lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

De la misma forma que ocurre con las estrellas de las que existen una gran variedad, en colores -según los elementos de los que cada una esté conformada, dimensiones, masa, y otros parámetros que las definen, con los mundos ocurre otro tanto. No solo existen mundos rocosos y gaseosos (clasificación que sería una simplicidad), sino que, dependiendo de una serie de requisitos y circunstancias, los mundos pueden ser de muchas y diversas maneras y materiales.

¿Cómo se viviría en un mundo así? ¿Como sentiríamos la Gravedad de ese enorme planeta vecino tan cercano? Existen mundos en el espacio exterior que están alumbrados por estrellas enanas rojas cercanas a ellos, otros, se ven alumbrados por una luz intensamente roja proveniente de una estrella de carbono, también los hay que están a merced de estrellas múltiples, es decir, sistemas de tres o más estrellas ligadas por su atracción gravitacional múltiple (se estima que alrededor de un tercio de todas las binarias conocidas son realmente triples). También ha surgido mundos dependientes de una estrella peculiar, una estrella que se saber que es variable. ¿Cómo sentarían esos cambios o variaciones a sus posibles habitantes? Esposible que, sean estrellas en transición que no permiten la aparición de la vida en sus planetas hasta que no queda estabilizada.

388312-1136_2278_hi

Se han detectado planetas que orbitan alrededor de una estrella magnética, es decir, una estrella con un campo magnético descomunal (como se ha revelado el desdoblamiento Zeeman de las líneas de su espectro). Son conocidas por el término de estrella AM Herculis, una clase de variable cataclísmica entre las que pueden encontrarse algunas enanas blancas con campos magnéticos extremadamente intensos (del orden de 100 tesla). No parece que ningún planeta que la orbite a una distancia prudencial, pueda albergar la vida bajo esas extremas condiciones. ¿Cómo es posible explicar la enorme potencia de los campos magnéticos de las así llamadas ‘estrellas magnéticas’?

Mediante el uso de simulaciones numéricas en tres dimensiones han hallado las configuraciones de campo magnético que subyacen en los potentes campos magnéticos que se observan en las superficies de las llamadas estrellas magnéticas tipo A y las enanas blancas magnéticas. (Nature, 14/Oct/2004).

El campo magnético de este tipo de estrellas es continuo y estático, en contraste con el campo del Sol y de otras estrellas similares a éste, que son más débiles y consisten de pequeñas regiones, y cambian de modo continuo. Imaginar mundos habitables orbitando este tipo de estrellas es complicado.

Una estrella muy magnética

                               Ilustración de estrella magnética

Como decimos, son muchos y variados los mundos que por ahí fuera se pueden encontrar. Es de lo más común encontrar estrellas a las que orbitan mundos de variado pelaje. Cuando se forma una estrella con una descomunal masa de gas y polvo interestelar que se junta por obligada por la fuerza de la Gravedad y se contrae más más sobre sí misma, hasta que el calor en el centro es tan descomunal que se produce la fusión nuclear y la estrella nueva nace a la vida, todo ese enorme conglomerado de material gira y incandescente mientras continúa aumentando su densidad, y, mientras tanto va girando y, algunos trozos de esa masa exterior que aún no llega a ser plasma, debido a la fuerza del giro se ve desprendida de la nueva estrella y, según sea el trozo despedido, se aleja más o menos hasta quedar retenido por la fuerza de gravedad que la estrella genera. Los trozos comienzan a enfriarse mientras giran y se forman nuevos planetas que, dependiendo de la distancia al nuevo sol y de sus masas, se configurarán de una u otra forma (planetas rocosos y gaseosos).

Resultado de imagen de Descubren un planeta orbitando una estrella magnética

El descubrimiento de nuevos planetas no cesa y, a medida que mejoran los aparatos que los detectan, se acorta el tiempo que nos queda para poder localizar otros mundos que, como la Tierra, sean idóneos para albergar alguna clase de vida.

Como podeis ver en las imágenes de arriba y abajo, el Universo está plagado de Mundos. Si como antes decía, es común que las estrellas estén acompañadas por planetas, si pensamos que sólo en nuestra Galaxia, la Vía Láctea existen más de cien mil millones de estrellas, ¿cuántos planetas no tendremos en nuestra propia casa? Y, si pensamos en el Universo entero, la cifra podría ser descomunalmente grande, y, si eso es así (que lo es), ¿Cuántos planetas habitados podrían existir?.

Resultado de imagen de La Supergigante Antares

¿Alguna vez he pensado cómo sería vivir en un planeta cuya estrella fuese como Antares?, una supergigante 10 000 veces más luminosa que el Sol y cuyo diámetro sería de unos 700 millones de kilómetros, su densidad de unas 20 masas solares y la remperatura superficial de unos 4 ooo K. Está claro que habría que tener en cuenta muchas cuestiones para que, la vida en ese hipotético planeta pudiera ser posible, al menos como la conocemos aquí. La luminosidad incidiría en la clase de visión que los posibles habitantes pudieran tener, y, por otra parte, al ser la temperatura en la superficie de la estrella más baja que la de nuestro Sol, ¿a qué distancia debería estar situado el planeta para que los rayos del sol calentaran a sus habitantes y plantas?, y, no olvidemos los efectos de la Gravedad de tan enorme sol que, para hacerla soportable para esos imaginarios habitantes, tendría que estar situado lejos, mientras que la baja temperatura aconseja que el planeta esté cercano a la estrella. Estas contradicciones, posiblemente, impediaría la vida tan como la conocemos y, de haberla, sería otra clase de vida distinta a la nuestra.

En verdad, el problema de la vida en un planeta no es cosa fácil. ¡Son tántos los requisitos exigidos! Y, así y todo, si pudiéramos desplazarnos por lejanas rutas estelares, lo que podríamos contemplar superaría en mucho a todo lo que podamos imaginar. Ya sabeis, no pocas veces la realidad supera a la imaginación. Mundos de ensueño, criaturas imposibles, ¡cuántas maravillas! alberga nuestro Universo. Con razón se define como todo lo que existe: Espacio -Tiempo- Materia…Y, desde hace algún tiempo…Mentes pensantes que lo observan todo.

http://apod.nasa.gov/apod/image/0008/hd38529art_cook.jpg

Que no estamos solos en el Universo no es novedad para muchos, cuando todos creemos que la Tierra puede no ser el único planeta con vida siempre solemos pensar en la vida extraterrestre, dando asi vida a una infinidad de hipótesis e historias acerca de cómo sería ésta. Lo cierto es que varios astrofísicos han anunciado la posibilidad de que existan varios planetas similares a la Tierra.

Inmensos y bellos planetas dobles, mundos gemelos que alumbrados por una estrella Gigante inusual de tipo espectral G, K o M y que presenta Litio en su espectro. Las reacciones nucleares en el núcleo de la estrella  produce Berilio, que es transportado por convección hacia las capas superiores, donde captura un electrón para convertirse en Litio. Es una estrella T Tauri, muy joven y todavía recien salida de su cascarón, ya que, el Litio es probable que se hallara en el gas del cual se formó la estrella y será pronto destruido cuando la estrella alcance la secuencia principal. Esos mundos gemelos, mientras tanto, también siguen evolucionando y, pasados algunos miles de millones de años, es posible (sólo posible) que, algunos signos de vida puedan aparecer en su océanos.

Las estrellas pueden ser clasificadas de muchas maneras.

http://apod.nasa.gov/apod/image/9701/ngc2359_cfa_big.jpg

El estudio fotográfico de los espectros estelares lo inició en 1885 el astrónomo Edward Pickering en el observatorio del Harvard College y lo concluyó su colega Annie J. Cannon. Esta investigación condujo al descubrimiento de que los espectros de las estrella están dispuestos en una secuencia continua según la intensidad de ciertas líneas de absorción. Las observaciones proporcionan datos de las edades de las diferentes estrellas y de sus grados de desarrollo.

Resultado de imagen de Una estrella Clase O

Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo …

Resultado de imagen de Una estrella Clase O

Las diversas etapas en la secuencia de los espectros, designadas con las letras O, B, A, F, G, K y M, permiten una clasificación completa de todos los tipos de estrellas. Los subíndices del 0 al 9 se utilizan para indicar las sucesiones en el modelo dentro de cada clase.

Clase O: Líneas del helio, el oxígeno y el nitrógeno, además de las del hidrógeno. Comprende estrellas muy calientes, e incluye tanto las que muestran espectros de línea brillante del hidrógeno y el helio como las que muestran líneas oscuras de los mismos elementos.

Las estrellas de Wolf-Rayet o estrellas Wolf-Rayet (abreviadas frecuentemente como WR) son estrellas masivas (con más de 20-30 masas solares), calientes y evolucionadas que sufren grandes pérdidas de masa debido a intensos vientos estelares.

Este tipo de estrellas tiene temperaturas superficiales de entre de 25.000 – 50.000 K (en algunos casos incluso más), elevadas luminosidades, y son muy azules, con su pico de emisión situado en el ultravioleta. La superficie estelar también presenta líneas de emisión anchas de Carbono, Nitrógeno y Oxígeno. Tienen un color Blanco-Verdoso.

Clase B: Líneas del helio alcanzan la máxima intensidad en la subdivisión B2 y palidecen progresivamente en subdivisiones más altas. La intensidad de las líneas del hidrógeno aumenta de forma constante en todas las subdivisiones. Este grupo está representado por la estrella Epsilon Orionis.

Epsilon Orionis

  

        Alnilam (Epsilon Orionis

Clase A: Comprende las llamadas estrellas de hidrógeno con espectros dominados por las líneas de absorción del hidrógeno. Una estrella típica de este grupo es Sirio, la más brillante de todo el cielo nocturno vista desde la Tierra. Su color es blanco, y, es muy conocida desde la antigüedad; por ejemplo, en el antiguo egipto, la salida helíaca de Sirio marcaba la época de las inundaciones del Nilo, y ha estado presente en civilizaciones tan dispares como la griega y la polinesia.

                                      Sirio arriba

Clase F: En este grupo destacan las llamadas líneas H y K del calcio y las líneas características del hidrógeno. Una estrella notable en esta categoría es Delta Aquilae.

Clase G: Comprende estrellas con fuertes líneas H y K del calcio y líneas del hidrógeno menos fuertes. También están presentes los espectros de muchos metales, en especial el del hierro. El Sol pertenece a este grupo y por ello a las estrellas G se les denomina “estrellas de tipo solar”.

Clase K: Estrellas que tienen fuertes líneas del calcio y otras que indican la presencia de otros metales. Este grupo está tipificado por Arturo, una estrella anaranjada-amarillenta de enormes proporciones que comparada con nuestro Sol, la hace imponente y a éste minúsculo.

Clase M; Espectros dominados por bandas que indican la presencia de óxidos metálicos, sobre todo las del óxido de titanio. El final violeta del espectro es menos intenso que el de las estrellas K. La estrella Betelgeuse es típica de este grupo.

Hemos dado un repaso a los mundos que son y los que podrían ser. Las estrellas son tan importantes para los mundos que, dependiendo de sus configuraciones: brillo, masa, densidad, y, muchos otros parámetros que las definen, podrán tener planetas en los que puedan florecer o no la vida. Y, aunque hemos encontrado una larga lista de nuevos planetas extrasolares, debemos comprender que las dificultades para encontrar “Tierras” son muchas, toda vez que nuestro planeta es pequeño y si otros similares que puedan exitir están a una distancia similar (1 UA) a la nuestra, con las distancias que se trabajan (decenas, cientos o miles de años-luz), el mismo brillo de la estrella los oculta. Para hacernos una idea veamos la imagen de los planetas del Sistema Solar a escala.

Planetas del Sistema Solar a escala y ordenados con respecto a su distancia con el Sol. Los planetas son: 1: Mercurio, 2: Venus, 3: Tierra, 4: Marte, 5: Júpiter, 6: Saturno, 7: Urano, 8: Neptuno.Viendo ésta imágen, podemos caer en la cuenta del por qué, la mayoría de los planetas extrasolares descubiertos hasta el momento son del tipo jupiteriano. “Las Tierras” resultan extremadamente “pequeñas” para poder localizarlas con facilidad con la actual tecnología.

Resultado de imagen de De la misma manera existe la diversidad de formas de vida

En nuestro planeta, al igual que en el Espacio las estrellas, la diversidad está presente en las múltiples formas de vida que lo pueblan.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting