domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Quién nos observa? Lo cierto es que no podríamos negarlo

Autor por Emilio Silvera    ~    Archivo Clasificado en Vida en otros mundos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en hacer el recuento. Si consideramos el número posible de circuitos neuronales, tenemos que habérnosla con cifras hiperastronómicas: 10 seguido de al menos un millón de ceros (En comparación con el número de partículas del universo conocido asciende a “tan sólo” 1079 es decir, es el número conocido como NEdd (Número de Eddintong) que es:

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717914.527.116.709.366.231.425.o76185.631.031.296 protones y el mismo número de electrones, fue calculado por Arthur Eddintong allá por la década de 1920. Pues bien, esa descomunal cifra, se queda muy corta si la comparamos con las conexiones de nuestro cerebro. De ahí viene lo que decimos de que, “nuestros cerebros son las máquinas más complejas del Universo”. Y, desde luego, el comentario no está lejos de ser cierto.

 

 

 

 

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que las moléculas  de la vida pudieran ser fabricadas en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

 

Arriba, en el título del trabajo, os preguntaba: ¿Quién nos observa? Y, seguidamente os decía que ” No podríamos negar que esté sucediendo”. Lo cierto es que, si hacemos buena la lógica y las estadísticas aplicadas al Universo en el que existen cientos de miles de millones de estrellas como el Sol y, planetas como la Tierra un sin fin que, como el nuestro, estarán situados en la zona habitable— ¿Cómo negar la existencia de otras formas de vida, incluso, inteligentes?

 

 

En galaxias lejanas de cientos de miles de millones de estrellas y en otras de menor volumen pero no por ello menos interesantes, existen extraños mundos que, aunque diferentes al nuestro, también viven y se nutren de la radiación y la luz estelar que les llega. Unos tienen soles azules y otros blancos, también los hay amarillos como el nuestro y muchos de ellos son rojos. Cada una de esas estrellas, configuran el color de sus respectivos mundos y los hace de color mortecino, de un azulado brillante o incluso, en ocasiones, de un color que influye en la atmósfera del planeta hasta hacerlo parecer de sangre. También los hay, como el nuestro, son luminosos y están alumbrados por estrellas blanco-azuladas que le dan un tono de exquisita presencia.

No todos los planetas que alberguen alguna clase de vida, ni en nuestra Galaxia ni en otras lejanas, tienen que ser como la Tierra. Existen planetas en los que se nos encogería el corazón por su aspectos terrorífico y de inhabitable naturaleza, mientras que otros, nos parecerían una fantasía sacada de esos cuentos de hadas que de niños podíamos leer, tal es su belleza natural. En la Tierra tenemos muchas imágenes de lugares que hacen honor a ese pensamiento.

De la misma manera que existen estrellas de muchos tipos diferentes, así ocurre con los mundos que podemos encontrar repartidos por el universo orbitando estrellas que los configuran de mil diferentes maneras. Si nos fijamos en nuestro planeta que ha hecho posible nuestra presencia aquí, en el que junto a miles de otras especies hemos evolucionado, veremos que se han dado unas condiciones específicas para que todo eso sea posible.

Hemos podido llegar a un estado de evolución “aceptable” y alcanzado un nivel tecnológico que va más allá de lo que, hace sólo 200 años nos pudiéramos haber imaginado. Desde comienzo de la década de 1960, los programas de TV han emitido desde la Tierra hacia el espacio  a un nivel de medio millón de watios. En la actualidad, la energía total emitida por las emisoras de televisión de todo el mundo es muy superior a los mil millones de watios. Durante los últimos quince años, esa cobertura expansiva de las emisoras de televisión, emitiendo desde la Tierra a la velocidad de la luz, ha podido llegar hasta centenares de estrellas y de mundos.

297a.jpg

El observatorio de radio/radar de Arecibo en Puerto Rico. El disco hemisférico reflector está coronado por los brazos de alimentación sostenidos por tres grandes obeliscos, dos de los cuales aparecen deformados en la foto de la izquierda, tomada por Bill Ray con una lente de ojo de pez al nivel de los paneles que forman el disco. (Cedidas por el Centro Nacional de Astronomía y de la Ionosfera, Universidad de Cornell.)

Enormes radares situados por todo el mundo lanzando ondas han podido ser la evidencia inequívoca de que aquí, en la Tierra, existen seres inteligentes que tratan de captar señales venidas del espacio exterior, de vigilar los posibles peligros que nos puedan llegar de mñás allá de los confines del Sistema solar, o, de captar esas señales que denoten la presencia de otros seres inteligentes que, situados en otros mundos lejanos, nos quieren decir alguna cosa o transmitir algún mensaje. Nosotros ya lo hemos intentado y continuamos haciéndolo.

Resultado de imagen de como serian los extraterrestresResultado de imagen de ¿Cómo serán los extraterrestres?Resultado de imagen de ¿Cómo serán los extraterrestres?

                  ¿Cómo serán ellos? Lo cierto es que cualquier cosa que podamos imaginar podría ser cierta

civilizacion avanzada

                     Cualquier mundo que podamos imaginar… también podría existir lejos del nuestro

Lo cierto es que hemos llegado a comprender que la vida en la Tierra, toda sin excepción está basada en el Carbono y, como también sabemos que las leyes del Universo son las mismas en todas partes, es lógico pensar que lo que pasó aquí habrá podido pasar allí, en cualquier planeta lejano situado en nuestra Galaxia o en cualquiera de la multitud de galaxias que conforman nuestro universo en el que cientos de miles de millones de mundos, no pueden estar vacíos y carentes de vida.

Todas esas señales y las que emitimos con nuestro quehacer diario, hacen que nuestro planeta brille hasta parecer un ascua encendida en la oscuridad . Las frecuencias de televisión y las bandas de FM de las emisoras de radio nos delatan ante posibles inteligencias en otros mundos. Radioastrónomos situados en otros sistemas solares notarán, al enfocar sus antenas en nuestra dirección, una emisión de energía y advertirán que, en esta estrella amararilla, existe una sociedad científicamente avanzada.

electromagnetic_leak

El gráfico de AbstruseGoose  (después del salto) nos muestra lo que las civilizaciones extraterrestres estarían viendo en este momento si pudieran monitorear trasmisiones de televisión de la Tierra, de esas trasmisiones del pasado que ingresaron al espacio y se propagan a la velocidad constante de c (la velocidad de la luz en el vacío).

Claro que nuestras señales televisivas le dicen a los extraterrestres mucho más que todo eso. A partir de sutiles cambios en las frecuencia de las señales provocados por la rotación de la Tierra, podrían deducir la distancia que hay entre la Tierra y el Sol, la probable temperatura de la superficie de nuestro planeta y, a partir de aquí, que clase de vida puede haber en la Tierra. ¡Sabrían de nosotros mucho más que nosotros sabemos de ellos! Bueno, en realidad, de ellos no sabemos nada.

Si los astrónomos extraterrestres de otros sistemas solares han estado haciendo un seguimiento de nuestros progresos, tienen ya prueba de que esta vida ha atravesado ya un importante umbral tecnológico, el umbral de las comunicaciones de radio. Los científicos extraterrestres pueden deducir a partir de su propia experiencia que esa conquista puede verse pronto continuada por un dominio de los viajes por el espacio que es la siguiente escala perseguida. Primero de un planeta a otro cercano. En nuestro caso, digamos a Marte, y, a continuación, y no mucho después. Comenzarán los viajes que nos llevarán a los confines del Sistema Solar en busca de otras fronteras. Sin que nos demos cuenta, ya hemos enviado el mensaje de nuestra presencia que es el precursor de nuestra entrada en la Comunidad Galáctica.

Si realmente existen esos seres que imaginamos en otros mundos y, si como es lógico pensar, al igual que nosotros han podido evolucionar hasta alcanzar aceptables niveles del saber sobre la Naturaleza y los secretos del Universo, también habrán podido alcanzar una avanzada tecnología que, más o menos como la nuestra, les posibilite para enviar señales y hacer viajes espaciales que (no me extrañaría nada) estuvieran ya camino hacia nosotros.

Millones de mundos que, como el nuestro, brillaran en la noche delatando la presencia de Sociedades avanzadas que, situadas en grandes ciudades dejan transcurrir sus vidas mientras, también como nosotros, no dejan de investigar y de hacerse preguntas que, tampoco ellos, saben contestar. El saber del mundo, de los mundos, está repartido por todo el Universo que es, en definitiva, el que tiene todas esas respuestas que buscamos.

Muchas veces me hago esta pregunta: ¿De qué estrella vendrá esa primera señal de inteligencia que esperamos? Las civilizaciones que la envíe ¿a qué distancia estará, cómo será su mundo, cuánto tiempo ha tardado en llegar a nosotros, y, cuando la podamos descifrar, y contestemos, cuánto tardarán en tener la respuesta? Incluso es posible -seguramente lo normal-, que esas señales hayan sido enviadas ya por ambas partes y que, ni ellos ni nosotros, debido a las distancias que nos separan, la hemos podido recibir. ¡Qué frustración, pensar que eso es así y no poder hacer nada por remediarlo!

Ya hablamos el otro día de las estrellas cercanas, las que estaban situadas dentro de un radio de unos doce años-luz y de las posibilidades que podían existir de que, en alguna de ellas (de sus planetas), pudiera existir alguna clase de vida. La presencia de vida inteligente en el inmenso universo,  debe ser una cosa cotidiana, nada excepcional. Sin embargo, tal como están dispuestas las cosas, lo que no parece tan cotidiano es, el hecho de que, entre civilizaciones inteligentes nos podamos encontrar, las inconmensurables distancias que nos pueden separar son… ¡casi inaccesibles! y, el tiempo necesario para recorrerlas, vería pasar ante él a muchas generaciones de individuos antes de que, entre ellos, pudiera darse ese contacto tantas veces imaginado.

Es poco probable que los que, ilusionados, lanzaron la señal hacia otros mundos. El mensaje que les hermanaría gracias a la inteligencia, pudiera ver realizados sus sueños de recibir una respuesta. El Proyecto OZMA y SETI son un buen ejemplo de ello. Y, por otra parte, no todas las estrellas están en disposición de poder dar a sus planetas lo que estos necesitan para albergar la vida. Pensemos que una estrella si es muy joven, digamos de unos cientos de millones de años, radiará en el ultravioleta con tal virulencia que, encontrar vida en sus inmediaciones sería imposible. Si por el contraria es una estrella vieja que, al final de su vida está a punto de explotar como supernova… tampoco parece que su entorno sea el adecuado.

Las estrellas y los mundos que puedan ser idóneas para que la vida esté presente, tendrán que tener esas condiciones mínimos exigidas para que, el agua esté presente, para que una atmósfera aceptablemente importante configure el planeta, que éste tenga una serie de parámetros de magnetismo, tectónica, oceános  y otros que lo haga un planeta vivo, que la luz de la estrella lo caliente sin achicharrarlo… Si todo eso y algunas cosas más están presentes… La vida también lo estará.

Resultado de imagen de ¿Cómo serán los extraterrestres?

Pero lo cierto es que, aunque la lógica nos dice que están ahí… ¡Seguimos sin recibir señales de que la vida está ahí fuera! El principal problema de que así sea, está en las distancias que nos separan y, simplemente tenemos que pensar que cualquier estrella orbitada por planetas está a muchos años-luz de nosotros y, las que puedan tener alguna posible forma de vida inteligente, no sabemos uán lejos podrán estar situadas y, para llegar a nosotros, esas señales, necesitan recorrer el espacio que nos separa a la máxima velocidad que el universo permite, es decir, la velocidad de la luz de 299.792,458 km/s. Un viaje algo lento para que llegue a nosotros en un tiempo prudencial.

Seguramente, para cuando ese contacto se pueda producir, las civilizaciones que se encuentren, tendrán otros medios más avanzados que el de los viajes clásicos de las naves viajeras tal como las conocemos y, serán otras naves y otros caminos los que serán recorridos para viajar entre las estrellas. El Hiperespacio y los agujeros de gusano son dos buenas opciones pero… ¡habrá tántas!

emilio silvera

¿Por qué es difícil Viajar a Marte? I (Apuntes de la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué es difícil ir a Marte?

 

 

Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

             Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

Comparativa entre orbitas bajas de la Tierra (arriba) y la distancia a escala entre la Tierra y la Luna (abajo).

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Porgrama Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

                     La Tierra vista desde Marte (izda.) y desde la Luna (dcha.). Fuente: NASA.

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

¿Por qué es difícil viajar a Marte? II (Desde la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Fotograma de la película ‘Marte’ (‘The Martian’). EM

¿Por qué es difícil ir a Marte? (II)

En la pasada entrada contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Habitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

 

 

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

 

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

 

 

Concepto de nave de carga para Marte. Fuente: NASA.

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano intersectará con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección transmarciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección transterrestre’, o TEI (Trans-Earth Injection).

 

 

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aeroasistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aerocaptura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aerocaptura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA.

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección transterrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

El microbio depredador que aclara nuestro origen

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una ameba que forma grupos pluricelulares puede ser el ancestro de todos los animales, incluidos los humanos, según un estudio

Reportaje de Prensa en El País

 

 

Ameba de la especie 'Capsaspora owczarzaki'.

Ameba de la especie ‘Capsaspora owczarzaki’.
 

Un enigmático microbio descubierto en las tripas de un caracol acaba de iluminar una de las etapas más oscuras y apasionantes de la historia de la vida en la Tierra: cómo los seres unicelulares comenzaron a juntarse y dieron lugar a la orgiástica variedad de formas de vida que abarca a todos los animales, incluidos los humanos.

En algún momento de la evolución, un solitario microbio se unió a otro solitario microbio. Descubrieron las ventajas de la cooperación y comenzaron a explotarla. Es posible que los primeros enlaces fuesen temporales, pero lo importante es que la naturaleza comenzó un proceso de prueba y error inexorable que, millones de años después, hace posible que usted tenga todos esos tejidos especializados que le permiten respirar, captar la luz de la pantalla, comprender las letras escritas en este artículo y, posiblemente, seguir leyendo esta historia.

“Estamos hablando de una de las transiciones más importantes de la historia de la vida y la única manera que tenemos de comprender ese momento es estudiar a sus primos hermanos unicelulares”, explica a Materia Iñaki Ruiz-Trillo, investigador del Instituto de Biología Evolutiva de Barcelona (CSIC-UPF).

A principios de la década pasada, un equipo de científicos estaba analizando en Puerto Rico parásitos de la esquistosomiasis, una enfermedad olvidada que azota a más de 250 millones de personas en países en desarrollo. En la hemolinfa de un caracol encontraron esos parásitos y también un simbionte desconocido hasta ese momento. Se trataba de una ameba a la que bautizaron como Capsaspora owczarzaki. Los descubridores publicaron el código de barras genético de este nuevo ser vivo en una revista científica, almacenaron unas cuantas amebas en un banco de cultivos celulares vivos en EE UU y ahí quedó todo.

 

Las amebas, formando un agregado pluricelular
       Las amebas, formando un agregado pluricelular I R-T

Dos años después, Ruiz-Trillo se topó con la descripción de la capsaspora y decidió estudiarla en detalle. Al secuenciar su genoma descubrió que, a pesar de ser un ser unicelular, esta ameba tiene varios genes que se creían exclusivos de los animales. Esos genes regulan la diferenciación celular, la comunicación entre células y la adhesión entre ellas, tres procesos fundamentales para la formación de organismos pluricelulares y que en los animales son necesarios para desarrollar todos los tejidos diferenciados del cuerpo.

Vistas al microscopio, las capsasporas muestran filopodios, patas con las que pueden moverse de un sitio a otro. El ciclo de la vida de estos microbios tiene tres estados. En el primero viven solos, moviéndose de aquí para allá con sus patas. En otro estado pierden esas extremidades y entran en una especie de hibernación si falta el alimento. En el tercero, el más interesante, varias capsaspora entrelazan sus extremidades y forman una especie de ser pluricelular primitivo.

 

 

 

Estamos hablando de una de las transiciones más importantes de la historia de la vida

 

“Pensamos que se juntan en momentos de estrés, cuando falta alimento, y esto es algo que las mantiene vivas en una situación difícil”, explica Ruiz-Trillo. ¿Pudo ser así como surgieron los primeros ancestros de todos los animales?

En un estudio que se publica hoy en la edición impresa de Cell, el equipo de Ruiz-Trillo muestra que la capsaspora comparte con los animales varios mecanismos de regulación genética, los interruptores que se encargan de encender y apagar genes para el correcto desarrollo de un individuo. “Los elementos de regulación genómica que en los animales controlan el tipo de tejido que serán unas células y no otras los encontramos en las carpospora y precisamente les sirven para regular en qué punto de su ciclo vital están”, detalla.

El trabajo incide también sobre dos genes fundamentales y compartidos entre estas amebas y los animales. El primero es un factor de transcripción llamado Brachyury. En los animales permite que las células de un embrión se muevan para empezar a formar los diferentes órganos. Las capsaspora también lo tienen y lo emplean para moverse, destaca Ruiz-Trillo. El otro gen es Myc. En la ameba es clave para la proliferación celular. En los animales, cuando está mutado, provoca el crecimiento celular descontrolado que llamamos cáncer y que puede ser entendido como un ser vivo creciendo dentro de otro hasta matarlo. “Hasta ahora se pensaba que este gen era exclusivamente animal, pero ahora vemos que estos bichos ya lo tenían mucho antes”, enfatiza Ruiz-Trillo.

La multicelularidad es un invento tan eficiente que probablemente ha habido decenas de seres vivos que la han desarrollado de forma independiente en la historia de la evolución. No se sabe cuál de ellos fue el ancestro de todos los animales, pero la capsaspora es una de las posibilidades. “Los primeros animales surgieron hace unos 600 millones de años y probablemente las capsaspora ya existían hace unos 700 millones de años, con lo que podrían ser sus primeros ancestros”, explica Ruiz-Trillo.

Una última característica de estos microbios da que pensar. En todo el planeta solo se conocen dos especies de estas amebas. Una es la que encontraron en las tripas del caracol puertorriqueño. La otra vive libre en el mar. En ese ambiente las capsasporas son depredadores que sobreviven cazando otras amebas y alimentándose de ellas. ¿Les suena?

 

El divagar de la Mente

Autor por Emilio Silvera    ~    Archivo Clasificado en El divagar de la Mente    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

Los procesos científicos que comentamos en este lugar lugar, los fenómenos del Universo que hemos debatido y, ,  los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el universo. La Física cuántica  destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.

Resultado de imagen de La astrofísica demostró que la materia es la misma en todas partesResultado de imagen de La astrofísica demostró que la materia es la misma en todas partes

Una serie de familias (fermiones y Bosones), conforman toda la materia del Universo: Quarks, Leptones, Hadrones (Bariones y Mesones) que, con las partículas mensajeras de las cuatro fuerzas fundamentales, conforman todo el panorama que conocemos.

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende la fusión nuclear en las estrellas la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos.

La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces, en otras esferas de pensamiento. Hahvé creó a Adán del polvo; el griego Heráclito escribió que “todas las cosas son una sola”; Lao-tse, en China, describió al hombre y la naturaleza gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que, “todas las cosas están conectadas, como la sangre que une a una misma familia. Todo es como una misma familia, os lo digo”.

hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos del universo en su conjunto.

La verificación científica de nuestra participación en las acciones del cosmos , luego, muchas implicaciones. Una de ellas es, si la vida inteligente ha evolucionado en este planeta, también puede haberlo hecho en otras partes. La Teoría de la evolución de Darwin, aunque no explica el antiguo enigma de por qué existe la vida, deja claro que la vida puede surgir de la materia ordinaria y evolucionar hasta una “inteligente”, al menos en un planeta como la Tierra que gira alredeedor de una estrella como el Sol (más de dioez mil millones en la Vía Láctea solamente) y, presumiblemente, más que unos pocos planetas semejantes a la Tierra, podemos especular que no somos la única especie que ha estudiado el universo y se ha preguntado sobre su papel en él.

Nuestra comprensión de la relación la Mente el el Universo puede depender de que podamos tomar con otra especie inteligente con la cual compararnos. Raramente la ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo: Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizá imposibles- de fortmular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolucoión cósmica reduce un poco dificultad al ofrecer a nuestra consideración el muy diferente del universo en los primeros momentos de la evolución cósmica.) La cuestión de la vida extraterrestre, pues, va más allá de problemas  el de si estamos solos en el universo, o si podemos esperar tener compañía cósmica o si debemos temer invasiones exteriores; también es un modo de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.

Aunque mucho de esto es,  el interés reciente por la vida extraterrestre considerarse como un resultado del último vuelco en la fortuna del materialismo, la doctrina filosófica según la cual es posible explicar los sucesos exclusivamente en términos de interacciones materiales, sin recurrir a conceptos insustanciales tales como el espíritu. El darwinismo engendró una nueva actitud de respeto hacia las potencialidades de la materia ordinaria: un montón de barro en un charco de agua de lluvia empieza a parecer mágico, si se piensa que sus iguales de antaño lograron elevarse hasta dar origen a todo el conjunto de la vida terrestre, inclusive la del individuo que contempla el barro. Una persona reflexiva, recordando que su ascendencia se remonta, a través de los mamíferos, hasta los peces, los aminoácidos, los azúcares de la materia prebiótica, no puede estar de acuerdo con Martín Lutero en que la Tierra es “sucia” y “nociva”, o aceptar el veredicto de la Christia Sciencie de que “no hay vida, verdad, sustancia ni inteligencia en la materia”.

¿La Vida? ¡Podría estar presente en tantos lugares! El Universo es inmenso, está lleno de galaxias de estrellas y de mundos. Pensar en la remota posibilidad de que la vida, solamente apareciera aquí, en la Tierra, es ir contra la lógica y despreciar las leyes de la Naturaleza que, en todas partes, actúa de la misma manera.

Históricamente, los materialistas se han inclinado a pensar que hay vida en otros mundos. El atomista Metrodoro escribió en el siglo IV a. de C. que “considerar la Tierra el único mundo poblado en el espacio infinito es tan absurdo como afirmar que en todo un campo sembrado de mijo sólo un grano crecerá”. Cinco siglos más tarde, el epicuréo Lucrecio sostuvo que “hay infinitos mundos iguales y diferentes de mundo nuestro”. La Iglesia católica romana, convencida de que los seres humanos son esencialmente espíritus inmateriales, se sintió amenazada por el punto de vista materialista: cuando Giordiano Bruno, el decano renacentista del misticismo popular, afirmaba que la materia “es en verdad toda la naturaleza y la madre de todo lo vivo, y declaró que Dios “es glorificado, no en uno, sino en incontables soles; no es una sola Tierra, sino en mil, que digo, en infinidad de mundos”, fue atado a una estaca de hierro y quemado vivo, el 19 de febrero de 1600, en la Piazza Campo dei Fiori de Roma.

Sin embargo, cuando la ciencia creció también lo hizo el materialismo, y con él la creencia de una pluralidad de mundos. Podríamos seguir por camino y filosofar sobre lo que fue, lo que es y, lo que probablemente será pero, el tiempo se me acaba y, luego, no quisiera cerrar este sin dejar una falsa sensación.

Es cuerioso como los humanos tendemos a simbolizarlo todo, sabemos del ADN y de cómo estamos conformados, tratamos de indagar sobre la conciencia y los mecanismos de la Mente, ese lugar inmaterial que genera el cerebro y del que surgen las ideas y los pensamientos, allí está todo lo somos y también, en ese misterioso lugar, se crean los sentimientos que crecen y crecen. Sin embargo, tendemos a idealizar los sentimientos con el corazón. ¿Por qué será?

          Algunas formas de materia evolucionada, guardan en sus recurdos esa memoria de la que hablamos

Sí, la materia memoria y deja sus huellas por todas partes… ¡Hay que saber buscar! En el lugar más inesperado la materia habrá evolucionado hasta el protoplasma vivo que nos llevará hasta la vida, ese estado en el que la materia puede llegar a generar pensamientos, y, hasta sentimientos.

La Ciencia está muy bien, el materialismo viene a poner nuestros pies en el suelo y que no fijemos en las cosas tal como son o, al menos, tal como creemos que son. Sin embargo, una cuestión me tiene desconcertado: ¿Cómo podemos sentir en la que sentimos? ¿De donde vienen esos sentimientos? ¿Será quizá una muestra suprema de la evolución del mundo material? ¿Tendrá memoria la materia?

Por si acaso, yo dejaría aquí un gran signo de interrogación, ya que, hemos alcanzado una pequeña cota de la altísima montaña que nos hemos propuesta escalar, y, luego, no sabemos lo que nos podremos encontrar lleguemos a cotas más elevadas, ya que, pensar en llegar al final…no parece nada fácil.

emilio silvera