Jul
21
Desde el pasado al presente…¿Qué será de mañana?
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (0)
La ruta de la seda que tantos sueños despertaron en las mentes de muchos
La investigación rigurosa del pasado con el fin de descubrir las raíces humanas, la percepción y el estudio de las diferencias culturales, el interés por indagar los mecanismos profundos que gobiernan los sistemas económicos y sociales, e incluso el análisis del funcionamiento de la mente humana, surgieron y se desarrollaron en épocas relativamente recientes. Salvo la Psicología, que tiene una original y larguísima y valiosa tradición en la India, las restantes ciencias sociales son una creación propia de de la culturta europea occidental, lo que no deja de llamar la tención de muchos estudiosos puesto que culturas milenarias con trayectorias practicamente ininterrumpidas como la de China e India parecían las mása adecuadas para que de ellas surgieran disciplinas como Historia, la Econmomía o la Sociología. Es curioso el indagar sobre la génesis y los primeros logros de las ciencias que tienen como objeto el hombre y la sociedad que este ha creado.
Hemos pasado de la tradicción oral a las bibliotecas.
Antes de la invención de la escritura, la cultura humana ya se había desarrollado extensamente en áreas tan variadas como las artes plásticas, la religión, , la agricultura, la poesía y las técnicas de la metalurgía, la alfarería y de la construcción. Nuestra especie, comenzó a crear Sociedades de convivencia que ganaron estadios superiores en áreas hasta entonces desconocidas.
Pero incluso después de que se generalizaran los escritos, la transmisión oral y la memorización de los acontemcimientos continuaron siendo imprescindibles durante mucho tiempo, por lo que el cultivo y mejoramiento de la memoria humana fue una de las gransdes preocupaciones de la Antigüedad.
Sutra del Diamante, hallado en la cueva de Dunhuang (China). Es el documento impreso de fecha conocida más antiguo que se conserva. Fue realizado el 11 de mayo del año 871. La imprenta es un método mecánico destinado a reproducir textos e imágenes sobre papel, tela u otros materiales. En su forma clásica, consiste en aplicar una tinta, generalmente oleosa, sobre unas piezas metálicas (tipos)para transferirla al papel por presión. Aunque comenzó como un método artesanal, su implantación trajo consigo una revolución cultural.
Muchos expertos estudiosos han sido los que han explicado el largo proceso de seguido por la Humanidad desde que empleo las antiguas técnicas de memorización y recitación hasta la invención de la imprenta de tipos móviles, la producción masiva de libros y su clasificación y conservación en extensas bibliotecas.
Culturas como la China, la Japonesa y la Coreana, fueron pioneras en la utilización de la imprenta, pero sería el europeo Gutemberg quien le dió el impulso defintivo que habia de convertirla en la herramienta básica de la cultura moderna.
Del mito a la construcción del pasado histórico.
Sin embargo, hasta el siglo XV no aparecería un pionero que introdujera las primeras técnicas de lo que hoy conmocemos como crítica histórica. En efecto, fue Lorenzo Valla quien utilizó por primera ves el conocimioento de la gramética histórica para descubrir anacronismos en documentos falsificados y quien aplicó el análisis filológico y del estilo para fijar autoría de libros y documentos.
Por otra parte, también durante los siglos y XV y XVI surgió el interés por el estudio de las ruinas, sobre todo las de Roma, aunque no fue hasta el XVIII, con la obra de Johann Joachim Winckekmnn, que se sentaron las bases de la formación de la moderna arqueología: esta conocería durante esta centuria y la siguiente un espectacular desarrollo.
De la construcción del pasado al análisis del presente.
Boorstin demuestra finalmente cómo el descubrimioento y la conolización americana fueron elementos fundamentales para que surgiera la Antropología y la Etnología y, con ellas, ideas como la del origen común de toda la humanidad, a pesar de la diversisdad racial y cultural.
Más propias de los siglos XVIII y XIX son la Economía, la Sociología y la Psicología , de las que Adam Smith, Jonh Graunt y Sigmund Freud fueron, más que precursores, auténticas fundadores. Hay otras paortaciones considerables como las de David Ricardo, Kal Marx, o John Mynard Keynes en los análisis económicos. Malthus en los estudios demográficos y Adolphe Quletet en la Estadísitica aplicada a la sociología.
Pero, tosdo este recorrido, estaría falto de algo esencial, los descubrimientos de la Fisica del siglo XIX que han posibilitado a los físicos de nuestro tiempo conquistar los secretos de la constitución íntima de la materia, llegando hasta las constituyentes del núcleo atómico.
Es verdad, aquellos que comentó Valery, cuando en 1924 dijo: “El hombre sólo está en mala compañía” Sí, el hombre es eminentemente un animal social y, necesita, que sus congéneres sean sabedores y admiradores de su s obras. Sin otros que vean lo que haces el esfuerzo tendrá menor sentido. Se estaba refiriendo a la divulgación de los conocimientos, de los descubrimientos, de que investigar sin divulgar tenía poco o ningún valor.
Con todo este repaso llegamos a la conclusión de que debimos descubrir la historia antes de poder explorarla. Y, como he deicho antes, los mensajes del pasado se transmitían primero a través de las habilidades de la memnoria, luego de la escritura, y, finalmente, de manera explosiva en los libros.
Los pensamientos llevados a la escritura para decir al mundo cómo están conformadas las cosas, la Naturaleza y el Universo mismo
El insospechado tesoro de reliquias que guarda la tierra se remontaba a la prehistoria. El pasado se conviertió en algo más que un almacen de mitos o un catálogo de lo familiar. Nuevos mundos trerrestres y marinos, riquezas de continentes remotos, modos de vida de pueblos lejanos, abrieron nuevas perspectivas en nuestras mentes que, así, de esa manera, comprendieron que, muchos antes que nosotros estuvieron aquí y crearon grandes cosas, hicieron grandes ciudades, inventaron grandes formas de vivir y elevaron los grupos humanos a la categoria de Sociedad, de Civilización que trajeron progreso y novedades,
Así, las nuevas formas cotidianas de convivencia en Sociedad, llevó a estos seres a tener que aprender a convivir de distinta manera, a compartir con los demás y, se dió cuenta de que, las ideas, en conjunto, alcanzaban cotas mayores y mayores logros también no quedándo perdidas como tantas veces ocirrió a la lorga la historia de la Humanidad.
Claro que, hoy tenemos una idea muy clara: Toda la Humanidad es una. El origen y el destino de todos… ¡Es el mismo!
Sin embargo, nos falta dar el paso final y hacer que esa unidad sea realmente cierta, estamos en la edad de la globalización, las noticias diarias nos traen escenas de cualquier parte del muindo en tiempo real, y, sin embargo, las diferencias continúan.
Necesitamos un sólo Gobierno Mundial, un Consejo compuesto por seres de todo el planeta y que rija nuestros destinos y distribuya las riquezas de manera proporcional al número de la población de cada región. La igualdad debe estar presente en todas partes. No hablar de ella con bonitas palabras en un alto estrado, NO, sino que, se deben evitar desigualdades que, a estas alturas están fuera de lugar.
Así se conforman los pobres para no caer en la desesperación e impotencia
Es imperdonable que puedan existir algunas personas (unos pocos cientos de miles, o, incluso algunos millones) que domine el 90% de toda la riqueza mundial. Eso no es moral. Algunas familas, para que sus hijos puedan estudiar están pasándolo mal y tienen carencias de necesidades primarias, mientreas que otros, tienen a sus hijos estudiando en el extranjero en colegios por los que paga en un año lo que aquí en España se paga por todo el curso, y, los padres del primero están pasando necesidades mientras que, los del segundo, su mayor preocupación es hacer una lista de los invitados que vendrásn el domingo a su próxima monteria en la finca de 6.000 Has.
Mientras todo esto siga a sí, el avance será pequeño. Hoy días, el lugar de quellos Sacerdotes de las épocas pasadas, lo ocupan los gurus del dinero que se pavonean por el mundo y…si se escarvara un pocoi en el origen de las fortunas, muy pocos podrían pasar el examen.
En fin amigos, me desvío de mi cometiodo principal que es hablaros de lo que pasó en tiempos pasados, de como podemos actuar en el presente para preparar el terreno y tener un futuro mejor.
Hablamos de Ciencia y de Cultura, de Letras y de Números, de lo infinito y de lo infinitesimal, de la Mente y de la Conciencia pero, ¿seremos alguna vez conscientes? En cuanto a la pregunta planteada…. ¡El futuro siempre será incierto!
emilio silvera
Jul
21
La Masa y la Energía ¿Qué son en realidad?
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?
La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotónseguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotonestendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.
¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.
La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.
Fabiola Gianotti, portavoz del experimento ATLAS, hablando con Peter Higgs y le dice:
“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”
El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.
El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.
¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?
Hay que responder montones de preguntas. ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.
El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgsempieza a actuar y hace su generación de masas. Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébilunificada.
El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W–, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.
Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios
De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.
¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.
Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft. También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta. Además, ¿Cuántos teóricos hacen falta para encender una bombilla?
La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.
Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.
Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.
Después de todo esto, tal como lo están planteando los del CERN, se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs. Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.
¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.
¿Pasará igual con las cuerdas?
emilio silvera
Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.
Jul
21
Estamos en verano
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
A unos pocos kilómetros de Huelva, tenemos algunas playas como las de Mazagón, Matalascañas, El Portil, El Rompido, La Antilla, Isla Canela y, cerca, está el Cabo de San Vivente en Portugal que hace el dibujo puntiagudo de la esquina peninsular por el Sur. La Capaital se queda prácticamente vacía los fines de semana y, todo el mundo, se desplaza hacia las playas a disfrutar del Sol, de la fina arena blanca y de los baños en la costa onubense que, son de agua templada y muy agradables.
Punta Umbria, es la playa de los huelvanos, y, en ella, desde que empezaron a colonizarla los Ingleses de las Minas de Rio Tinto, se fueron ubicaron las familias de la Capital y de los pueblos limítrofes hasta hacerla una playa de gran afluencia en verano (1.000.000 de personas) que, cuando pasa la época estival, desaparecen para que vuelva el pequeño pueblo de pescadores que en origen fue Punta Umbría.
El municipio de Punta Umbría, en la provincia de Huelva, se ubica a solo 16 kilómetros de la ciudad de Huelva y 110 kilómetros de Sevilla.
www.La Huelva-Cateta.es
Lugar exacto de la aparición de los restos. La zona más clara al norte es El Almendral, donde se sitúa la ciudad islámica de Saltish. Justo enfrente del círculo, en la orilla izquierda de la ría, donde se aprecia un puerto deportivo se encuentra el yacimiento del Eucaliptal. Un poco mas al norte, en la misma orilla están los restos de La Peguera
El misterio rodea esta aparición de los restos y se ha iniciado una investigación para datar de forma más precisa los huesos. La zona en la que han aparecido es la periferia del gancho arenoso de la Cascajera, en su unión con la marisma. Este gancho ya existía en época romana y en la zona han aparecido restos cerámicos asociados a explotaciones de salazón romanas, puestas en relación con piletas romanas de la zona del Almendral (junto a los restos islámicos de la ciudad de Saltish) y con el poblado del Eucaliptal en Punta Umbría, justamente en la orilla opuesta a la de los restos encontrados.
Esta localidad dispone de numerosos emplazamientos de gran interés, como por ejemplo el yacimiento romano de El Eucaliptal, situado en las afueras del núcleo urbano de Punta Umbría. Aquí es posible encontrar numerosos restos que dan cuenta de la vida cotidiana de la época, así como de tipo funerario, los cuales corresponden al período comprendido entre los siglos II y IV después de Cristo.
“La Iglesia de Nuestra Señora De Lourdes es el principal templo religioso del lugar, cuya construcción, que estuvo a cargo del arquitecto Pérez Carasa, finalizó en el año 1950.
Siguiendo con el recorrido, es posible visitar la Torre Umbría, una torre de defensa que fue levantada entre los siglos XVI y XVII a pedido del Rey Felipe III con el fin de vigilar la costa ante el posible ataque de los piratas. La torre era custodiada por carabineros y estaba rodeaba por un pequeño poblado de pescadores. La Torre Almenara es, sin dudas, el monumento más emblemático de Punta Umbría, preside su escudo y es símbolo del pueblo.
Si de naturaleza se trata, nada mejor que trasladarse hasta los Enebrales de Punta Umbría, un paraje natural que ocupa una extensión de 178 hectáreas. Dispone de un cordón dunar, dominado por enebros y sabinas, lo cual dota de una característica singular al paisaje.
Arriba la Torre y la zona conocida como la Mata Negra y los Enebrales
Al mismo tiempo, merece la pena dar un paseo por La Norieta, un parque periurbano de 94 hectáreas, que se encuentra dentro de la reserva natural de la laguna del Portil. Es un espacio sensacional para la recreación, en donde se reúnen los habitantes de las poblaciones aledañas para disfrutar de la naturaleza.
El espacio salvaje se ve invadido por la “civilización”
La Laguna del Portil, formada por el represamiento de arroyos por acción de las dunas móviles, constituye una reserva natural de enorme belleza. Posee una vegetación palustre, que incluye especies como juncos, espadañas, castañuelas y ranúnculos. Además, cuenta con una rica fauna, conformada sobre todo por aves, ya que esta reserva es usada como lugar de paso en su ruta migratoria, además de ser una zona de invernación de ciertos ejemplares.”
En esta zona, donde vivimos muchos años cuando mis primeros tres hijos eran pequeños: Maria del Carmen, Raquel y Emilin. ¡Emilin! Un torbellino de energía que no podía quedarse quieto ni un momento, lo mismo se pasaba a la otra banda de la ría para coger bocas que, buceando en el Espigon, nos traía a casa una redecilla llena de camarones… ¡Qué personaje entrañable!
Arriba la parte de la Ría y debajo una escena de la Playa en Punta Umbría
Como Sevilla está muy cerca y sus habitantes huyen de los más de 40 ºC que en aquella Capital tienen que sopoirtar, los fines de semana, en avalancha de caminonetas y vehículos particulares de todo tipo, las playas de Huelva son literalmente invadidas, sobre todo, las de Matalascañas que les coge más cercanas.
En Matalascañas tenemos metida a medio Sevilla en verano
Por mi parte, será porque desde pequeño la visitaba con frecuencia con mi padre, pescador de profesión, en aquellos barquitos veleros de mi abuelo Emilio que, por aquellos tiempos, se dedicaban a la pesaca de la Caballa que vendían en la consevera de Tejero en la Rábida (hoy desaparecida). Mi tendencia es siempre Punta Umbria, la más familiar y conocida de rincones más acogedores y panoramas más luminosos y bellos.
Desde cualquier punto que la queramos mirar, desde las distintas perspectivas que podamos encontrar, siempre nos sorprenderán la belleza natural de una zona privilegiada en la que la Naturaleza se esforzó por dejar todo lo mejor de su variado repertorio de escenarios naturales para que, nosotros los humanos, podamos gozar en paz y tranquilidad.
Como mi casa está situada a escados 15 kilómetros de todos estos lugares, los visitamos con frecuencia y podemos disfrutar de estos parajes naturales en los que, de vez en cuando en la retama del camino, podemos encontrar ¡Camaleones! que en pequeñas colonias protegidas perviven… ¡A pesar de todo!
El Camaleón en la Retama
Cuando los chicos eran pequeños y paseábamos por allí, algunos de ellos cogieron para poder verlos y asombrados miraban aquellos ojos que giraban en círculo de manera imposible. Una vez saciada la curiosidad, los volvían a dejar en sus enebrales para que siguieran su rumbo en paz. Si supiéramos respetar la Naturaleza y a todos los seres que la pueblan… ¡En otro mundo mejor viviríamos.
En esta zona se ubican los pequeños pesqueros del pueblo marinero
Sitios como este abundan en la Playa de Punta Umbría en los que, por módicos precios se puede comer bien y a gusto de todos. El marisco es el plato que más prolifera, ya que, en la zona, la Gamba Blanca de Huelva es la reina de todas las fiestas. Incluso en el verano se dedica un día a “La Fiesta de la Gamba” y, es un panorama digno de ver como llegan de todas partes para degustar el producto de la costa onubense por poco dinero.
Hay buenos hoteles para aquellos que lo pueden pagar
El Apartamento playero está cerrado y, con mi mujer, acostumbro todos los días de lunes a jueves, a dar una vuelta por el Terramar, un lugar agradable junto a la Playa donde tomamos un cafe, y, mientras ella toma un baño compartido entre el océano y el Sol, yo escribo en una de mis libretas para sacar algún trabajo que poder ofrecer a ustedes.
Bueno que el verano (que se acaba) sea para todos un buen recuerdo.
emilio silvera
Jul
21
¡Señales!
por Emilio Silvera ~ Clasificado en ¿Extraterrestres? ~ Comments (0)
El observatorio de Arecibo capta extrañas señales de radio desde una estrella roja
San Juan, 19 jul (EFE).- El Observatorio de Arecibo, municipio situado en la costa norte de Puerto Rico, detectó señales de radio desconocidas provenientes de una estrella roja situada a once años luz de la Tierra.
La publicación digital The Verge dio a conocer en una información divulgada esta semana que científicos del Observatorio de Arecibo, uno de los más importantes del mundo, detectaron por vez primera las señales durante el pasado mes de mayo.
Los astrónomos, que habitualmente observan estrellas rojas de la mitad del tamaño que el Sol y menos calientes, registraron las señales de radio con origen junto al lugar en que se sitúa una estrella bautizada como Ross 128.
La información detalla que por ello se entiende que las señales tienen su origen en la profundidad del Universo, en las cercanías de la Ross 128.
Sin embargo, las señales no son las que los astrónomos esperarían de un estrella, según la opinión Abel Méndez, director del Laboratorio Planetario en el Campus de Arecibo de la Universidad de Puerto Rico.
El científico señala que las señales pudieran proceder de destellos solares con origen en Ross 128, pero las ondas radiales de destellos se producen en frecuencias más bajas que las detectadas en el Observatorio de Arecibo.
También baraja la posibilidad de que tengan su origen en algún satélite en órbita alrededor de la Tierra, aunque no es lo más probable, dado que nunca antes un satélite había producido una señal de esta naturaleza.
De lo que sí está seguro es de que las señales tienen su origen en el espacio profundo, dada su estructura.
Méndez indicó que las señales provienen de diferentes frecuencias y llegan a la Tierra en momentos diferentes.
Matizó que las señales de Ross 128 dieron evidencia de haber viajado mucho tiempo a través del espacio, ya que una onda que viaja hacia la Tierra se encontrará con pequeñas partículas en el espacio interestelar, lo que hace que se ralentice.
Es un efecto conocido como dispersión, y se vuelve más pronunciado cuanto más tiempo una señal ha estado viajando a través del espacio, dijo.
La señal de Ross 128 no se corresponde con una fuga solar anterior, por lo que podría ser un tipo totalmente nuevo de llamarada solar nunca antes visto.
Por supuesto, según comentó Méndez, siempre existe la tentadora opción de atribuir el hecho a los alienígenas, tal y como se hace en las ocasiones en las que no hay explicación clara para ciertos hechos científicos.
El pasado fin de semana Méndez y su equipo en Arecibo tuvieron la oportunidad de observar de nuevo a la estrella, dos meses después de que se detectaran las primeras señales.
El equipo investiga las señales y espera tener nuevos detalles este fin de semana o a principios de la próxima semana.
Son optimistas sobre el hecho de que la información recibida hasta ahora les ayudará a analizar de dónde viene la señal.
Jul
20
¡La Luz! ¡La Mecánica Cuántica! Nuestro Universo
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
Cuando en nuestro Uni9verso quedaron libres los fotones… ¡Se hizo la Luz!
En alguna parte he podido leer que para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos infinitesimales objetos: el electrón y el fotón. Todo el argumento de la QED [electrodinámica cuántica] gira en torno a un proceso fundamental: la emisión de un único fotón por un único electrón.
Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica:
Un equipo de científicos lograron filmar por primera vez un electrón en movimiento gracias a una tecnología reciente que genera pulsos cortos e intensos de luz láser.
Toda la luz visible que vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotonesque han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.
Los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotonesentre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido al átomo. Sin estos fotones saltarines, el átomo se desharía y toda la materia dejaría de existir.
Se ha conseguido observar por primera vez la desintegración radiativa del neutrón.
Dentro de los núcleos de los átomos hay neutrones y protones. En condiciones normales y mientras que están ahí los neutrones son estables. Sin embargo los neutrones libres son inestables, tienen una vida media de unos 10 minutos, y se desintegran produciendo un protón un electrón y un antineutrino. Pero los físicos nucleares teóricos predijeron que una de cada mil veces los neutrones decaerían en todas esas partículas y además en un fotón.
Típicamente el neutrón decae en un protón, un antineutrino y un electrón. Muy raramente lo hace radiativamente emitiendo además un fotón. Diagrama: Zina Deretsky, National Science Foundation.
Mientras que un electrón pertenece al grupo de partículas llamadas fermiones, los fotones pertenecen a la familia de los bosones. Intentemos comprender esta película que es la intermediaria de todas las formas de radiación electromagnética.
…protagonizada por bosones…
Los fermiones hacen posible la materia “al estilo tradicional”, mientras que los bosones son elementos muy raros desde la forma de pensar a que estamos acostumbrados el común de los mortales. Para no complicarnos, la tabla periódica de elementos existe porque los fermiones no pueden “ser iguales”: no pueden solaparse uno sobre otro y se repelen si los obligamos. Es lo que damos por hecho cuando hablamos de materia, que cada pedazo de ésta ocupa su lugar y tiene sus propias cualidades.
Toda la materia que conocemos, la que forma las estrellas y los mundos y las galaxias, esa que llamamos luminosa o bariónica, la que emite radiación, está hecha de Leptones y Quarks, partículas que son Fermiones, y, esas otras partículas intermediarias de las cuatro fuerzas fundamentales, son las que pertenecen a la familia de los Bosones, tales como el Fotón, las W+, W- y Zº, los Gluones y el Gravitón.
Los bosones carecen de este sentido de la individualidad que tienen los Fermiones, digamos que poseen “alma grupal” y, en su estado más puro, todos forman una misma “súperpartícula”.
Para entenderlo mejor, conviene recordar que las partículas no son bolitas como nos siguen enseñando en la escuela, sino que más allá de esta imagen existen como ondas o, al menos, sus funciones se equiparan al comportamiento de una onda.
En la década de 1920, Albert Einstein y el hindú Satyendra Nath Bose pronosticaron un quinto estado de la materia: el condensado de Bose-Einstein (BEC), el cual fue conseguido en laboratorio en 1995, algo que le valió el premio Nobel de 2001 a los científicos que lo lograron.
Un condensado de Bose-Einstein es un estado de la materia que se da en ciertos materiales a muy baja temperatura. En este estado de la materia, todos los átomos que lo constituyen se encuentran en el nivel de mínima energía, denominado estado fundamental. Descubierto en 1924 para los fotones por el indio Bose y por Einstein, no fue obtenido en laboratorio hasta 1995 por Cornell y Wieman al enfriar átomos a pocos nanokelvin por encima del cero absoluto. El condensado de Bose-Einstein fue la “molécula del año” según la revista Science en 1995 ya que se trata de un sistema cuántico macroscópico similar a una molécula pero con millones de átomos. Un átomo en un gas se mueve a una velocidad de unos unos 1000 km/h (unos 300 m/s) pero un condensado de Bose-Einstein se mueve a sólo 1 cm/s. Un condensado de Bose-Einstein es respecto a la materia ordinaria, como la luz de un láser es respecto a la de una bombilla. Gracias a ello se puede fabricar un láser de átomos, que en lugar de producir un haz de luz como un láser óptico, produce un haz (coherente) de átomos. En 1997 Ketterle fabricó el primer láser de átomos que producía un haz de átomos de sodio.
Cuando ciertas formas de materia [bosones] se enfrían hasta casi el cero absoluto, sus átomos se ponen en el estado de energía más baja, de modo que todos sus átomos vibran al unísono y se hacen coherentes. Las funciones de onda de todos los átomos se solapan, de manera que, en cierto sentido, un BEC [condensado de Bose-Einstein] es como un “superátomo” gigante en donde todos los átomos individuales vibran al unísono.
Al enfriar los átomos, su velocidad disminuye hasta que las longitudes de onda de cada uno de ellos se vuelven casi planas, superponiéndose unas a otras para formar una única onda que los describe a todos.
Así que un BEC se forma cuando los átomos en un gas sufren la transición de comportarse como “bolas de billar” al estilo de la física clásica, a comportarse como una onda gigante de materia al estilo de mecánica cuántica:
Si creamos dos BECs y los colocamos juntos, no se mezclan como gases ordinarios ni rebotan como lo harían dos sólidos. Donde los dos BECs se superponen, ellos “interfieren” como las ondas: delgadas capas paralelas de materia son separadas por capas delgadas de espacio vacío. El patrón se forma porque las dos ondas se suman donde sus crestas coinciden, y se cancelan donde una cresta se encuentra con un valle — a lo cual llamamos interferencia “constructiva” y “destructiva” respectivamente. El efecto es similar al de dos ondas que se superponen cuando dos piedras son lanzadas a un lago.
…ambientada en el vacío…
Y ahora, retrocedamos un poco más en este asunto del misterio que nos ocupa. Gracias a la tecnología láser, la física ha podido comprobar el extremo poder de la luz. Los láseres pueden hacer que las partículas virtuales se vuelvan reales. Pero, primero, aclaremos conceptos…
Las “Partículas virtuales”son partículas fundamentales que están constantemente surgiendo aparentemente de la nada y permanecen en el espacio-tiempo la friolera de una milésima de trillonésima de segundo –una cantidad que se forma poniendo una veintena de ceros a la derecha de la coma—. A pesar de denominarse “virtuales”, sus efectos son muy reales: la constante agitación de este burbujeo cuántico de partículas hace que el vacío tenga energía. Y esto es algo que afecta a la realidad, pues en ésta las fuerzas de atracción y repulsión dependen de la masa, y la masa no es sino energía expresada en unidades diferentes: E=mc².
Partículas virtuales que surgen de la NADA. Claro que, surgieron,¡es porque había! La Nada no existe.!
En el uso corriente la palabra vacío significa espacio vacío, espacio del que se ha extraído todo el aire, vapor de agua u otro material. Eso es también lo que significa para un físico experimental que trabaja con tubos de vacío y bombas de vacío. Pero para un físico teórico, el término vacío tiene muchas más connotaciones. Significa una especie de fondo en el que tiene lugar el resto de la física. El vacío representa un potencial para todas las cosas que pueden suceder en ese fondo. Significa una lista de todas las partículas elementales tanto como de las constantes de la Naturaleza que se pondrían de manifiesto mediante experimentos en dicho vacío. En resumen, significa un ambiente en el que las leyes de la física toman una forma particular. Un vacío diferente significa leyes de la física diferentes; cada punto en el paisaje representa un conjunto de leyes que son, con toda probabilidad, muy diferentes de las nuestras pero que son, en cualquier caso, posibilidades consistentes. El modelo estándar es meramente un punto en el paisaje de posibilidades.
La energía del vacío es, por tanto, la suma total de las energías de todas las partículas posibles. Es la llamada “energía oscura” que hace que el universo se expanda, haciendo frente a la atracción de la gravedad, y que proporciona alrededor del 80% de la materia-energía al universo –un 26% es “materia oscura”, y sólo un 4% es la materia conocida hasta el momento—.
Pero, ¿cómo una partícula virtual se convierte en real? Es decir, ¿cómo queda “atrapada” en el espacio-tiempo de forma más estable?
¡Los fotones de Yang-Mills adquieren su masa y el principio gauge se sigue cumpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente pensó que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs” había sido puesto ahí “a propósito” y la “partícula de Higgs”, en sí misma, no era una “partícula gauge”
La Teoría de la Sipersimetría establece que, por cada partícula de materia, nace una gemela de antimateria. La antimateria es igual que la materia, pero con carga opuesta. Por ejemplo, el electrón tiene carga negativa, y su partícula de antimateria, el positrón, positiva. Materia y antimateria se aniquilan mutuamente pero, por algún motivo aún no aclarado, la simetría se rompió en algún momento, surgiendo más materia que antimateria, de ahí que nuestro universo, materia, pueda existir.
Pero hay algo más en todo esto. Y para ello, la luz es la clave.
Controlar los estados cuánticos macroscópicos de osciladores micromecánicos no es fácil; hacerlo con luz (fotones) requiere el acoplamiento coherente entre …
Una de los modelos teóricos elaborados para superar la visión de la gravedad de Einstein indica que los fotones de los rayos gamma de alta energía viajarían algo más despacio que los de baja energía, lo que viola el axioma del sabio alemán acerca de que toda radiación electromagnética, desde las ondas radio hasta los rayos gamma, viajan en el vacío a la misma velocidad (la de la luz). Sin embargo, no ha sido verificado mediante experimento, con lo cual, Einstein sigue teniendo razón.
… protagonizada por la “luz” como la propia …
Ya en los años 30, los físicos predijeron que un campo eléctrico muy fuerte, que no es sino un espacio alterado por la actividad de un montón de fotones coordinados, podría impulsar a las partículas virtuales con carga opuesta en diferentes direcciones, impidiendo que la materia y la antimateria se aniquilen.
Según el efecto de creación de pares, un fotón con energía suficiente, lo que equivale a tener el doble de la energía que posee un electrón en reposo, da lugar a una pareja de electrón y positrón.
Aunque esto ya se consiguió en los años 90 a pequeña escala, gracias al desarrollo de la tecnología láser los científicos creen que estarán cerca de conseguir crear materia “en serie” mediante este proceso en unos pocos años.
Sabemos desde 1932, que un fotón gama con suficiente energía, puede formar un par de antipartículas, al interactuar con un átomo masivo, como el plomo. Pero el problema no termina, sino que, el electrón formado por un rayo gama, no interactúa con este tipo de fotón (gama), sino uno de luz visible,
Por otra parte, una vez que existen las partículas, los fotones interactúan sin cesar con ellas, siendo absorbidos y emitidos por las mismas de manera ininterrumpida.
Y de ello nace el movimiento gracias al cual todo existe en el espacio-tiempo. Sin movimiento, nuestra realidad desaparecería.
La carencia de masa de un fotón está ligada a su movimiento. Para que un cuerpo alcance la velocidad de la luz, su masa ha de ser cero. Y, como Einstein explicó en su día, la luz se mueve siempre a la velocidad de la luz. Si pretendemos que un fotónse pare, en lugar de ralentizarse observaremos que desaparece. Y, como se ha dicho al principio, si estos “fotones saltarines” desaparecieran, toda la materia dejaría de existir.
Su esencia es el movimiento y su misión, según parece, hacer girar la rueda de la existencia.
Ello es así debido al impacto de los fotones sobre las partículas elementales. La energía transmitida por un fotón es inversamente proporcional a su longitud de onda. Cuanto menos longitud de onda, más energía. Así, un fotón de luz visible tiene la energía suficiente para hacer reaccionar a un bastón de la retina. Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Más allá, los rayos gamma pueden romper protones y neutrones…
Y ahora, vayamos al meollo de la cuestión e indaguemos en la cita con que se iniciaba este artículo: ¿qué hace que los electrones absorban y emitan fotones? Esto, en otros términos, vendría a ser lo mismo que preguntarnos: ¿por qué existe nuestro universo?
…con un misterio: el 137…
¿Qué determina el momento exacto en que un electrón emite un fotón? La física cuántica dice que nada lo hace, pues la Naturaleza es caprichosa en sus niveles más elementales. Aunque no es caótica en extremo, sólo probabilística.
A diferencia de la física newtoniana, la mecánica cuántica nunca predice el futuro en función del pasado. En su lugar, ofrece reglas muy precisas para computar la probabilidad de varios resultados alternativos de un experimento.
Y la probabilidad de que un electrón emita o absorba un fotón es la constante de estructura fina. El valor de esa constante es 1/137.
En otras palabras, sólo un afortunado electrón de cada 137 emite un fotón. Este es el significado de alfa: es la probabilidad de que un electrón, cuando se mueve a lo largo de su trayectoria, emita caprichosamente un fotón.
El inverso de la constante de estructura fina es 137. Desde su descubrimiento, éste número ha traído de cabeza a los grandes científicos.
No puedo recordar si fue Richard Feynman o León Lederman, quien sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?
… es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.
“Lo más notable de este notable número es su adimensionalidad. La velocidad de la luz es de unos 300.000 kilómetros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.”
(Leon Ledderman, La partícula divina)
Uno de los padres de la mecánica cuántica, Wolfgang Pauli, se obsesionó tanto con este número que dijo que, de poder hacerle una pregunta a Dios, sería esta: “¿Por qué 137?”
Gracias a su gran amistad con Carl G. Jung, Pauli conoció el mundo “alternativo” de los estudios sobre la psique y accedió a la tradición esotérica que ha acompañado al hombre desde el principio de los tiempos. Es así como supo que 137 se aproxima al valor correspondiente al ángulo áureo. Esto es, la versión circular del número áureo o φ (phi).
Sin fotones… ¡El Universo sería inestable, sería otro universo diferente!
En realidad, el ángulo de oro es, más o menos, 137,5º, y está presente en todo proceso natural donde se dé una combinación de espirales. Así, por ejemplo, las hojas de una planta surgen a lo largo del tallo cada 137,5º, pues así se logra la mayor eficiencia de espacio y de captación de la luz solar, ya que únicamente con éste ángulo es posible evitar que ninguna hoja obstaculice a las demás en la toma de luz sin que existan espacios muertos o vacíos.
Esta semejanza entre los valores de la constante de estructura fina y el ángulo áureo llevó a la doctora Raji Heyrovska a buscar el ángulo áureo en el universo atómico (véase versión en español de su estudio).
Que esto sea así no debería extrañarnos, pues si el número áureo es una constante en toda la Naturaleza, su versión angular es la apropiada para estar presente en el universo cuántico, donde, recordemos, los elementos básicos de la realidad se reducen a funciones de onda.
…y un final místico.
Los fotones no tienen masa ni carga eléctrica. Sin embargo, pueden “extraer” del vacío partículas con masa y carga, tanto negativa como positiva.
Más allá de la matería y la energía, del tiempo y del espacio, el concepto de función de onda nos introduce en una realidad abstracta de donde surge todo.Y si, como hemos dicho, a menor longitud de onda mayor energía, también es posible afirmar que, en eso que David Bohm llamaba “orden implicado”, cuanto menor es la longitud de una onda cuántica, mayor es la presencia de masa en el espacio-tiempo.
Para la física, las matemáticas se han mostrado como la realidad que subyace a la materia. Todo se puede reducir a números, entidades que forman y organizan el espacio-tiempo. En este nivel de realidad, ni la materia ni la energía existen como tales, sino que demuestran ser el resultado de la interacción de entidades abstractas.
En esta pasión por los números, no podemos evitar recordar la versión cabalística de la filosofía perenne. Para la Kabbalah, lo divino responde a la “Nada”, ya que lo trascendente no puede ser aprehendido desde nuestra posición en el mundo finito.
En el momento de la Creación, la luz infinita se habría divido, quedando encerrada en conductos que, al romperse, producen la materia y, en definitiva, la fractura de la unidad primordial de la luz.
Esta materia o qelippot, en el sentido de “conchas” o caparazones que “encierran” la luz y rompen la harmonía unitaria de la luz, es el origen del mundo, de su finitud y causa del mal en la realidad no-divina. El mundo creado es así una fractura de la harmonía de la luz que crea la diferenciación y la tensión entre unas cosas y otras: este es el origen del mal, de la falta de harmonía que debe recuperarse en el curso de la historia.
¡Qué a estas alturas de la vida, existan personas, que estén inmersos en estas patrañas! No lo entenderé munca
La Kabbalah enseña, según esto, el camino para desarrollar la Vasija interior donde recibir la Luz, la cual, según va llenando dicha vasija, nos acerca a la unidad del Espíritu. Es así que la Luz, al tiempo que “absorbida” por el alma, puede ser “proyectada” en el mundo mediante los actos del hombre trascendido.
Que la luz ha sido usada por todos los movimientos espirituales para referirse a lo divino es algo que a nadie se le escapa. La imagen que la Kabbalah ofrece aquí no es muy diferente de la que podríamos encontrar en textos rosacruces o en escritos orientales, entre otros.
Sin embargo, si esta vez he preferido usar el hermetismo hebreo es, como he mencionado, por su pasión hacia los números. Y es que el valor numérico para el término hebreo de “kabbalah” (cuya traducción es “recepción”) es…
como muchos ya sabrán…
Efectivamente…
137.
Ciencia y tradición hermética unidas por un número que, en ambas, define la interacción entre luz y materia.
Cosas…
Luz que, también en ambos casos, procede de la Nada.
Decía Jung que el espacio y el tiempo son conceptos hipostasiados, fenómenos que hemos decidido convertir en reales. La física teórica y la consolidación de la mecánica cuántica han dejado claro, a lo largo de las últimas décadas, que toda esta realidad por la que combatimos, matamos, morimos, odiamos, repudiamos, humillamos, codiciamos, envidiamos o ansiamos consiste, simplemente, en Nada.
Nada…
Una ilusión de la psique por la que renunciamos a indagar en el misterio de la Vida y nuestra experiencia momentánea en el espacio-tiempo se convierte en un vagar ausentes, asumiendo que todo es un sinsentido.
A veces, en momentos de bajón, me pregunto si no será por eso por lo que, casi cien años después, nos siguen diciendo que la física cuántica es muy complicada para que lleguemos a entenderla…
Lo más triste, sin embargo, es que lo aceptamos…
Todo esto lo he leido o aprendido de gente que son más sabias que yo, ideas que tienen sus fuentes en trabajos realizados con la misión y el propósito de desvelar los secretos de la Naturaleza para saber, como es el Universo.
Lo conseguiremos alguna ve?
emilio silvera