lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cuál es el Camino? No hay ningún camino.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

El Camino lo tenemos que hacer nosotros al andar. Lo mismo que se forma la vereda en la Montaña cuando los seres vivos pasan por el mismo sitio una y otra vez, dando lugar a que se forme una línea en la tierra mil veces pisada que nos habla del paso por aquel lugar que los viandantes han creído el más idóneo para transitar hacia algún otro sitio. Lo tuvieron que elegir de manera racional al ser el más indicado y, por ese “camino” se creó el sendero por el que caminar. Antes allí, no había camino.

No pocas veces, el camino se crea a partir de una idea, una intuición, una ganas de saber lo que hay más allá de nuestros dominios, de explorar lo desconocido, de comprobar si la fascinación que presentimos por lo que pensamos que “allí” pueda existir, se debe a una certera intuición, o, por el contrario, es sólo un espejismo. No siempre el explorardor encontró aquella civilización perdida que gritaba insistente en su mente llamándolo sin cesar, ni el científico encuentra la anhelada explicación a un secreto de la Naturaleza que, tan claramente veía en sus sueños.

Está claro que el mismo acto de la exploración, modifica la perspectiva del explorador; Ni Ulises, Marco Polo o Colón podían ser los mismos cuando, después de sus respectivas aventuras regresaron a sus hogares. Lo mismo ha sucedido con la investigación científica en los extremos de las escalas, desde la grandiosa extensión del esapcio cosmológico…

                                               … hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

Estos viajes nos cambiaron y cambiaron muchos de los conceptos ancestrales que, en nuestras mentes, estaban apaciblemente aposentados y, desafiaron muchas de las concepciones científicas y también filosóficas que más valorábamos. Algunas, ante aquella realidad nueva, tuvieron que ser desechadas, como el bagaje que se deja atrás en una larga y pesada travesía un desierto. Otras tuvieron que ser modificadas y reconstituidas hasta quedar casi irreconocibles.

La exploración en el ámbito de las galaxias y cúmulos de galaxias esxtendió el alcanza de la visión humana en un factor de 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era una perspectiva parroquiana dentro de un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.

La exploración en el dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la física cuántica que transformó todo lo que abordó a partir de su nacimiento en 1900, cuando Max Planck, escribió aquel artículo de ocho páginas que fueron las semillas de las que más tarde, germiron “las flores” de la M.C.. Planck, comprendiò que sólo podía explicar lo que se llamaba la Curva del Cuerpo Negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de enertgía es continua, y lo reemplazó por la hipótesis sin presecentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades y quedaron simbolizadas por la letra h.

Plan no era ningún revolucionario -a la edad de 42 años era un viejo, juzgado por los patrones de las ciencias matemáticas y, además, un pilar de la elevada cultura germana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que habñía dedicado buena parte de su vida y de su carrera.

“Cuanto mayores sean sus dificultades -escribió-… tanto más importante será finalmente para la ampliación y profundización del conocimiento de la Física.” Aquellas palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de jabón, la física cuántuica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planck, h, llegó a ser considerado una constante de la naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

En una batalla entre los principios estrellas de la historia cuántica, sólo puede haber un ganador. O no puede? . En el invierno de 1926-1927, Werner Heisenberg el brillante joven alemán estaba trabajando como jefe asistente de Niels Bohr , alojado en un desván en la parte superior del instituto del gran danés de Copenhague. Después de un día de trabajo, Bohr se acercaba al encuentro con Heisenberg para hablar de física cuántica. A menudo se sentaban hasta altas horas de la noche, en un intenso debate sobre el significado de la teoría cuántica revolucionaria, entonces en su infancia.

Un rompecabezas que se ponderó eran los rastros de las gotitas que dejan los electrones al pasar a través de las cámara de niebla un aparato utilizado para rastrear los movimientos de partículas cargadas. Cuando Heisenberg trató de cálcular estas aparentemente precisas trayectorias usando las ecuaciones de la mecánica cuántica, no lo consiguió.

Una noche de mediados de febrero, Bohr había dejado la ciudad en un viaje de esquí, y Heisenberg se había deslizado a tomar un poco de aire de la noche en las amplias avenidas de Fælled Parque, detrás del instituto. Mientras caminaba, se le ocurrió. El rastro de los electrones no era preciso en lo absoluto: si uno lo mira de cerca, consiste en una serie de puntos difusos. Eso reveló algo fundamental sobre la teoría cuántica. De vuelta en su ático, Heisenberg escribió con entusiasmo su idea en una carta a su colega el físico Wolfgang Pauli. Lo esencial de esto apareció en un documento unas pocas semanas más tarde: “Mientras más precisa la posición es determinada, menor precisión, en el momento se conoce en este instante, y viceversa.”

\Delta x \cdot \Delta p \ge \frac{\hbar}{2}

Fórmula y gráfico que escenifican el Principio de Incertidumbre o Indeterminación

Así el notorio principio de incertidumbre de Heisenberg había nacido. Una declaración de la incognoscibilidad fundamental del mundo cuántico, que se ha mantenido firme durante la mayor parte del siglo. Pero ¿por cuánto tiempo? Corren rumores de que un segundo principio cuántico – el entrelazamiento- puede sonar el tañido de muerte para la incertidumbre.

Sólo podemos obtener respuestas parciales, cuya narturaleza está determinada en cierta medida por las cuestiones que optamos por infagar. Cuando Hesinberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida que nada menos que por h, el cuanto de acción de Planck.

Resultado de imagen de Indeterminación cuántica

La indeterminación cuántica no depende del aparato experimental que podamos emplear para la investigación del mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada conpartirían con los más humildes físicos de la Tierra. En la física atómioca clásica se suponía que se podía, en proncipio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos, protones– y a partir de los datos resultantes hacer predicciones exactas de donde estarían los protones en determinado tiempo futuro.

Heisenberg demostró que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sóla partícula, mucho menos de una gran cantidad de ellas, y, por lo tanto, nunca podremos hacer predicciones sobre el futuro que sean completamente exactas en todos los detalles. Esto marcó un cambio fundamental en la visión del mundo de la física. Revelaba que no sólo la materia y la energía sino también el conocimiento están cuántizados.

El principio de incertidumbre es aplicado a modelos del espacio 3D ordinario, donde el espacio tiempo es continuo. En los sistema cuantizados con retículos diminutos que conforman a los superejes, la información de las partículas pasa de un retículo a otro o a una zona cuántica distinta del mismo retículo. Dado que en el modelo de los eventos, los objetos no pertenecen a los eventos, simplemente evolucionan generando más información de nuevos eventos, la incertidumbre asociada a estos puede estar relacionada con radio del bucle de los retículos diminutos, y para el traslado de la información de un retículo a otro debe existir un nivel incertidumbre en cuanto a cual retículo pertenece el evento durante la transferencia de dicha información, o ¿a qué conjunto de valores cuánticos del mismo pertenece?

La mecánica cuántica (el salto cuantico del electrón) nos desvelará el secreto de cómo el electrón puede, al recibir un fotón, desaparecer del nivel nuclear que ocupa para de manera instantánea, y sin necesidad de recorrer la distancia que los separa, aparecer como por arte de magia en un nivel superior. Copiaremos el salto cuántico para viajar. Nos introduciremos en un cabina, marcaremos las coordenadas, pulsaremos un botón y desapareceremos en Madrid y de manera instantánea, apareceremos de la nada en otra cabina igual situada en Nueva York a 6.000 Km de distancia.

Imagen relacionada

…cuando el núcleo de un átomo es excitado por una fuente de energía exterior, tiene lugar el salto quántico, que consiste en el paso de un electrón a otra órbita con una energía mayor. No se sabe por donde hizo el viaje sin tener que andar la distancia entre el lugar de origen y el de llegada… ¿Por dónde  habría hecho el viaje?

No puede quitarme de la cabeza que, el Salto Cuántico, nos dará la idea para viajar de manera que podamos burlar, la velocidad de la luz. Sin embargo, ese “futuro” no podré verlo. Resulta que un electrón situado alrededor del núcleo de un átomo, es impacto por un fotón energético y, de inmediato, el electrón desaparece del lugar que ocupa en la órbita atómica y, de manera instantánea, aparece en otro lugar más cercano al núcleo. Lo asombroso del caso es que, no se sabe qué camino pudo coger para desplazarse de un lugar a otro. Simplemente desapareció de uno y apareció en el otro. Ese es, amigos míos, el Salto cuántico. Si somos capaces de copiarlo, viajaremos a las estrellas sin que nos importe cuántos años-luz nos puedan separar de ellas.

¿Quién sabe lo que podemos extraer del salto cuántico? El efecto túnel nos podría dar la fórmula para viajar a lugares lejanos. Creo que todos nuestros sueños se podrían realizar si, en el momento adecuado, observando la Naturaleza, sabemos elegirt el camino que tenemos que andar para llegar a ese destino soñado,o, imaginado.

Nuestras Mentes buscarán las formas de solucionar todos esos problemas complejos que ahora inquietan a la Humanidad.

La Física cuántica nos obliga a tomarnos en serio lo que antes eran puramentes consideraciones filosóficas: que no vemos las cosas en sí mismas, sino sólo aspectos de las cosas. Lo que vemos en la trayectoria de un electrón en la cámara de niebla no es un electrón, y lo que vemos en el cielo no son estrellas, como una grabación de la voz de Pavoroti no es Pavoroti. Al revelar que el observador desempeña un papel en la observación, la física cuántica hizo por la física lo que Darwin ha hecho por las ciencias de la vida: Echó abajo las paredes, reunificando la Mente con el Universo más vasto.

emilio silvera


  1. ¿Cuál es el Camino? No hay ningún camino. - MAESTROVIEJO, el 6 de julio del 2017 a las 22:07

    […] 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era una perspectiva parroquiana […]

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting