La posibilidad reciente de detectar ondas gravitacionales hace posible estudiar objetos que hasta ahora eran casi invisibles. Aquí, en la presentación, nos dicen: El secreto que guardaron un siglo los agujeros negros.
Durante la Primera Guerra Mundial, mientras calculaba trayectorias de proyectiles como artillero en el frente ruso, el físico alemán Karl Schwarzschild estudiaba la recién publicada Teoría General de la Relatividadde Albert Einstein. Además de comprobar que las ecuaciones de su compatriota describían el universo con una precisión sin precedentes, Schwarzschild observó que también implicaban la existencia de objetos cósmicos inesperados. Las curvaturas del tejido del espacio tiempo provocadas por los planetas o las estrellas generaban una especie de pozos gravitatorios que mantienen a los humanos anclados a la Tierra y hace que la Luna gire a nuestro alrededor mientras nosotros viajamos alrededor del Sol. En casos extremos, cuando la concentración de masa fuese máxima, la atracción gravitatoria sería tan intensa que ni siquiera la luz escaparía a su influjo.
Aquella fue la primera vez que se planteó la existencia de los agujeros negros, un concepto tan extraño que hasta Einstein dudó de su existencia real. Poco después, mientras seguía rumiando las consecuencias de su idea más revolucionaria, le escribió a Schwarzschild sobre la posibilidad de que algunos objetos supermasivos como aquellos extraños agujeros negros produjesen ondulaciones en el tejido espaciotemporal similares a las que se producen cuando se arroja una piedra a un estanque.
Un siglo después, aquellas hipótesis locas han sido confirmadas por pruebas empíricas. En septiembre de 2015, el Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO), en EE UU, captó las primeras ondas gravitacionales producidas justo en el momento en que dos agujeros negros chocaban un instante antes de fusionarse. Aquellos objetos tenían entre 10 y 30 veces la masa del Sol y su unión liberó en una fracción de segundo más energía que todas las estrellas conocidas juntas. Este tipo de colisiones habían sido predichas, pero era la primera vez que se observaban.
Una hipótesis plantea que los agujeros negros nacieron juntos en forma de pareja de estrellas
Como se anunció entonces, la posibilidad de detectar ondas gravitacionales inauguraba una nueva etapa para la astronomía, que podía estudiar de forma directa fenómenos hasta entonces invisibles. Esta semana, un equipo de investigadores de la Universidad de Birmingham, en Reino Unido, y las universidades de Maryland y Chicago, en EE UU, ha publicado en Nature los resultados de uno de los primeros trabajos de esta nueva astronomía. Su intención era explicar cómo se formaban las parejas de agujeros negros como las que ha detectado LIGO.
Captan dos estrellas masivas que funden con el beso de la muerte
Ilya Mandel, científico de la Universidad de Birmingham y coautor del artículo, explica en The Conversation que los astrónomos se plantean dos hipótesis para la formación de estas parejas. En una de ellas, la pareja habría iniciado su periplo unida desde el inicio, con el nacimiento simultáneo de dos estrellas masivas. Después de una larga existencia, cuando su combustible nuclear se agotase, ambas se colapsarían bajo el peso de su propia gravedad concentrándose hasta formar dos agujeros negros. Si estuviesen a la distancia adecuada, ambos objetos empezarían a perder parte de la energía que los mantenía en sus órbitas en forma de ondas gravitacionales y caerían en una espiral hacia el otro hasta fusionarse. En la segunda opción que se plantea, los monstruos cósmicos se habrían formado por separado, pero lo habrían hecho en una parte del universo con superpoblación de estrellas. Los tirones gravitatorios de esos astros habrían acabado por reunir a los dos agujeros negros.
La información proporcionada por LIGO permite saber si estos objetos rotan lentamente o lo hacen rápido y si están alineados entre ellos o no. Por ahora, los datos indican que los agujeros negros giran sobre sí mismos a toda velocidad y que no están alineados. Esto pondría los datos contra la teoría de que se formaron como estrella binaria e indicaría que, al menos en este caso, las dos bestias gravitatorias surgieron por separado en una región con muchas estrellas y se acabaron por unir después.
Los agujeros negros atraen la materia circundante y la engullen
Los autores señalan que ese tipo de agujeros negros serían similares a los observados en nuestra galaxia. Calculan que harían falta otras diez observaciones de los efectos de la fusión de otras parejas para confirmar su origen. Sin embargo, también advierten que es posible que esos agujeros lejanos sean distintos de los que vemos en nuestro vecindario y en ese caso harían falta muchas más observaciones para dar sentido a tanta complejidad. Resolver el misterio del todo requerirá tiempo, pero al menos ya se sabe que los protagonistas de la historia son reales. Lo que se sabe ahora, pese a todo lo que se desconoce, habría fascinado a aquel artillero que aprovechaba los descansos entre disparos para reflexionar sobre los enigmas del universo.
La nueva Einstein tiene 23 años y se llama Sabrina González
Sus investigaciones han llamado la atención de la NASA y de la empresa de desarrollo aeroespacial Blue Origin
Sabrina González Pasterski fabricó un avión con 9 años e hizo que volara cuando tenía 14. Ahora tiene 23 y está considerada una de las mentes más brillantes del Instituto de Tecnología de Massachusetts (MIT) después de graduarse con la nota más alta de la historia.
Nacida en Chicago, de madre cubana y padre estadounidense, está explorando cuestiones físicas como los agujeros negros, la relación espacio-tiempo y la naturaleza de la gravedad . Sus investigaciones podrían cambiar drásticamente la comprensión actual del universo y son semejantes a las que llevaron a cabo personajes como Albert Einstein o Stephen Hawking en su juventud.
La nueva promesa de la física no tiene tiempo para las redes sociales: ni cuenta de Twitter, ni actualiza su Facebook, cero fotos en Instagram y su currículum no aparece en LinkedIn. Y no, tampoco tiene smartphone. En su infancia pasaba horas en el garaje de su padre arreglando motocicletas y construyendo maquetas de aviones.
Lo que sí hace es actualizar periódicamente un sitio web llamado PhysicsGirl, donde cuenta sus logros, sus actividades y refleja parte de los trabajos en los que participa. Para poder llevar adelante todo ello Pasterski cuenta que nunca ha tenido novio ni ha probado alcohol o cigarrillos: “Prefiero mantenerme alerta, que me conozcan por lo que hago y no por lo que no hago”.
“Mi sueño es llevar a alguien a Marte. Sé que suena inviable pero si trabajas, todo puede ser posible”
A esta joven criada en los suburbios de Chicago le llueven las ofertas de trabajo: Jeff Bezos, fundador de Amazon y de la empresa aeroespacial Blue Origin, le guarda un puesto a González. Así también lo ha declarado la NASA. Y no sólo le sobran los empleos futuros, también ha recibido cientos de miles de dólares en becas de la Fundación Nacional para las Ciencias.
Mientras estudia un doctorado en la Universidad de Harvard, González no deja de lado su proyecto personal: poder enviar una nave al espacio construida por ella misma. De hecho cuándo le preguntan por su sueño, contesta: “Llevar a alguien a Marte. Sé que suena inviable pero si trabajas, todo puede ser posible”.
“Siempre estoy pensando qué he hecho últimamente, así siempre tengo un objetivo a seguir, nunca me quedo sin metas que alcanzar”
Su sueño empezó en el colegio con la ayuda de su profesor de matemáticas: “Cuando tenía 14 años se presentó a un concurso de maquetas con el avión que había construido 5 años atrás, así que le dije ‘está muy bien pero ¿qué has hecho últimamente?’”.
Las palabras de su profesor calaron muy a fondo en la joven, al punto de convertirse en su eslogan personal: “Siempre estoy pensando qué he hecho últimamente, así siempre tengo un objetivo a seguir, nunca me quedo sin metas que alcanzar”.
La revista Forbes ya ha incluido a Sabrina González Pasterski en la lista de los 30 mejores talentos menores de 30 años (Forbes)
A esta mente privilegiada de las ciencias no le importa que el 30% de los graduados en física y química en EE.UU. estén desempleados: “La física es muy emocionante, es un trabajo sin horarios. Cuando sientes que no puedes más, descansas y cuando no, te dedicas a la física”.
Entre sus principales influencias se encuentran el físico y ganador del Premio Nobel de Física, Leon Max Lederman, el matemático y físico inglés Freeman John Dyson y el químico, también ganador del Premio Nobel de Química, Dudley R. Herschbach.
“La física es muy emocionante, es un trabajo sin horarios. Cuando sientes que no puedes más, descansas y cuando no, te dedicas a la física”
Un bosón es una partícula elemental (o estado ligado de partículas elementales, por ejemplo, un núcleo atómico o átomo) con espín entero, es decir, una partícula que obedece a la estadísitca de Bose-Einstein (estadísictica cuántica), de la cual deriva su nombre. Los bosones son importantes para el Modelo estándar de las partículas. Son bosones vectoriales de espín uno que hacen de intermediarios de las interacciones gobernadas por teorías gauge. Los Fotones, los Gluones, el hipotético Gravitón, las partículas W y Z son todos bosones mensajeros del electromagnetismo y todas las formas de radiación, de la fuerza nuclear fuerte, de la Gravedad, y, de la fuerza nuclear débil.
En física se ha sabido crear lo que se llama el Modelo estándar y, en él, los Bosones quedan asociados a las tres fuerzas que lo conforman, el fotón es el Bosón intermediario del electromagnetismpo, los W+, w–y Zº son bosonesgauge que transmiten la fiuerza en la teoría electrodébil, mientras que los gluones son los bosones de la fuerza fuerte, los que se encargan de tener bien confinados a los Quarks conformando protones y neutrones para que el núcleo del átomo sea estable. La Gravedad, no se ha dejado meter en el modelo y, por eso su bosón no es de gauge. El gravitón que sería la partícula mediadora de la gravitación sería el hipótetico cuanto de energía que se intercambia en la interacción gravitacional.
Ejemplos de los Bosones gauge son los fotones en electrodinámioca cuántica (en física, el fotón se representa normalmente con el símbolo , que es la letra griega gamma), los gluones en cromodinámica cuántica y los bosones W y Z en el modelo de Winberg-Salam en la teoría electrodébil que unifica el electromagnetismo con la fuerza débil. Si la simetría gauge de la teoría no está rota, el bosóngauge es no masivo. Ejemplos de nbosonesgauge no masivos son el fotón y el gluón.
Si la simetría gauge de la teoría es una simetría rota el bosóngauge tiene masa no nula, ejemplo de ello son los bosones W y Z . Tratando la Gravedad, descrita según la teoría de la relatividad general, como una teoría gauge, el bosóngauge sería el gravitón, partícula no masiva y de espín dos.
Diagrama de Feynman mostrando el intercambio de un fotón virtual (simbolizado por una línea ondulada y ) entre un positrón y un electrón.De esta manera podemos llegar a comprender la construcción que se ha hecho de las interacciones que están siempre intermediadas por un nosón mensajero de la fuerza.
En el modelo estándar, como queda explicado, hay tres tipos de bosones de gauge: fotones, bosones W y Z y gluones. Cada uno corresponde a tres de las cuatro interacciones: fotones son los bosones de gauge de la interacciones electromagnética, los bosones W y Z traen la interacción débil, los gluones transportan la interacción fuerte. El gravitón, que sería responsable por la interacción gravitacional, es una proposición teórica que a la fecha no ha sido detectada. Debido al confinamiento del color, los gluones aislados no aparecen a bajas energías.
Aquí, en el gráfico, quedan representadas todas las partículas del Modelo estándar, las familias de Quarks y Leptones que conforman la materia y los bones que intermedian en las interacciones o fuerzas fundamentales que están presentes en el Universo. La Gravedad no ha podido ser incluida y se ha negado a estar unida a las otras fuerzas. Así el bosón que la transnmite, tampoco está en el modelo que es incompleto al dejar fuera la fuerza que mantiene unidos los planetas en los sistemas solares, a las galaxias en los cúmulos y nuestros pies unidos a la superficie del planeta que habitamos. Se busca una teoría que permita esta unión y, los físicos, la laman gravedad cuántica pero… ¡no aparece por ninguna parte!
Llegados a este punto tendremos que retroceder, para poder comprender las cosas, hasta aquel trabajo de sólo ocho páginas que publicó Max Planck en 1.900 y lo cambió todo. El mismo Planck se dio de que, todo lo que él había tenido por cierto durante cuarenta años, se derrumbaba con ese trabajo suyo que, venía a decirnos que el mundo de la materia y la nergía estaba hecho a partir de lo que el llamaba “cuantos”.
Supuso el nacimiento de la Mecánica Cuántica (MC), el fin del determinismo clásico y el comienzo de una nueva física, la Física Moderna, de la que la Cuántica sería uno de sus tres pilares junto con la Relatividad y la Teoría del Caos. Más tarde, ha aparecido otra teoría más moderna aún por comprobar, ¿las cuerdas…?
El universo según la teoría de las cuerdas sería entonces una completa extensa polícroma SINFONIA ETERNA de vibraciones, un multiverso infinito de esferas, una de ellas un universo independiente causalmente, en una de esas esferas nuestra vía láctea, en ella nuestro sistema solar, en él nuestro planeta, el planeta tierra en el cual por una secuencia milagrosa de hechos se dió origen a la vida autoconsciente que nos permite preguntarnos del cómo y del por qué de todas las cosas que podemos observar y, también, de las que intiuimos que están ahí sin que se dejen ver.
Claro que, cuando nos adentramos en ese minúsculo “mundo” de lo muy pequeño, las cosas difieren y se apartan de lo que nos dicta el sentido común que, por otra parte, es posible que sea el común de los sentidos. Nos dejamos guiar por lo que observamos, por ese mundo macroscópico que nos rodea y, no somos consciente de ese otro “mundo” que está ahí formando parte del universo y que, de una manera muy importante incide en el mundo de lo grande, sin lo que allí existe, no podría existir lo que existe aquí.
Interacciones en la naturaleza
Albert Einstein habría dicho que “es más importante la imaginación que el conocimiento”, el filósofo Nelson Goodman ha dicho que “las formas y las leyes de nuestros mundos no se encuentran ahí, ante nosotros, listas ser descubiertas, sino que vienen impuestas por las versiones-del-mundo que nosotros inventamos – ya sea en las ciencias, en las artes, en la percepción y en la práctica cotidiana-.”
Sin embargo yo, humilde pensador, me decanto por el hecho cierto de que, nuestra especie, siempre llegó al conocimiento a través de la imaginación y la experiencia primero, a la que más tarde, acompañó largas secciones de estudio y muchas horas de mediatación y, al final de todo eso, llego la experimentación que hizo posible llegar a lugarés ignotos que antes nunca, habían podido ser visitados. De todo ello, pudieron surgir todos esos “nuevos mundos” que, como la Mecanica Cuántica y la Relatividad, nos describían el propio mundo que nos era desconocido.
Cuando comencé éste trabajo sólo quería dar una simple explicación de los bosones y su intervención en el mundo de lo muy pequeño pero…
Demócrito de Abdera
No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que para determinar si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.
Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa , no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.
Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.
En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.
A todo esto, una buena sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón? Hoy, la tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.
Este es, el resultado ahora de la colisión de protones en el LHC
Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.
Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar un cabo de cuerda. Se corta y… ¡ya tenemos dos!
¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.
¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos , el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se producen los fenómenos que podemos contemplar en la Naturaleza y, si de camino, podemos llegar a saber el por qué de su comportamiento… ¡mucho mejor!
El camino será largo y, a veces, penoso pero… ¡llegaremos!
Nuestra insaciable curiosidad nos llevará lejos en el saber del “mundo”. llegaremos al corazón mismo de la materia para conmprobar si allí, como algunos imaginan, habitan las cuerdas vibrantes escondidas tan profundamente que no se dejan ver. Sabremos de muchos mundos habitados y podremos hacer ese primer contacto tántas veces soñado con otros seres que, lejos de nuestro región del Sistema solar, también, de manera independiente y con otros nombres, descubrieron la cuántica y la relatividad. Sabremos al fín qué es la Gravedad y por qué no se dejaba juntar con la cuántica. Podremos realizar maravillas que ahora, aunque nuestra imaginación es grande, ni podemos intuir por no tener la información necesaria que requiere la imaginación.
En fín, como decía Hilbert: ¡”Tenemos que saber, sabremos”!
Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.
La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias. La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica. La cosmología teórica construye modelos que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.
La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas.
La cosmología teórica se basa en la teoría de la relatividad general, la teoría de Einstein de la gravitación. De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos más intensos a grandes escalas y domina el comportamiento del Universo en su conjunto.
El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que genera y, nuestras mentes que tienen conocimientos de que todo esto sucede.
De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de nuestra personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior.
Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea.
Claro que, no todos podemos percibir la realidad de la misma manera, las posibilidades existentes de que el conocimiento de esa realidad responda exactamente a lo que ésta es en sí, no parece fácil.
Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los datos que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos. Hay en nosotros dos fuentes o potencias distintas que nos capacitan para conocer, y son la sensibilidad (los sentidos) y el entendimiento (inteligencia). Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.
A todo esto, para mí, el conocimiento está inducido por el interés. La falta y ausencia de interés aleja el conocimiento. El interés puede ser de distinta índole: científico, social, artístico, filosófico, etc. (La gama es tan amplia que existen conocimientos de todas las posibles vertientes o direcciones, hasta tal punto es así que, nunca nadie lo podrá saber todo sobre todo). Cada uno de nosotros puede elegir sobre los conocimientos que prefiere adquirir y la elección está adecuada a la conformación individual de la sensibilidad e inteligencia de cada cual. Állí, en alguna parte, está el germen del interés-curiosidad de cada cual.
También se da el caso de personas que prácticamente, por cuestiones genéticas o de otra índole, carecen de cualquier interés por el conocimiento del mundo que les rodea, sus atributos sensoriales y de inteligencia funcionan a tan bajo rendimiento que, sus comportamientos son casi-animales (en el sentido de la falta de racionalidad), son guiados por la costumbre y las necesidades primarias: comer, dormir…
Formamos parte del misterio que tratamos de descubrir
El polo opuesto lo encontramos en múltiples ejemplos de la historia de la ciencia, donde personajes como Newton, Einstein, Riemann, Ramanujan y tantos otros (cada uno en su ámbito del conocimiento), dejaron la muestra al mundo de su genio superior.
Pero toda la realidad está encerrada en una enorme burbuja a la que llamamos Universo y que encierra todos los misterios y secretos que nosotros, seres racionales y conscientes, persiguen.
Todo el mundo sabe lo que es la conciencia; es lo que nos abandona cada noche cuando nos dormimos y reaparece a la mañana siguiente cuando nos despertamos. Esta engañosa simplicidad me recuerda lo que William James escribió a finales del siglo XIX sobre la atención:”Todo el mundo sabe lo que es la atención; es la toma de posesión por la mente, de una forma clara e intensa, de un hilo de pensamiento de entre varios simultáneamente posibles”. Más de cien años más tarde somos muchos los que creemos que seguimos sin tener una comprensión de fondo ni de la atención, ni de la conciencia que, desde luego, no creo que se marche cuando dormimos, ella no nos deja nunca.
La falta de comprensión ciertamente no se debe a una falta de atención en los círculos filosóficos o científicos. Desde que René Descartes se ocupara del problema, pocos han sido los temas que hayan preocupado a los filósofos tan persistentemente como el enigma de la conciencia.
Para Descartes, como para James más de dos siglos después, ser consciente era sinónimo de “pensar”: el hilo de pensamiento de James no era otra cosa que una corriente de pensamiento. El cogito ergo sum, “pienso, luego existo”, que formuló Descartes como fundamento de su filosofía en Meditaciones de prima philosophía, era un reconocimiento explícito del papel central que representaba la conciencia con respecto a la ontología (qué es) y la epistemología (qué conocemos y cómo le conocemos).
No siempre somos conscientes de Ser, y, saber el lugar que ocupamos… ¡Es conveniente! En caso contrario, nos podríamos creer más de lo que somos.
Claro que tomado a pie juntillas, “soy consciente, luego existo”, nos conduce a la creencia de que nada existe más allá o fuera de la propia conciencia y, por mi parte, no estoy de acuerdo. Existen muchísimas cosas y hechos que no están al alcance de mi conciencia. Unas veces por imposibilidad física y otras por imposibilidad intelectual, lo cierto es que son muchas las cuestiones y las cosas que están ahí y, sin embargo, se escapan a mi limitada conciencia.
Todo el entramado existente alrededor de la conciencia es de una complejidad enorme, de hecho, conocemos mejor el funcionamiento del Universo que el de nuestros propios cerebros.
¿Cómo surge la conciencia como resultado de procesos neuronales particulares y de las interacciones entre el cerebro, el cuerpo y el mundo?
¿Cómo pueden explicar estos procesos neuronales las propiedades esenciales de la experiencia consciente?
Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un número ingente de estados conscientes distintos.
Beltrand Russell decía: “El problema del mundo es que los estúpidos están seguros de todo y los inteligentes están llenos de dudas”.
Muchos han sido los que han querido explicar lo que es la conciencia. En 1.940, el gran neurofisiólogo charles Sherrington lo intento y puso un ejemplo de lo que él pensaba sobre el problema de la conciencia. Unos pocos años más tarde también lo intentaron otros y, antes, el mismo Bertrand Russell hizo lo propio, y, en todos los casos, con más o menos acierto, el resultado no fue satisfactorio, por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la conciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una respuesta:
“Suponemos que un proceso físico da comienzo en un objeto visible, viaja hasta el ojo, donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan. Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.
Está claro que en lo más profundo de ésta consciencia que no conocemos, se encuentran todas las respuestas planteadas o requeridas mediante preguntas que nadie ha contestado.
Sin la fuerza de Gravedad, nuestras mentes serían diferentes (o no serían), estamos estrechamente conectados a las fuerzas que rigen el Cosmos y, precisamente, somos como somos, porque las fuerzas fundamentales de la Naturaleza, son como son y hacen posible la vida y la existencia de seres pensantes y evolucionados que son capaces de tener conciencia de SER, de hacer preguntas tales como: ¿de donde venimos? ¿Hacia donde vamos?
Al comienzo mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, de lo que estaba tratando era de hacer ver que todo ello, es la misma cosa. Universo-Galaxia-Mente. Nada es independiente en un sentido global, sino que son partes de un todo y están estrechamente relacionados.
Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.
Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un “milagro” en sí mismo.
Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.
Hemos desarrollado los pensamientos críticos partiendo de los pensamientos básicos que nos han permitido construir ese ente superior que va más allá de su origen animal para entrar en el área de la racionalidad y de la comprensión de las cosas.
La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.
Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.
El universo observable tiene diez veces más galaxias de las que se pensaba
Imagen de una porción del cielo conocida como GOODS South. Crédito: NASA, ESA, GOODS Team, y M. Giavialisco.
Hasta ahora los astrónomos estimaban que el Universo observable contenía entre 100 y 200 mil millones de galaxias, pero las últimas observaciones del Telescopio Espacial Hubble y otros instrumentos indican que al menos tiene diez veces más, es decir, unos dos billones (2 x 1012) de galaxias.
Mediante modelos matemáticos y una exhaustiva revisión de datos astrofísicos, un equipo internacional de investigadores liderado desde la Universidad de Nottingham (Reino Unido) ha deducido que alrededor del 90% de las galaxias son tan débiles o están tan lejos que todavía no las hemos visto.
“Es alucinante pensar que el 90% de las galaxias del Universo todavía no se haya estudiado; quién sabe qué propiedades interesantes nos encontraremos cuando las observemos con la próxima generación de telescopios”, explica Christopher Conselice, la investigadora principal del trabajo.
En las últimas décadas se vienen realizados diferentes cartografías digitales de la distribución de galaxias en el Universo, que en muchos aspectos están …
Los análisis también revelan que las galaxias no se han distribuido de forma uniforme a lo largo de los más de 13.000 millones de años del Universo. De hecho, parece que hubo un factor de 10 galaxias más por unidad de volumen cuando el Universo tenía sólo unos pocos miles de millones de años de edad en comparación con la actualidad. La mayoría de esas galaxias fueron relativamente pequeñas y débiles, y muchas se fusionaron, lo que redujo drásticamente su número.
Esta disminución a lo largo del tiempo ayuda a resolver una antigua paradoja astronómica, conocida como paradoja de Olbers: ¿Por qué el cielo es oscuro por la noche? (Si se supone que en un Universo infinito en cada punto del cielo hay parte de una galaxia con sus estrellas y debería brillar.)
Si se observa la distribución de las galaxias en el universo, entonces se ve un cuadro sorprendente: Se ven estructuras reticulares a gran escala.
Según los autores, la respuesta estaría en que la mayoría de estas galaxias son invisibles para el ojo humano, e incluso para los telescopios modernos, debido a una combinación de factores: desplazamiento al rojo de la luz, la naturaleza dinámica del Universo y la absorción de la luz por el polvo y gas intergaláctico. Todos estos factores se combinan para garantizar que el cielo nocturno siga siendo, en su mayor parte, oscuro.