, llegará a su fin. Es necesario que los científicos piensen en estas cosas para solucionar los problemas del futuro y cuándo llegue el momento, salir de las encrucijadas a las que, irremediablemente, estamos destinados.

La gente corriente no piensa en estas cuestiones; su preocupación es más cercana y cotidiana, la hipoteca del piso o los estudios de los niños y, en la mayoría de los casos, lo “importante es el fútbol” para evadirse dicen algunos. Es una lástima, pero así son las cosas. No se paran ni a pensar cómo se forma una estrella, de qué está hecha y por qué brilla. Nuestro Sol, por ejemplo, es una estrella mediana, amarilla, del Grupo G-2, ordinaria, que básicamente consume hidrógeno y como en el Big Bang original, lo fusiona en helio. Sin embargo, puesto que los protones en el hidrógeno pesan más que en el helio, existe un exceso de masa que se transforma en energía mediante la fórmula de Einstein E = mc2. Esta energía es la que mantiene unidos los núcleos. Esta es también la energía liberada cuando el hidrógeno se fusiona para crear helio. Esta, al fin, es la razón de que brille el Sol.

Se denominan autótrofos por que generan su propio alimentos, atraves de sustancias inorganicas para su metabolismo. Los organismos autótrofos producen su masa celular y materia orgánica, a partir del dióxido de carbono, que es inorgánico, como única fuente de carbono, usando la luz o sustancias químicas como fuente de energía. Las plantas y otros organismos que usan la fotosíntesis son fotolitoautótrofos; las bacterias que utilizan la oxidación de compuestos inorgánicos como el anhídrido sulfuroso o compuestos ferrosos como producción de energía se llaman quimiolitotróficos.

Los órganos autótrofos son los que producen el alimento de esos seres. Los seres autótrofos son una parte esencial en la cadena alimenticia, ya que absorben la energía solar o fuentes inorgánicas como el dióxido de carbono y las convierten en moléculas orgánicas que son utilizadas para desarrollar funciones biológicas como su propio crecimiento celular y la de otros seres vivos llamados heterótrofos que los utilizan como alimento. Los seres heterótrofos como los animales, los hongos, y la mayoría de bacterias y protozoos, dependen de los autótrofos ya que aprovechan su energía y la de la materia que contienen para fabricar moléculas orgánicas complejas. Los heterótrofos obtienen la energía rompiendo las moléculas de los seres autótrofos que han comido. Incluso los animales carnívoros dependen de los seres autótrofos la energía y su composición orgánica obtenida de sus presas procede en última instancia de los seres autótrofos que comieron sus presas. también se pueden clasificar en: fotosintéticos y quimiosintéticos.

Los seres autótrofos siguen dos vías diferentes para transformar la biomasa que ingieren en los compuestos complejos de los que se componen sus tejidos. Esta transformación puede ser mediante fermentación anaeróbica o a través de respiración aeróbica. La primera vía se restringe a las células procariotas simples, como las fermentadoras, las bacterias metanogénicas y los hongos Ascomycota responsables de la fermentación del etanol (alcohol etílico). La segunda vía se hizo posible a partir del momento en que la cantidad de oxígeno atmosférico, generado por los vegetales, alcanzó un nivel suficientemente alto como para que algunos seres procariotes pudieran utilizar la respiración aeróbica para generar trifosfato de adenosina más eficientemente que por fermentación. Desde un punto de vista energético, la oxidación es claramente ventajosa. Así, por cada mol de glucosa se liberan 197 KJ por fermentación en ácido láctico, 232 KJ por fermentación alcohólica y 2’87 MJ por la oxidación completa, lo que representa para esta última una ganancia que está comprendida entre 12 y 14 veces.

Reino Monera (Bactérias, Cianobactérias)

Está formado por bacterias y cianobacterias (algas azules). Pueden vivir en diversos lugares, tales como agua o aire y en el interior de los animales y plantas como parásitos. La mayoría de sus representantes son heterótrofas (no pueden producir su propio alimento), pero también hay algunas autótrofas (producen sin alimentos, por ejemplo a través de la fotosíntesis). Existen también bacterias aerobias es decir, que necesitan oxígeno para vivir, el requisito de anaerobios, que no pueden vivir en presencia de oxígeno, y anaerobios facultativos, que pueden vivir tanto en ambientes oxigenados como en ambientes no oxigenados. La forma física de las bacterias pueden ser de cuatro tipos: cocos, bacilos, vibriones y espirilos. Los cocos pueden unirse y formar colonias. Grupos de dos cocos forman diplococos, alineados forman estreptococos y en grupos forman una infección de estafilococos.

Por ser los seres vivientes más primitivos en la Tierra, son también los que están en mayor número. Por ejemplo, en un gramo de tierra fértil pueden haber cerca de 2,5 mil millones de bacterias, en hongos 400.000 y en algas y protozoos entre 30.000 y 50.000.

Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño.

La importancia de las bacterias

Las bacterias también tienen su importancia en el medio ambiente, así como cualquier ser vivo. Describamos algunos papeles fundamentales.

  • Descomposición: Actúan en el reciclaje de la materia, devolviendo al ambiente moléculas y elementos químicos para ser re-utilizados por otros seres vivos.
  • Fermentación: algunas bacterias se utilizan en las industrias para producir yogurt, queso, etc (lácteos).
  • Industria farmacéutica: para la fabricación de antibióticos y vitaminas.
  • Industria química: para la producción de alcoholes como el metanol, etanol, etc.
  • Genética: mediante la alteración de su ADN, podemos hacer productos de interés para los seres humanos, como la insulina.
  • Determinación de nitrógeno: permite eliminar el nitrógeno del aire y tirado en el suelo, que sirve como alimento para las plantas.

Todo eso es posible como consecuencia de que en el núcleo de un átomo existen fuerzas (fuerzas nucleares) que mantienen los protones y neutrones ligados. Estas fuerzas deben ser suficientemente grandes para contrabalancear las repulsiones eléctricas resultantes de la carga positiva de los protones. La Simetría que está presente en los átomos hace que, la evolución bioquímica hiciera posible la presencia de estos ininitesimales seres que, evolucionaron hasta lo que hoy podemos ver a nuestro alrededor.

Los nutrientes necesarios para el metabolismo de tipo heterótrofo proceden de la digestión de los tejidos vegetales o de otros heterótrofos. En el metabolismo heterótrofo hay notables regularidades orgánicas. Entre ellas destaca claramente el hecho de que al representar en un gráfico logarítmico la tasa metabólica basal (TMB), – metabolismo mínimo cuando el animal se encuentra en reposo absoluto – frente al peso, los resultados relativos a los animales comprendidos entre el ratón y el elefante se dispongan a lo largo de una línea recta.

metabolismo_basal_kleiber

               Representación de Kleiber del metabolismo basal de los mamíferos desde el ratón al elefante.

Foto de elefante

Esta dependencia lineal en un gráfico logarítmico fue descubierta por Kleiber en 1.932, y muestra que, si representamos las TMB en vatios y el peso, p, en kilogramos, la dependencia funcional entre ambas magnitudes es 3’52 p0’74. Si en vez del peso, se representa la TMB frente a la superficie corporal de los animales, el exponente de Kleiber es 0’67, que es el valor que se había supuesto anteriormente. Las medidas posteriores de la TMB en cientos de especies han confirmado la primera dependencia funcional que ha sido redondeada en 1.961 por el propio Kleiber, en 3’4 p0’75 (en W).

Aunque aún no se ha encontrado una explicación definitiva de la razón de esta ley de potencia con exponente ¾, el análisis de los requerimientos mecánicos de los cuerpos animales dan una buena pista. Con criterios elásticos se deduce que el cubo de la longitud crítica de rotura de los huesos varía linealmente con el cuadrado del diámetro (d) de la sección de los mismos, que a su vez, es proporcional a p3/8. La potencia muscular es proporcional al área de su sección transversal (esto es, proporcional a d2), y por tanto, la forma funcional de la potencia máxima se expresa como (p3/8)2, o lo que es lo mismo, p0’75.

Una explicación aún más fundamental se basa en la geometría y en la física de la red vascular necesaria para distribuir los nutrientes y eliminar los materiales de desecho del cuerpo de los animales. Estas redes que llenan el espacio, son fractales que determinan las propiedades estructurales y funcionales de los sistemas cardiovasculares y respiratorios, y de sus propiedades se deduce que el metabolismo total de los organismos escala con su masa elevada a la potencia ¾

El sistema respiratorio de los Vertebrados, al igual que el circulatorio, está muy perfeccionado y adaptado para aportar la energía necesaria a los tejidos de los animales homeotermos, de forma que les permita resistir en condiciones desfavorables

El exponente de Kleiber tiene una consecuencia importante para los organismos con TMB específica (la TMB dividida por el peso corporal) decrecientes. Esta relación limita el tamaño mínimo de los animales homeotermos y facilita que las grandes criaturas puedan sobrevivir en condiciones ambientales adversas. La ingesta diaria de néctar de un pequeño colibrí es equivalente a la mitad del peso de su cuerpo (para los seres humanos, la comida diaria representa alrededor del 3% del peso corporal), y los animales de sangre caliente, de tamaño menor que un colibrí, tendrían que estar comiendo continuamente para poder compensar las rápidas pérdidas de calor.

Resultado de imagen de El rinoceronte

En el otro extremo, los grandes mamíferos pueden pasar varios días sin alimentarse, recurriendo a las reservas de grasa acumuladas para mantener su bajo metabolismo durante periodos de hibernación relativamente largos.

Los casos de separación de la tendencia general ilustran varios modos de adaptación al medio. Para regular térmicamente su cuerpo en agua fría, la TMB de las focas y las ballenas es el doble de las de otros animales de su tamaño. Los mamíferos del desierto, con sus bajas TMB, se han adaptado a los periodos de carencia de alimentos y a la escasez recurrente o crónica de agua.

En su colonización del medio terrestre, los cambios evolutivos de los primeros habitantes del medio acuático derivaron en extremidades locomotoras pentadáctilas con adaptaciones específicas, tales como las manos desgarradoras de los úrsidos, los felinos, etc.

Naturalmente, la TMB representa sólo una parte de las necesidades energéticas. La digestión eleva las tasas metabólicas de todos los animales y la reproducción requiere aumentos periódicos de energía (como también ocurre con el cambio de plumaje o pelaje en los pájaros y mamíferos). La búsqueda de comida es una actividad ineludible para todos los animales que no estén hibernando. Simplemente por estar de pie, la tasa metabólica en los pájaros es un 15 por ciento superior a la tasa de reposo; y en los mamíferos, exceptuando al caballo, esta diferencia llega al 30 por ciento. El límite metabólico, múltiplo de la TMB durante el máximo esfuerzo, es mucho mayor durante la carrera, natación o el vuelo.

Tendría que mencionar ahora la reproducción y sus distintas formas, que varían de modo continuo entre los casos extremos de la cría generalizada generada de golpe y los nacimientos espaciados de un único neonato. El primer caso maximiza la producción de individuos que maduran con rapidez, y estas especies son más oportunistas. La mayoría de las bacterias, así como muchas especies de insectos, pertenecen a este grupo de seres que se reproducen de forma oportunista e intensa. En condiciones adecuadas llegan a invertir una parte tan importante de su metabolismo en la reproducción que acaban convirtiéndose en plagas indeseables. En unos pocos días de verano, pequeños insectos como los áfidos, dedican el 80% de su metabolismo a reproducirse, en una estrategia que reduce de forma importante la vida de los progenitores y también las posibilidades de reproducción repetida. Los endoparásitos, sin embargo, son una desafortunada excepción a esta restricción: la tenia, debido al fácil suministro de energía que recibe, se reproduce copiosamente y puede sobrevivir más de quince años.

Resultado de imagen de Áfidos (pulgones)

  • Áfidos (pulgones)
    • Causan al chupar fluidos
    • Pequeños, color o amarillo
    • Producen mielecilla (sustancia pegajosa)

Imagen relacionada

  • Trips
    • Se alimentan de flores y hojas
    • Daño causa pequeñas áreas descoloridas

Resultado de imagen de Ácaros (arañuelas)

  • Ácaros (arañuelas)
    • Dañan hojas
    • Difícil detectar a simple
    • Algunos producen seda y dejan telarañas

Resultado de imagen de Mosca blanca

  • Mosca blanca
    • Causan deformaciones
    • Producen mielecilla
    • En el revés de hojas

En el otro extremo del rango reproductivo están las especies del tipo selección-k que se reproducen varias veces, espaciando los nacimientos y cada vez con crías poco numerosas, y que maduran lentamente. El resultado de esta forma de reproducción es una tasa de crecimiento y poca capacidad de colonización, que se compensa con la mayor longevidad, competitividad, adaptabilidad y frecuentemente por un comportamiento social altamente desarrollado.

Independientemente de su posición en el rango reproductivo, los rasgos comunes que presentan las transformaciones bioquímicas asociadas con la producción de los gametos y el crecimiento de los embriones permiten estimar la eficiencia de la reproducción heterótrofa. El máximo teórico de la eficiencia, para transformar los monómeros procedentes de la alimentación en los polímeros de la biomasa, está en torno a un impresionante 96%. Ineficiencias inevitables en la digestión de nutrientes y en la reproducción de recambio de tejidos reducen esta eficiencia, que siempre se mantiene por encima del 70%.

Los protozoos son organismos unicelulares, pero a diferencia de las bacterias, tienen membrana nuclear (cariomembrana, son eucariotas). Son organismos complejos, con un reproductivo, un aparato locomotor digestivo y la capacidad de producir energía por lo que durante muchos años han sido considerados “animales unicelulares”. Esta forma de vida todavía viven en colonias, ya sea de forma individual o como parásitos. Se encuentra en agua dulce, agua salada, en suelos húmedos o en otros seres como huéspedes. Pueden causar enfermedades a los seres humanos.

Los rendimientos se pueden medir fácilmente en los seres heterótrofos unicelulares que se reproducen rápidamente: los rendimientos más altos son los de las bacterias (50 – 65%) y se encuentra un medio en las levaduras y los protozoos. No es sorprendente que los poiquilotermos sedentarios sean, entre los heterótrofos superiores, los más eficientes en la transformación de nutrientes en zoomasa: sus tasas se aproximan frecuentemente al 70 – 80%, que es la máxima eficiencia posible.

La temperatura ambiental es determinante también para la reproducción y el desarrollo. Generalmente a mayor temperatura el desarrollo es más rápido, es decir, el tiempo requerido para una determinada etapa del desarrollo se acorta. La razón está en que a mayor temperatura se aceleran los procesos fisiológicos del organismo.La influencia de la temperatura sobre el proceso de reproducción y el de descendientes es determinante en muchos casos. Los animales de sangre caliente u homotermos pueden adaptarse a diferentes ambientes tanto fríos como cálidos, porque regulan su temperatura corporal.

Entre los vertebrados, los homeotermos presentan tasas de crecimiento fetal mucho más altas que las especies poiquilotermas. Los ornitólogos han los primeros en estudiar la energética de la reproducción debido a la importancia del huevo en la vida de las aves. La energía necesaria para el crecimiento testicular en los pájaros, durante el periodo de rápido desarrollo de las gónadas, está comprendido entre el 0’4 y el 2 por ciento del metabolismo basal. El crecimiento de las gónadas femeninas generalmente requiere aportes energéticos tres veces mayores que las masculinas pero, en cualquier caso, es una cantidad pequeña comparada con el coste energético de la producción e incubación de un huevo.

La cadena alimenticia, los herbívoros, los carnívoros, peces, natación, carreras y saltos, el vuelo, y tantos y tantos conceptos implicados me aconsejan reducir el presente trabajo que, en realidad, sólo quería limitarse a facilitar algunos conocimientos del planeta y que, por mi cuenta y riesgo, he unido a los seres que lo pueblan y cómo se mantienen y están relacionados. Pero no es eso lo que pretendía al , así que, volveremos al tema principal de este Blog: la Física, la Astronomía y los Pensamientos.

emilio silvera