jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Física, la era cuántica y otros fascinantes conceptos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

gran-muralla-galaxias

Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabéis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y condiciones en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-44 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

Resultado de imagen de El Tiempo de Planck

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha sido prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad general de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

Si hablamos de singularidades en agujeros negros, debemos dejar la R.G. y acudir a la M.C. “…según las leyes de la Relatividad, el eje más horizontal siempre es espacio, mientras que el más vertical siempre es tiempo. Por tanto, al cruzar el horizonte lo que nosotros entendemos por tiempo y espacio ¡habrán intercambiado sus papeles! Puede sonar raro y, definitivamente, es algo completamente anti intuitivo, pero es la clave de que los agujeros negros sean como son y jueguen el papel tan importante que juegan en la física teórica actual. Al fin y al cabo, dentro no es lo mismo que fuera…”

Si ahora queremos cuantizar, es decir encontrar la versión cuántica, la gravedad escrita como RG lo que tenemos que hacer es encontrar la teoría cuántica para la métrica.  Sin embargo, esto no conduce a una teoría apropiada, surgen muchos problemas para dar sentido a esta teoría, aparecen infinitos y peor que eso, muchos cálculos no tienen ni tan siquiera un sentido claro.  Así que hay que buscar otra forma de intentar llegar a la teoría cuántica.

Resultado de imagen de Una teoría cuántica de la Gravedad

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que …

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un número sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

Resultado de imagen de El espaciotiempo en el universo niño

En aaquellos primeros momentos y a medida que una onda gravitacional recorría el Universo, estiraba y encojía el espacio de una forma muy específica. El espacio tiempo parecería una lámina de goma que estirada por los extremos se alargaba y encogía

Según los primeros trabajos sobre la teoría cuántica de la gravedad, el propio espaciotiempo varió en su topografía, dependiendo de las dimensiones del universo niño. Cuando el universo era del tamaño de un núcleo atómico (ver imagen de abajo), las condiciones eran relativamente lisas y uniformes; a los 10-30cm (centro) es evidente una cierta granulidad; y a la llamada longitud de Planck, todavía unas 1.000 veces más pequeño (abajo), el espacio tiempo fluctúa violentamente.

Los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían sido cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.)

Resultado de imagen de Cosmología cuántica, la era de Planck

Los físicos especulan que el cosmos ha crecido desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las condiciones iniciales del universo.

Observaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardos de años (entre 13 730 y 13 810 millones de años) y por lo menos … Sin embargo…

El universo estaba a 3.000° Hace doce mil quinientos millones de años; a 10 mil millones de grados (1010° K) un millón de años antes, y, tal vez, a 1028° K un par de millones más temprano. Pero, y antes de ese tiempo ¿qué pasaba? Los fósiles no faltan, pero no sabemos interpretarlos. Mientras más elevada se va haciendo la temperatura del universo primigenio, la situación se va complicando para los científicos. En la barrera fatídica de los 1033° K –la temperatura de Planck–, nada funciona. Nuestros actuales conocimientos de la física dejan de ser útiles. El comportamiento de la materia en estas condiciones tan extremas deja de estar a nuestro alcance de juicio. Peor aún, hasta nuestras nociones tradicionales pierden su valor. Es una barrera infranqueable para el saber de la física contemporánea. Por eso, lo que se suele decir cómo era el universo inicial en esos tempranos períodos, no deja de tener visos de especulación.

fuerzas

Aunque no se deja de buscar la manera de unificarlas en una sola teoría, la díscola Gravedad se resiste, y, campa sóla por el Cosmos sin querer juntarse con las otras fuerzas. De todas las maneras, la creencia general es que, al principio, el Universo estaba regido por una única fuerza: La Gravedad, y, de ella, cuando comenzó a enfriarse, se desgajaron las otras tres fuerzas que, se volverían a juntar en un ambiente de energía y temperaturas extrellas.

Los progresos que se han obtenido en física teórica se manifiestan a menudo en términos de síntesis de campos diferentes. Varios  son los ejemplos que de ello encontramos en diversos estudios especializados, que hablan de la unificación de las fuerzas fundamentales de la naturaleza.

En física se cuentan con dos grandes teorías de éxito: la cuántica y la teoría de la relatividad general.

Resultado de imagen de Unificación de las fuerzas fundamentales de la naturaleza

Cada una de ellas ha demostrado ser muy eficiente en aplicaciones dentro de los límites de su ámbito propio. La teoría cuántica ha otorgado resultados más que satisfactorios en el estudio de las radiaciones, de los átomos y de sus interacciones. La ciencia contemporánea se presenta como un conjunto de teorías de campos, aplicables a tres de las grandes interacciones: electromagnética, nuclear fuerte, nuclear débil. Su poder predictivo es bastante elocuente, pero no universal. Esta teoría es, por ahora, incapaz de describir el comportamiento de partículas inmersas en un campo de gravedad intensa. Ahora, no sabemos si esos fallos se deben a un problema conceptual de fondo o falta de capacidad matemática para encontrar las ecuaciones precisas que permitan la estimación del comportamiento de las partículas en esos ambientes.

La teoría de la relatividad general, a la inversa, describe con gran precisión el efecto de los campos de gravedad sobre el comportamiento de la materia, pero no sabe explicar el ámbito de la mecánica cuántica. Ignora todo acerca de los campos y de la dualidad onda-partícula, y en ella el «vacío» es verdaderamente vacío, mientras que para la física cuántica hasta la «nada» es «algo»…

                  Nada está vacío, ya que, de donde surge es porque había

Claro está, que esas limitaciones representativas de ambas teorías no suelen tener mucha importancia práctica. Sin embargo, en algunos casos, esas limitantes se hacen sentir con agresividad frustrando a los físicos. Los primeros instantes del universo son el ejemplo más elocuente.

El científico investigador, al requerir estudiar la temperatura de Planck, se encuentra con un cuadro de densidades y gravedades extraordinariamente elevadas. ¿Cómo se comporta la materia en esas condiciones? Ambas teorías, no dicen mucho al respecto, y entran en serias contradicciones e incompatibilidades. De ahí la resistencia de estas dos teorías a unirse en una sólo teoría de Gravedad-Cuántica, ya que, cada una de ellas reina en un universo diferente, el de lo muy grande y el de lo muy pequeño.

Resultado de imagen de El comportamiento de la materia a nivel cuántico

Todo se desenvuelve alrededor de la noción de localización. La teoría cuántica limita nuestra aptitud para asignar a los objetos una posición exacta. A cada partícula le impone un volumen mínimo de localización. La localización de un electrón, por ejemplo, sólo puede definirse alrededor de trescientos fermis (más o menos un centésimo de radio del átomo de hidrógeno). Ahora, si el objeto en cuestión es de una mayor contextura másica, más débiles son la dimensión de este volumen mínimo. Se puede localizar un protón en una esfera de un décimo de fermi, pero no mejor que eso. Para una pelota de ping-pong, la longitud correspondiente sería de unos 10-15 cm, o sea, bastante insignificante.La física cuántica, a toda partícula de masa m le asigna una longitud de onda Compton: lc = h / 2p mc

Por su parte, la relatividad general igualmente se focaliza en la problemática del lugar que ocupan los objetos. La gravedad que ejerce un cuerpo sobre sí mismo tiende a confinarlo en un espacio restringido. El caso límite es aquel del agujero negro, que posee un campo de gravedad tan intenso que, salvo la radiación térmica, nada, ni siquiera la luz, puede escapársele. La masa que lo constituye está, según esta teoría, irremediablemente confinada en su interior.

En lo que hemos inmediatamente descrito, es donde se visualizan las diferencias entre esos dos campos del conocimiento. Uno alocaliza, el otro localiza. En general, esta diferencia no presenta problemas: la física cuántica se interesa sobre todo en los microobjetos y la relatividad en los macroobjetos. Cada cual en su terreno.

Resultado de imagen de Los átomos y las galaxias

Lo curioso del caso es que, todo lo que vemos está hecho de átomos, por muy grande que pueda ser, como los inmensos cúmulos de galaxias y las más diversas estructuras, todos son átomos unificados en moléculas y cuerpos.

Sin embargo, ambas teorías tienen una frontera común para entrar en dificultades. Se encuentran objetos teóricos de masa intermedia entre aquella de los microobjetos como los átomos y aquella de los macroobjetos como los astros: las partículas de Planck. Su masa es más o menos la de un grano de sal: 20 microgramos. Equivale a una energía de 1028 eV o, más aún, a una temperatura de 1033° K. Es la «temperatura de Planck».

Ahora bien, si queremos estimar cuál debería ser el radio en que se debe confinar la masita de sal para que se vuelva un agujero negro, con la relatividad general la respuesta que se logra encontrar es de que sería de 10-33 cm, o sea ¡una cien mil millonésima de mil millonésima de la dimensión del protón! Esta dimensión lleva el nombre de «radio de Planck». La densidad sería de ¡1094 g/cm3! De un objeto así, comprimido en un radio tan, pero tan diminuto, la relatividad general sólo nos señala que tampoco nada puede escapar de ahí. No es mucha la información.

Resultado de imagen

                        El “universo” de lo muy pequeño que hace posible lo muy grande

Si recurrimos a la física cuántica para estimar cuál sería el radio mínimo de localización para un objeto semejante al granito de sal, la respuesta que encontramos es de un radio de 10-33 cm. Según esta teoría, en una hipotética experiencia se lo encontrará frecuentemente fuera de ese volumen. ¡Ambos discursos no son coincidentes! Se trata de discrepancias que necesitan ser conciliadas para poder progresar en el conocimiento del universo. ¿Se trata de entrar en procesos de revisión de ambas teoría, o será necesaria una absolutamente nueva? Interrogantes que solamente el devenir de la evolución de la física teórica las podrá responder en el futuro.

De todas las maneras, en lo que se refiere a una Teoría cuántica de la Gravedad, tendremos que esperar a que se confirmen las teorías de supergravedad, supersimetría, cuerdas, la cuerda heterótica, supercuerdas y, la compendiada por Witten Teoría M. Aquí, en estas teorías (que dicen ser del futuro), sí que están apasiblemente unidas las dos irreconcialbles teorías: la cuántica y la relativista, no sólo no se rechazan ni emiten infinitos, sino que, se necesitan y complementan para formar un todo armónico y unificador.

¡Si pudiéramos verificarla!

Pero, contar con la energía de Planck (1019 GeV), no parece que, al menos de momento, sea de este mundo. Ni todos los aceleradores de partículas del mundo unidos, podrían llegar a conformar una energía semejante.

http://francisthemulenews.files.wordpress.com/2010/08/dibujo20100822_hoag_object_a1515_2146_hubble_space_telescope1.png

                       Aunque de extraña y atípica figura, también, esta galaxia, está hecha de materia

Tiene y encierra tantos misterios la materia que estamos aún a años-luz de saber y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen y que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está? Aristóteles la llamaba Ylem, la sustancia o materia cósmica antes de la materia, a partir del Ylem llegaría la materia bariónica, la ue conocemos y de la que todo está hecho.

Resultado de imagen de En nuestras mentes surgen preguntas y dudas

Deambulamos por un desierto inmenso de ignorancia y, las preguntas que planteamos… ¡Nadie las sabe contestar!

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Resultado de imagen de la Luz una maravilla de la Naturaleza

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. ¿Qué secretos esconde la Luz? Algo que alumbra los mundos y está conformada por miríadas de fotones.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

thomson

                  Josepth John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

(“Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attosegundo equivalente a la trillonésima parte de un segundo”.)

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas.

Haga clic para mostrar el resultado de "Louis de Broglie" número 12

Louis de Broglie

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

                  Joseph Weber

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es cero, su carga es cero, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Resultado de imagen de Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

Resultado de imagen de Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

En primer lugar, la primera imagen muestra al cuásar 3C 186, que aparece como un objeto brillante justo a la derecha del núcleo. Las líneas verdes muestran los límites. La segunda Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Tenemos varios proyectos en marcha de la NASA y otros Organismos oficiales que buscan las ondas gravitatorias de los agujeros negros, de colisiones entre estrellas de neutrones y de otras fuentes análogas que, según se cree, nos hablará de “otro universo”, es decir, nos dará información desconocida hasta ahora y sabremos “ver” un universo distinto al reflejado por las ondas elecromagnéticas que es el que ahora conocemos.

          ¿Espuma cuántica? Si profundizamos mucho en la materia…

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

“Una investigación ha llevado a pensar que, la materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común. Estas dos partículas, protones y neutrones, se comportan como si en su interior, los quarks de los que están hechas ambas partículas, lucharan por escapar del confinamiento a que se ven sometidos por la fuerza nuclear fuerte por medio de los Gluones que forman un océano en el que se ven confinados sin remedio. De hecho, nunca nadie ha podido ver a un quark libre.

Resultado de imagen de El vacío cuántico

Así que, si estudiamos el vacío cuántico, parece que eso permitirá a los físicos someter a prueba a la Cromo Dinámica Cuántica y buscar sus efectos más allá de la física conocida. Por ahora, los cálculos demuestran que la QCD describe partículas basadas en quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.

Se cree que el campo de Higgs hace también su pequeña contribución, dando masa a los quarksindividuales, así como a los electrones y a otras varias partículas. El campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el LHC confirma la existencia del bosón de Higgs, eso significará que toda la realidad es virtual, es menos virtual de lo que se pensaba. No creo que hasta el momento, y, a pesar de las declaraciones salidas desde el CERN, se tenga la seguridad de haber detectado el Bosón de Higgs.

De todo lo anterior, no podemos obtener una respuesta cierta y científicamente probada de que todo eso sea así, más bien, los resultados indican que todo eso “podría ser así”, lo que ocurre es que, los científicos, a veces se dejan llevar por las emociones. Al fin y al cabo, ellos como el común de los mortales, también son humanos.

    Ya nos gustaría saber cómo es, ese vacío cuántico y qué pasa allí

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una funciónn de Bloch en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

                                              ¡Es tánto lo que hay pero que no podemos ver!

Si buscamos por ahí podremos leer explicaciones como esta: “En la Teoría cuántica de campos,  el vacío cuántico (también llamado el vacío) es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía de punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.

Resultado de imagen de El vacío cuántico

De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío” , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.

Según las modernas teorías de las partículas elementales, el vacío es un objeto físico, se puede cargar de energía y se puede convertir en varios estados distintos. Dentro de su terminología, los físicos hablan de vacíos diferentes. El tipo de partículas elementales, su masa y sus interacciones están determinados por el vacío subyacente. La relación entre las partículas y el vacío es similar a la relación entre las ondas del sonido y la materia por la que se propagan. Los tipos de ondas y la velocidad a la que viajan varía dependiendo del material.”

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habreis oido hablar de la energía de punto cero que permanerce en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conoceis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.

De todas las maneras, en este momento sabemos tanto de la espuma cuántica como de nuestra presencia en el Universo, es decir, nada. Todo son conjeturas, suposiciones e hipótesis que nos hacen imaginar lo que pueda existir a la distancia de Planck. Claro que  en una longitud de 10-35 metros, sí que es fácil imaginar que lo que podamos ver allí sería simplemete una especie de espuma cuántica asociada a lo que estimamos que sería la gravedad cuántica.

emilio silvera

Como los niños: ¡Siempre haciendo preguntas!

Autor por Emilio Silvera    ~    Archivo Clasificado en sabremos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hagamos un viaje por las posibilidades de encontrar nuevas clases de energías…

La región de formación estelar S106

En esta preciosa región de formación de nuevos astros, podemos contemplar esa rutilante y cegadora estrella que ramifica su esplendor hasta distancias inauditas. En su corazón, en el núcleo central, se está produciendo la fusión del hidrógeno en helio y… Pero vayamos por .

Resulta que el combustible nuclear de las estrellas es el hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía. El Sol, la estrella más cercana a nosotros y que hace posible la vida en el planeta Tierra, fusiona 4.654.000 Toneladas de Hidrógeno en 4.650.000 toneladas de helio cada segundo. Las 4.000 toneladas restantes, se expulsa al espacio en  de luz y calor, de lo que una pequeña fracción, llega a nosotros. Así lleva el Sol unos 4.500 millones de años y se espera que al menos durante un período similar nos esté regalando su preciosa energía. Si eso es así (que lo es), yo aconsejaría a los madatarios de nuestro planeta, copiar a la naturaleza y procurar un suministro de energía siguiendo el mismo camino del Sol, si podemos conseguir duplicar aquí en la Tierra sus mecanismos, conseguiríamos una fuente de energía de la que tanto estamos necesitados.

Pero ¿tenemos hidrógeno en el planeta Tierra  tal empresa de fusión nuclear?

La verdad es que sí. La fuente de suministro de hidrógeno con la que podemos contar es prácticamente inagotable… Nuestro planeta, en su mayor  está formado por grandes mares y oceános y, siendo así, el material primario que necesitamos es…

¡El agua de los mares y de los océanos!

Todos sabemos que el hidrógeno es el elemento más ligero y abundante del universo. Está presente en el agua y en todos los compuestos orgánicos. Químicamente, el hidrógeno reacciona con la mayoría de los elementos. Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales, el refinado del petróleo, la producción de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme  su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrólisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Estrellas, polvo y nebulosa en NGC 6559

Inmensas energías desatadas por todo el Universo, miríadas de estrellas en las galaxias que producen sin cesar, luz y calor que mantiene vivo el fuego de los posibles hogares de muchos mundos que podrían ser.

Bueno, tantas explicaciones sólo tienen como objeto  notar la enorme importancia del hidrógeno. Es la materia prima del universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin ese preciado elemento. Cuando dos moléculas de hidrógeno se junta con una de oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.

Así las cosas, parece lógico pensar que conforme a todo lo antes dicho, los seres humanos deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía) y, teniendo como tiene a su disposición la materia prima (el hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias  conseguir la fusión, la energía del Sol.

Esa empresa está ya en marcha y, posiblemente, en unos treinta años sería una realidad que nos dará nuevas perspectivas para  el imparable avance en el que estamos inmersos.

Fusión de Deuterio con Tritio produciendo helio-4 liberando un neutrón, y generando 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, de acuerdo con E = Δm c2. En física nuclear , la fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen para formar un núcleo más pesado. Se acompaña de la liberación o absorción de una cantidad enorme de energía, que permite a la materia entrar en un  plasmático.

                                                              Instalación para fusión nuclear

Este proceso puede liberar enormes cantidades de energía. Sin embargo el proceso no es tan simple, requiere de una enorme energía de activación a una temperatura del orden de los millones de grados. De haber  energía, surge otra dificultad: la estructura material de un reactor puede fundirse a tan elevada temperatura.

No debemos confundir la Fisión con la Fusión, la primera es la que se emplea en las Centrales nucleares para producir energía y, ya sabemos todo lo peligrosa que resulta (Japón, en sus propias carnes ha sufrido y sufre sus consecuencias), las radiaciones del Uranio y del Plutonio son fatales para la vida. Por el contrario, la fusión es limpia pero de …, inalcanzable…para nosotros.

central nuclear 1 Fotos de centrales nucleares

En cuanto nuestra tecnología nos lo permita, tenemos que huir de la escena que arriba contemplamos, la Fisión nuclear no es la solución.

Archivo:Fusión solar.png

              En el proceso de la fusión Solar está la respuesta

Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta…

Resultado de imagen de Energía de Fusión nuclear más limpia y barataResultado de imagen de Energía de Fusión nuclear más limpia y barataResultado de imagen de Energía de Fusión nuclear más limpia y barataResultado de imagen de Energía de Fusión nuclear más limpia y barata

El exitoso experimento alemán que acerca un poco más el sueño de energía limpia por fusión nuclear. Los avances logrados nos llevan a tener una gran esperanza en esa nueva energía para dentro de unos 30 años.

¿Por qué la fusión?

Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, , facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc.

  • Los recursos combustibles básicos (deuterio y litio)  la fusión son abundantes y fáciles de obtener.
  • Los residuos son de helio, no radiactivos.
  • El combustible intermedio, tritio, se produce del litio.
  • Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
  • Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
  • La fuente de energía de fusión es sostenible, inagotable e independiente de las climáticas.

En Instalaciones como esta lo podremos lograr. De todas las maneras y a pesar de lo mucho que nuestras mentes pueden imaginar, no será fácil lograr, aquí en la Tierra, el mismo proceso que de forma natural se produce en nuestro Sol y en todas las estrellas que conforman las galaxias del universo, y, tantas dificultades se presentan para ello que, por eso, muchos hablan de la fusión fría. Lo que por otra parte, no deja de ser un hermoso sueño.

Para producir la energía de fusión “sólo” tenemos que copiar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en  de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E = mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía. Ese  de la materia que se consigue a tan altas temperaturas, es el plasma, y sólo en ese  se puede conseguir la fusión.

Aunque en Europa la aventura ya ha comenzado, y para ello se han unido los esfuerzos económicos de varias naciones, la empresa de dominar la fusión no es nada fácil, pero…, démosle… ¡TIEMPO!

                          Decir que algo es imposible, al ritmo que camina la ciencia… ¡Es muy arriesgado!

Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podríamos hacer. Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para  nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, agujeros de gusano, otros universos, materia oscura y otras dimensiones.

Resultado de imagen de fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos, materia oscura, y otras dimensiones.

                      ¡Sueños de la Humanidad!

Claro que, de vez en , algunos de esos sueños…, ¡se hace realidad!

Muchas son las puertas que permanecen cerradas y de las que no tenemos las llaves para poder acceder a los conocimientos que, celosamente guarda. Muchas nos quedan por abrir. Tenemos ante nuestras narices puertas cerradas que, encima de sus dinteles llevan letreros con los nombres de: Teoría de Cuerdas, multiversos, vida extraterrestre, genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y muchas más en otras ramas de la ciencia y del saber humano y, para lograr realidad esos sueños, sólo necesitamos ¡Tiempo!

     Somos tan pequeños ante tan inmenso universo y, sin embargo…

  • ¿Por qué consideramos que el tiempo rige nuestras vidas?
  • ¿Cómo explicarías “qué es el tiempo”?
  • ¿Por qué unas veces te parece que el tiempo “pasa rápido” y otras veces “muy lento”?
  • ¿Crees que el tiempo estaba antes del Big Bang? ¿Por qué?
  • ¿En algún  se acabará el tiempo?
  • ¿Cómo el ser humano “fue consciente” de la existencia del tiempo?
  • ¿Qué cosa es el tiempo?
  • ¿Por qué no lo vemos ni tocamos pero notamos sus efectos?
  • ¿Por qué la velocidad relativista puede frenar el transcurrir del tiempo?
  • ¿Es una abstracción el Tiempo que, en realidad no existe?

Resultado de imagen de fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos, materia oscura, y otras dimensiones.

