Ago
11
¿Terminaremos sabiendo nuestro origen?
por Emilio Silvera ~ Clasificado en El Universo y... ¿nosotros? ~ Comments (0)
NATURE
Alesi, el pequeño ancestro de simios y humanos
Un cráneo de 13 millones de años de antigüedad hallado en Kenia responde a interrogantes sobre los orígenes de la especie humana
Este cráneo, del tamaño de un limón, pertenece a una nueva especie Nyanzapithecus alesi – Fred Spoor
Científicos del Turkana Basin Institute de Kenia y del Anza College, en Estados Unidos, han descubierto en el yacimiento del lago Turkana a «Alesi», un cráneo completo que podría arrojar luz sobre el antepasado común de los actuales simios y humanos. Los restos, del tamaño de un limón, corresponden a una cría, de apenas un año y cuatro meses, de una especie recién bautizada que vivió hace 13 millones de años. Su nombre es «Nyanzapithecus alesi» y hace honor a la palabra «ales» que en turkano significa ancestro. El hallazgo se publicó ayer en la revista Nature.
«Nyanzapithecus alesi formaba parte de un grupo de primates que existió en África durante 10 millones de años», ha explicado Isaiah Nengo, investigador en la Universidad Stony Brook y primer autor del estudio. «Lo que muestra su descubrimiento es que este grupo estaba muy cerca del origen de los humanos y los simios actuales, y que este origen es africano».
El enigma de los ancestros
Entre todos los primates actuales, los humanos están más emparentados con los simios, que incluyen a chimpancés, gorilas, oranguntanes y gibones. Los fósiles muestran con claridad cómo hace siete millones de años, todos estos animales tenían un ancestro común, y cómo unos y otros evolucionaron desde entonces.
Sin embargo, los científicos saben poco sobre la evolución anterior de los ancestros de simios y humanos. ¿Qué pasó hace diez millones de años? Los fósiles que podrían explicarlo son muy escasos y apenas consisten en un puñado de dientes aislados y en pequeños fragmentos de mandíbulas. Por eso, por ejemplo, nunca se ha podido responder a la pregunta de si los ancestros de simios y humanos se originaron en África, o qué aspecto tenían. ¿Se parecían a los gibones? ¿O a animales mayores y más robustos?
Esta incertidumbre podría llegar a su fin, gracias a esta nueva investigación. Un cráneo fósil de simio del tamaño de un limón, el más completo hasta ahora de un simio extinto, y al que los investigadores han bautizado como Alesi, está llamado a ayudar a cerrar ese hueco crucial en la historia de los primates.
La historia de Alesi comienza en 2014, cuando fue hallado por un cazador de fósiles llamado John Ekusi. El pequeño estaba en el interior de una capa de sedimentos de 13 millones de años de antigüedad, situada en una región muy especial: en las cercanías de la zona de Napudet, una región situada al oeste del Lago Turkana, (al norte de Kenia), y famosa por haber brindado a los científicos innumerables fósiles con los que reconstruir los primeros pasos de la historia de la especie humana.
Enterrado por un volcán
«La zona de Napudet nos permite echar un vistazo único a un paisaje africano de hace 13 millones de años», ha explicado Craig S. Feibel, investigador de la Universidad Rutgers (Estados Unidos). «Un volcán próximo enterró el bosque donde vivía el pequeño simio, preservando los fósiles y muchos árboles. También nos proporcionó muchos minerales volcánicos cruciales para datar el fósil», ha añadido.
Aunque muchos de los interesantes rasgos de Alesi son visibles a simple vista, los investigadores lo han analizado también a través de una técnica de reconstrucción en tres dimensiones de altísima calidad y que es similar a una radiografía, en gran detalle. Estas pruebas se han realizado en el sofisticado Laboratorio Europeo de Radiación Sincrotrón de Grenoble, Francia.
Gracias a esto, han comprobado que el cráneo de Alesi es realmente extraordinario. «Fuimos capaces de reconstruir la cavidad cerebral, el oído interno y los dientes adultos, aún no emergidos, incluso con las líneas de crecimiento diarias», ha dicho Paul Tafforeau, investigador del laboratorio europeo. «La calidad de las imágenes era tan buena que averiguamos, gracias a los dientes, que la cría tenía un año y cuatro meses cuando murió».
Los dientes de una cría
Los dientes también han revelado otra información muy importante. Este pequeño simio pertenecía a una especie desconocida hasta ahora, y que los científicos han bautizado con el nombre de Nyanzapithecus alesi. «Hasta ahora, todas las especies del género «Nyanzapithecus eran conocida solo por sus dientes, y había muchos interrogantes abiertos sobre si eran simios o no», ha dicho John Fleagle, investigador de la Universidad Stony Brook. «Lo que aquí resulta crucial es que el cráneo tenía los canales óseos de los oídos totalmente desarrollados. Esto es un importante rasgo que vincula a este ejemplar con los simios actuales», ha resumido Ellen Miller, investigadora en la Universidad Wake Forest (Estados Unidos).
El cráneo de Alesi llama la atención por lo pequeño que es su hocico y por lo similar que resulta al de un gibón. Pero Alesi estaba emparentado con los simios actuales. Sus canales auditivos muestran que no se movía tan rápido como los gibones. Sus cautelosos movimientos le hicieron avanzar hacia la evolución de humanos y simios.
Ago
11
Otra confirmación de la Relatividad
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (0)
CienciA-abc
Detectan pruebas de la Relatividad de Einstein en el monstruoso corazón de la Vía Láctea
Por primera vez, se han observado efectos relativistas en una estrella cercana a un agujero negro supermasivo.
La enorme masa de Sagitario A, el agujero negro supermasivo del centro de la galaxia, deforma el espacio-tiempo y desvía las órbitas de las estrellas – ESO/M. Parsa/L. Calçada
La Física que conocemos aún no ha podido adentrarse en los agujeros negros, pero sabemos perfectamente que están ahí. Uno de ellos ayuda a mantener unido ese vertiginoso remolino de cientos de miles de millones de estrellas que es la Vía Láctea. En su centro, a unos 26.000 años luz de la Tierra, «late» un agujero negro supermasivo de cuatro millones de masas solares y que recibe el nombre de Sagitario A (o también Sgr A*). No hace falta ser creyente para sentirse maravillado: Sagitario A es un gran atractor que mata estrellas y hace nacer a otras nuevas.
Los astrónomos están tratando de obtener la primera imagen de la historia de su horizonte de sucesos, ese límite predicho por Einstein y a partir del cual la Física se adentra en territorio desconocido. Pero mientras esto se logra, un equipo de científicos checos y alemanes se ha fijado en las estrellas de su entorno, durante 20 años, y han encontrado evidencias de efectos relativistas, predichos por Einstein un siglo atrás. Por primera vez, los astrónomos han detectado este tipo de efectos en estrellas que orbitan a alta velocidad el entorno de un agujero negro supermasivo.
Para poder mirar tan lejos los astrónomos han tenido que «viajar» hasta el Observatorio Paranal, en el desierto de Atacama, en Chile, del Observatorio Europeo Austral (ESO). Allí los cuatro telescopios ópticos del Very Large Telescope (VLT) les han permitido detectar los sutiles movimientos de las estrellas.
Si la Relatividad de Einstein funciona, como ya han demostrado otras muchas observaciones y experimentos, el movimiento de las estrellas cercanas al agujero negro no debería ser explicado solo a través de las leyes de Newton. La gravedad y las velocidades llevan a que sea la Relatividad la que explica su posición y movimiento.
Un laboratorio en el centro de la galaxia
«El centro de la galaxia es el mejor laboratorio para estudiar el movimiento de las estrellas en un entorno relativista», ha dicho Marzieh Parsa, investigadora en la Universidad de Colonia y primera autor del estudio. «Nos sorprendió cuán bien pudimos aplicar los métodos que desarrollamos con simulaciones para obtener datos de alta precisión sobre las estrellas que giran a alta velocidad y que están más cerca del agujero negro».
Esto es exactamente lo que ha ocurrido con una estrella bautizada con el poco sugerente nombre de S2. Gracias a la precisión del VLT, y de haber podido observarla cuando se acercaba y cuando se alejaba del agujero negro, los científicos han observado que la forma y la orientación de su órbita están influidas por efectos relativistas. Además, gracias a estas observaciones, los científicos han calculado con mayor exactitud la masa del agujero y su distancia hasta la Tierra.
En opinión de Vladimir Karas, investigador en la Academia de Ciencias de Praga, República Checa, «es muy alentador que S2 muestre comportamientos relativistas, tal como se esperaba en función de su proximidad a esas extrema concentración de masa en el centro de la Vía Láctea». Según él, estas observaciones abren un nuevo camino para nueas teorías y experimentos en este sector de la ciencia.
Esta historia continuará muy pronto. En 2018, la estrella S2 se acercará de nuevo al agujero negro supermasivo. Por entonces, un nuevo instrumento del VLT, el GRAVITY, permitirá medir su órbita con mayor precisión. Antes de que entren en funcionamiento la próxima generación de telescopios monstruosos, los astrónomos podrá medir con increíble exactitud los efectos relativistas en torno al centro de la Vía Láctea, o, por qué no, posibles desviaciones que ayuden a fundar una nueva Física, capaz de adentrarse en lo desconocido.
Ago
10
¿La estructura del Universo? Sí, conocemos alguna parte
por Emilio Silvera ~ Clasificado en El Universo misterioso ~ Comments (2)
Imagen en infrarrojo medio obtenida por la cámara FORCAST del observatorio SOFIA. La foto, del núcleo de la Vía Láctea, muestra al Anillo Circunnuclear de …
Imaginaos ahora este instante en que los
murmullos se arrastran discretamente y las
espesas tinieblas llenan el gran navio del
Universo.
Esas palabras de Chakespeare en Emrique V (Acto IV, esc. 1) nos podría valer ahora a nosotros para estrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que no podemos ver y que nos soluciona, de un plumazo, el inmenso problema de de la estructura del Universo. Esa clase de materia “transparente” que no emite radiación, podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento del Universo y que no sabíamos a qué era debido. Bueno, no lo sabíamos hasta “la llegada de la Materia Oscura”…”ahora sí lo sabemos”, o, al menos, eso dicen algunos.
Sabemos, por ejemplo que, en el centro de la Galaxia, en Sagitario A, reside un gran mostruo que tiene tres millones de masas solares y, en la imagen de arriba podemos ver a un grupo de estrellas que lo orbitan en un perído de 15 años. Hemos hablado aquí de ese lugar, del Centro galáctico y, también de otras regiones que tienen inmensos Agujeros Negros que, al ser singularidades, hacen que el tiempo allí se distorsione y que el espacio adquiera una curvatura infinita. Sin embargo, la “materia oscura” no está compuesta por esos objetos exóticos y, según los cosmólogos, es otra cosa diferente, algo que no sabemos lo que es, algo que no podemos ver, algo que no tenemos ni idea de cómo se pudo formar ni de cuanto tiempo lleva aquí y de qué clase de partículas estará formada. “La Materia Oscura” es, en realidad, un auténtico misterio. Todos hablan de ella pero, nadie sabe lo que es.
Hablar de la materia oscura es para mí como hacerlo de esos personajes y animales míticos que sólo están en la mente del autor que nos narra una historia en la que, pueden estar presentes los Unicornios y también los más extraños personajes y animales que sólo existen en las peores pasadillas de mundos inimaginables.
Con la Materia Oscura nos pasa como cuando un enfermo terminar recibe la noticia de que ha aparecido un medicamento milagroso que podría curar su mal. Allí ponen todas sus esperanzas. Puede parecer extraño que los cosmólogos pongan todas sus esperanzas en comprender el Universo centrándolo en una materia tan misteriosa como esa, pero eso es lo que está sucediendo en nuestros días.
Y no es que se trate simplemente de agarrarse a un “clavo ardiendo”: aprovecharnos de la ignorancia de la naturaleza de la materia oscura para adjudicarle todas las propiedades que se requieran para resolver los problemas más inmediatos. ¿Qué falta hace conocer las propiedades de esta clase de materia para que nos resuelven el problema de la formación de las galaxias?
Cuando nos encontramos con un problema desconocido del que ignoramos los motivos que lo producen, rápidamente construimos un modelo hipotético que lo resuelve y, nuestra ignorancia, queda a salvo y fuera de la vista de los demás. Según las leyes de la mecánica de Newton, la velocidad de una estrella a lo largo de su órbita depende de la masa de la galaxia contenida dentro de la órbita de la estrella. Sin embargo, la masa visible es mucho menor que lo esperado. ¿Donde está la masa que falta?
De la misma manera, las galaxias en el Universo se agrupan en cúmulos y supercúmulos de galaxias que para mantenerse unidos necesitan una inmensa cantidad de materia que genere la fuerza de gravedad necesaria para conseguirlo. Sin embago, la masa requerida no se observa ¿Donde está?
¿Cómo podríamos detectar la presencia de la Materia Oscura? ¿Cual será la naturaleza de la Materia Oscura? ¿Será posible que los objetos que constituyen la materia oscura del universo (si es que finalmente existe esa materia), estén formados por partículas que no hemos llegado a conocer por no emitir radiación y ser diferentes a los Quarks, Leptones y Hadrones? Algunos físicos antiguos muy famosos que fueron nombrados Sir por la reina de Inglaterra, decían que la materia se generaba de manera expontánea en nuestro universo a partir de una sustancia cósmica primera. ¿ Será esa sustancia cósmica o Ilem (como la llamaban los clásicos griegos), la materia que estos llaman oscura?
Lo cierto es que andamos perdidos. Hay cosas en el vasto universo que no podemos explicar. La idea básica del papel de la materia oscura es fácil de entender. Como todos hemos llegado a saber, partimos de una dificultad primera que no hemos sabido resolver, nadie ha podido imaginar cómo evolucionó el universo, ya que tiene que ver con el hecho de que, si el cosmos entero está hecho de materia normal, la formación de galaxias no pudo haber empezado hasta muy avanzado el “juego”, después de que el universo se ha enfriado hasta el punto de que pueden existir átomos y la radiación se pueda desaparejar. Para entonces, la expansión de Hubble habría diseminado tanto la materia que la gravedad por sí sola no sería suficientemente fuerte para reunir cúmulos antes de que todo se escapara de su alcance. Entonces, si eso es así (que lo es)… ¿Cómo puñetas se formaron las galaxias?
Debajo de esta imagen de Wikipedia (Una espectacular colisión frontal entre dos galaxias vista desde el Hubble” Telescopio el telescopio Espacial de la NASA de la Galaxia Lenticular), podemos leer los párrafos de abajo que, en algunos de sus tramos denotan nuestra ignorancia. Y, así ha sido siempre, hablamos y hablamos y no dejamos de hablar de… ‘lo que no sabemos! En realidad, nadie sabe, como pudieron formarse las galaxias.
“La formación de las galaxias es una de las áreas de investigación más activas de la astrofisica, y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras, formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Pero, con seguridad, nadie sabe como pudieron formarse las galaxias a pesar de la expansión de Hubble.
¿Y si la materia oscura no importa? Para todo aquellos escépticos, un matemático italiano ha conseguido lo nunca antes visto. El hombre ha llegado a través de una serie de fórmulas complejas y con extraordinaria similitud, trazar las curvas de la rotación de las galaxias espirales sin necesidad de materia oscura. Dicho de otra forma, a través de sus cálculos, el matemático ha representado la fuerza que mantiene unidas a las galaxias sin la necesidad de materia oscura. El trabajo de Carati frente al razonamiento deductivo de toda la comunidad científica.
Hasta ahora todos los experimentos científicos tenían a la materia oscura como parte esencial del entendimiento de las galaxias, para explicar aquello que no vemos. Si contamos la cantidad de masa en las galaxias espirales como la nuestra y luego tomamos el modelo de su rotación, obtenemos una imagen muy diferente a la que empíricamente se observa. La cantidad de masa en el centro de las galaxias espirales es enorme pero las estrellas exteriores se mueven alrededor de los discos galácticos con tanta rapidez que deberían volar hacia el espacio interestelar.
Lo cierto es que, no todos están de acuerdo con la existencia de la materia oscura y creen que los fenómenos que observamos se deben a otros parámetros que nos son desconocidos, e, incluso, podría tratarsde de alguna propiedad desconocida de la Fuerza de la Gravedad, o, ¿por qué no? podrían ser fluctuaciones del vacío que rasgan el espaciotiempo y dejan entrar, en nuestro universo, esa fuerza misteriosa que incide directamente en el comportamiento de nuestras galaxias y estrellas…lo cierto es que, no sabemos, realmente lo que pueda ser el motor conductor de esa anomalía observada y, sin embargo, ahí estamos con “la materia oscura por aquí” “la matería oscura por allá” y, la representamos de mil maneras distintas para poder convencer, a los excepticos .
El colmo de los colmos está en noticias como esta: “3 marzo 2012. Los astrónomos que usan datos del Telescopio Hubble de la NASA han observado lo que parece ser un grupo de materia oscura que es parte de restos de un naufragio entre los cúmulos masivos de galaxias. El resultado podría desafiar las teorías actuales sobre la materia oscura que predicen que las galaxias deberían estar ancladas a la sustancia invisible, incluso durante el choque de una colisión.”
Abell 520 es una fusión gigante de cúmulos de galaxias situadas a 2,4 mil millones de años luz de distancia. La materia oscura no es visible, aunque su presencia y la distribución se encuentra indirectamente a través de sus efectos. La materia oscura puede actuar como una lupa, curvar la luz y causar la distorsión de las galaxias y cúmulos detrás de ella. Los astrónomos pueden usar este efecto, llamado lente gravitacional, para inferir la presencia de materia oscura en los cúmulos de galaxias masivas”.
¿”…han observado lo que parece ser un grupo de materia oscura que es parte de restos de un naufragio entre los cúmulos masivos de galaxias”? ¿Qué tonteria es esa?
Imágenes como estas tratan de explicar lo que no tiene explicación y, explican a su conveniente manera lo que ahí se está viendo y que, no es, necesariamente, lo que la explicación que se nos da quiere dar a entender.
Un grupo de astrónomos que utilizó telescopios de ESO anunció en abril una sorprendente falta de “materia oscura” en la galaxia dentro de la vecindad del Sistema Solar. Pero, me pregunto yo, si no sabemos como es la materia oscura, ¿de qué manera podemos detectar su falta o su presencia?
Por otra parte, el revoltijo de sin sentidos que se está formando en torno a la materia oscura es descomunal. ¿Cuántos estudios se han realizado con resultados dispares? Unos dicen que la materia oscura “se observa alrededor de las Galaxias” y otros, por el contrario, vienen a decirnos que la falta de materia oscura en las galaxias es desconcertante.
Así las cosas, tenemos que convenir en una realidad que nadie puede negar: La materia oscura (al menos de momento) es algo intangible, algo hipotético que se ha pensado que podría existir a partir de las anomalías observadas en el comportamiento de las galaxias y que nadie sabe explicar a qué puede ser debido y, en esas estábamos cuando llegó la idea “luminosa” y alguien mencionó la “materia oscura” y, todos se lanzaron en tropel sobre ella, ¡era la salvación!
emilio silvera
Ago
10
Algunos desarrollos de la Física Teórica…Son notables
por Emilio Silvera ~ Clasificado en Física ~ Comments (8)
Hasta hace muy pocos años la Gravitación y la Mecánica Cuántica eran dos campos de la Física Teórica que utilizaban metodologías muy distintas y que estaban prácticamente desconectados entre sí. Por una parte, la interacción gravitatoria está descrita por la Teoría de la Relatividad General de Einstein, que es una teoría clásica (es decir, no cuántica) en la que la Gravedad se representa como una propiedad geométrica del espacio y del tiempo. Por otro lado, gobierna el mundo de las partículas atómicas y subatómicas. Su generalización relativista (la Teoría Cuántica de Campos) incorpora los principios de la Teoría Especial Relativista y, junto con el principio gauge, ha permitido construir con extraordinario éxito el llamado Modelo Estándar de la Física de las Partículas Elementales.
Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye … sólo tres de las cuatro fuarzas fundamentales. La Gravedad se niega a juntarse con las otras fuerzas.
La interacción electromagnética, por ejemplo, es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.
El electromagnetismo está presente por todo el Universo
La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.
Las teorías gauge explican satisfactoriamente la dinámica de las interacciones electromagnéticas, fuertes y débiles en un gran rango de distancias. Sin embargo, a pesar que la Teoría General de la Relatividad puede formularse como una teoría gauge, todos los intentos de introducir en ella de manera completamente satisfactoria los principios de la Mecánica Cuántica, han fracasado. No obstante, los desarrollos realizados en el marco de la Teoría de Cuerdas en los últimos años han dado lugar a una convergencia, al menos metodológica, entre estos dos campos de la Física Fundamental.
Lo cierto es que buscamos incansables para saber de qué está hecho el “mundo”
La piedra angular de esta inesperada conexión es la llamada correspondencia gravedad/teoría gauge. En su forma más genérica dicha correspondencia afirma que la dinámica de ciertas teorías cuánticas de campos sin gravedad puede ser descrita por medio de una teoría gravitatoria en un espacio-tiempo que contiene al menos una dimensión adicional.
Para poder comprender con claridad los orígenes y las consecuencias de tan sorprendente relación entre teorías tan diferentes, es interesante recordar como fue descubierta en el contexto de la Teoría de Cuerdas. la Teoría de cuerdas tiene su origen en los años 60-70 como un intento de describir los hadrones (partículas elementales que experimentan interacción fuerte) como estados de una cuerda en movimiento.
¡Teoría de cuerdas! (¿)
La longitud de la cuerda se puede identificar con el tamaño del hadrón y sería del orden del fermi (10-15metros). Sin embargo, al analizar en detalle el espectro de modos de vibración de las cuerdas cerradas se descubrió que estas contienen una partícula de espín 2 y masa nula…(¿el gravitón?) que no se corresponde con ningún hadrón y que, en cambio, se identifica de manera natural con el gravitón (el cuanto fundamental de la interacción gravitatoria). De esta forma la Teoría de Cuerdas pasó de ser considerada una teoría de las interacciones fuertes a ser una posible teoría de unificación de las cuatro interacciones fundamentales de la Naturaleza a una escala mucho más pequeña: La longitud de Planck(10-35 metros).
La longitud de Planck se define como:
donde c es la velocidad de la luz en el vacío, G es la constante de gravitación universal, y es la Constante de Planck racionalizada o reducida.
Una consecuencia sorprendente del estudio cuántico de la cuerda es que ésta debe propagarse en un espacio-tiempo de diez dimensiones. La métrica de dicho espacio-tiempo está también fuertemente contreñida. De hecho, la consistencia mecano-cuántica del movimiento de la cuerda en un espacio curvo impone que la métrica de este debe satisfacer unas ecuaciones que, en el límite en el que la longitud de la cuerda se considera muy pequeña, se reducen a las ecuaciones de Einstein de la relatividad general. Así pues, las ecuaciones fundamentales de la gravedad clásica en diez dimensiones se puede obtener de la dinámica cuántica de la cuerda.
En los años noventa se descubrió que el espectro de la Teoría de Cuerdas contiene, además de los modos de vibración asociados a las diferentes partículas, otros estados que están extendidos a lo largo de varias dimensiones espacio-temporales. Dichos espacios se denominan Branas y son paredes de dominio en el espacio-tiempo diez-dimensional que corresponden a estados no-perturbativos de la Teoría de Cuerdqas similares a los solitones de las teorías cuánticas de campo. En particular, las denominadas Dp-Branas son objetos que pueden estar extendidos a lo largo de p dimensiones espaciales y una temporal para 0 ≤ p ≤ 9. Uno puede imaginárselas como hiperplanos (p+1)-dimensionales. En particular la D3-Branas están extendidas a lo largo de cuatro dimensiones (tres espaciales y una temporal).
Claro, todo es pura conjetura (hasta que no sea verificado de forma experimental). Increíblemente el mundo de las branas es tan colosalmente extraño como lo es el infinitecimal mundo de las partículas quánticas, con la salvedad de que, al tratar de objetos aún más pequeños, es decir aquellos que posiblemente existan más allá de los Quarks, la fascinación sube de tono al toparnos con un universo de cosas “imposibles”, bueno, mejor alejado de lo que nos dice el sentido común que (está visto), no es el mejor de los sentidos.
Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espacio-tiempo completo 1 + 9 (o 1 + 10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Peter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1.805 y 1.859).
No resulta fácil para nosotros imaginar el Mundo Brana
Las D-Branas son objetos dinámicos que pueden moverse, deformarse y cambiar de estado interno. Una de sus características fundamentales es que este último está caracterizado por un campo gauge que viv3e en su interior. Así podremos decir que las D-Branas albergan teorías de gauge en su seno. Esta es una realización novedosa de la simwetría gauge que está en la base de la correspondencia gravedad/teoría gauge. Además, dado que la Teoría de Cuerdas es una teoría gravitatoria, cualquier objeto masivo (y en particular las D-Branas) tiene asociado una métrica que describe la distorsión gravitatoria del espacio-tiempo en torno a él. En el caso de las D-Branas estas métricas son fáciles de encontrar y son similares a la clásica solución de Schwazschild de la relatividad general. En 1997 el joven físico argentino Juan Maldacena sugirió utilizar esta solución de gravedad para describir la teoría gauge que vive en las D-Branas.
¿Podría ser nuestro universo una membrana flotando en un espacio de más dimensiones, que se rompe muchas veces en un universo circundante? Según una rama de la teoría de las cuerdas llamada braneword, hay una gran cantidad de dimensiones extra de espacio, y aunque la gravedad puede llegar a salir, nosotros estamos confinados a nuestro propio universo “brana”, con sólo tres dimensiones. Neil Turok, de la Universidad de Cambridge en el Reino Unido, y Paul Steinhardt, de la Universidad de Princeton en Nueva Jersey, EE.UU., han trabajado en cómo el Big Bang se podría haber provocado cuando nuestro universo se enfrentó violentamente con otro. Se repite el enfrentamiento, produciendo un nuevo Big Bang de vez en cuando, por lo que si el modelo del universo cíclico es correcto, el cosmos puede ser inmortal. ¡Por imaginar que no quede!
Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Kleinoriginal: El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.
En la propuesta de Maldacena de las dos descripciones (gauge y gravitatoria) son duales y complementarias entre sí. En principio nos puede parecer confusa la afirmación de que la gravedad juega un papel relevante en la física de la teoría gauge. En los cursos de física nos enseñan que la gravedad es mucho más débil que las otras fuerzas, y que, por lo tanto, su efecto es despreciable salvo a distancias realmente pequeñas o masas realmente grandes. Para resolver esta paradoja hay que tener en cuenta que la gravedad de la que estamos hablando no es la de nuestro universo aproximadamente plano y (posiblemente) con una pequeña constante cosmológica positiva, sino que se trata de una teorìa auxiliar en más de cuatro dimensiones y con constante cosmológica negativa.
Para seguir explicando el tema, mucho tendríamos que escribir. Sin embargo, quede aquí esta entrada que, al menos, puede despertar alguna curiosidad en los lectores que, aconsejados por lo leido, busquen más sobre el tema que, sin duda alguna, llega a ser fascinante.
Fuente: Muchos de los párrafos aquí insertos, han sido transcritos de un trabajo de Alfon V Ramallo del Departamento de Física de Partículas de la Universidad de Santiago de Compostela.
PD.
Aclaración: Cuando mencionamos una teoría gauge, lo estamos haciendo de cualquiera de las teorías cuánticas de campos creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y los potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang-Mills. esta diferencia explñica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil, que es la teoría unificada de las interacciones débiles y las electromagnéticas. En el caso de la Gravedad Cuántica, el Grupo Gauge es mucho más complicado que los grupos gauge tanto de las interacciones fuertes como de las débiles.
¡La Física! ¡Qué complejidad!
emilio silvera
Ago
10
¡Causalidad! ¡Ese Principio!
por Emilio Silvera ~ Clasificado en El Universo dinámico ~ Comments (1)
Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.
Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.
Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorentz (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.
A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.
Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.
El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?
El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.
Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.
La teoría de la relatividad especial nos trajo muchas sorpresas
Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.
Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.
Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre. Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!
Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.
Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí claro, cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.
Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.
“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que de unidad a lo que desde hacía tiempo parecía desunirlo.”
– Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.
– Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.
– Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.
Algunos momentos de la vida del Maestro
Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, “es la unidad de la variedad”. La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”
Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.
Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.
Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.
¿Hasta donde llegaremos?
La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose.
Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.
Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.
Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.
Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.
La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar.
La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.
Hemos inventado tecnología que ha posibilitado que no estemos confinados en el planeta
“Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”
En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.
Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.
Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.
Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.
Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.
Considerado a grandes escalas, el Universo es isotrópico. Es un principio cosmológico.
De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo pasa habrá que buscar la causa.
El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.
Lo cierto es que las cosas se cuentan de distintas maneras, según la perspectiva de quien la cuente.
El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler(eso es lo que nos dicen los cosmólogos). La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.
Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.
Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.
La máquina del big bang reveló que, en aquellos primeros momentos…
A los tres minutos de edad, las temperaturas habían caído lo bastante como para que pudiesen combinarse los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.
Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.
La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.
En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?
Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.
La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice Leon Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.
Pensar que estamos solos en el Universo “infinito”, es demasiado pretencioso y no creo que seámos “la especie elegida” ni nada parecido. En cientos de miles de mundos como el nuestro y parecidos, estarán presentes las más diversas criaturas que, en algunos casos tendrán entendimiento y en otros, como pasa en la Tierra, simplemente serán seres vivos vegetativos sin ninguna clase de conciencia, o, con una conciencia limitada.
Por lejos que esté… Siempre querremos llegar. ¿Qué habrá allí dónde nuestra vista no alcanza? ¿Cómo será aquel universo?
¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!
Pero en verdad, al final de todo esto, el problema es que siempre estarmos haciendo preguntas: Que si la masa crítica, que si el universo abierto, plano o cerrado… Que si la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (queremos hacer ver que hay más… ¡de la que hay!), que parece mucha y en realidad es tan poca que ni podemos contestar preguntas sencillas como, por ejemplo: ¿Quiénes somos?
Ahí, ante esa pregunta “sencilla” nos sale una imagen movida que no deja ver con claridad
Sin embargo, hemos sabido imaginar para poder desvelar algunos otros secretos del universo, de la Naturaleza, del Mundo que nos acoge y, sabemos cómo nacen, viven y mueren las estrellas y lo que es una galaxia. Podemos dar cuenta de muchas cuestiones científicas mediante modelos que hemos ideado para explicar las cosas. No podemos físicamente llegar a otras galaxias y nos hemos inventado telescopios de inmensa capacidad para llegar hasta las galaxias situadas a 12.000 millones de años luz de la Tierra. También, hemos sabido descifrar el ADN y, si ninguna catástrofe lo remedia… ¡Viajaremos por las estrellas!
Claro que, sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber lo que el Universo es. ¡Nuestra imaginación! que siempre irá por delante de la realidad que nos rodea y que no siempre sabemos ver. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.
emilio silvera