Nos hacemos preguntas y más preguntas que no sabemos contestar. Han pasado muchos periodos de tiempo  que llegamos aquí, y la humanidad, aunque cometió muchos errores, en verdad, sí aprovechó el tiempo. No quiero decir que en todos los ámbitos humanos del comportamiento tengamos que felicitarnos, hay algunos (aún hoy) de los que el sonrojo es inevitable, pero eso es debido a que la parte animal que llevamos en nosotros está de alguna manera presente, y los instintos superan a veces a la racionalidad. Aún no hemos superado el proceso de humanización. Sin embargo, los logros conseguidos no han sido pocos; el “tiempo” está bien aprovechado si pensamos que hace sólo unos miles de años no sabíamos escribir, vagamos por los campos cazando y cogiendo frutos silvestres y no existían organizaciones sociales ni poblaciones. Desde entonces, el salto dado en todos los campos del saber ha sido tremendo.

Ahora, pasado el tiempo, nuestra innata curiosidad nos ha llevado a descubrir que vivimos en un planeta que pertenece a una estrella de una galaxia que forma parte de un grupo de una treintena de galaxias (el “Grupo Local”) y que a su vez, están inmersas en un universo que  con decenas de miles de millones de galaxias como la nuestra.

 Resultado de imagen de Noche estrellada

Ese período de tiempo que hemos tenido  que asombrados, mirábamos brillar las estrellas sobre nuestras cabezas sin saber lo que eran, o bien, asustados, nos encogíamos ante los rayos amenazadores de una tormenta o huíamos despavoridos ante el rugido aterrador de la Tierra con sus temblores de terremotos pavorosos o explosiones inmensas de enormes montañas que vomitaban fuego.

 entonces, hemos aprendido a observar con atención, hemos desechado la superstición, la mitología y la brujería para atender a la lógica y a la realidad de los hechos. Aprendimos de nuestros propios errores y de la naturaleza. Y, ahora, pretenciosos, queremos imitar lo que hace el Sol y fabricar, aquí en nuestro planeta, su energía.

Las estrellas evolucionaron y en sus hornos nucleares se fabricaron elementos más complejos que el primario hidrógeno; con la fusión nuclear en las estrellas se fabricó helio, litio, magnesio, neón, carbono, oxigeno, etc, etc. Estas primeras estrellas brillaron durante algunos miles de millones de años y, finalmente, acabado su combustible nuclear, finalizaron su ciclo vital explotando como supernovas lanzando al espacio exterior sus capas más superficiales y lanzando materiales complejos que al inmenso cosmos para hacer posible el nacimiento de nuevas estrellas y planetas y… a nosotros, que sin esas primeras estrellas que fabricaron los materiales complejos de los que estamos hecho, no estaríamos aquí.

Foto ngc 70000

                                                                                      NGC 7000

Todo eso hemos llegado a saber y hemos aprendido a observar con atención, hemos desechado la superstición, la mitología y la brujería para atender a la lógica y a la realidad de los hechos. Aprendimos de nuestros propios errores y de la naturaleza.

 tiempos inmemoriales hemos querido medir el tiempo, el día y la noche, las estaciones, el sol, relojes de arena, etc, etc, hasta llegar a sofisticados aparatos electrónicos o atómicos que miden el tiempo cotidiano de los humanos con una exactitud de sólo un retrazo de una millonésima de un segundo cada 100 años.

La precisión de este reloj atómico se apoya en que los átomos de estroncio oscilan 431 billones de veces cada segundo.

Pero como todo avanza de manera exponencial, ahora se ha construido un nuevo reloj atómico la precisión de este reloj atómico se apoya en que los átomos de estroncio que oscilan 431 billones de veces por segundo.

Tendrían que pasar 15.000 millones de años para que el nuevo reloj atómico creado por físicos de EE UU retrasara un segundo. Para hacerse una idea, la edad del universo apenas llega a los 14.000 millones de años. El reloj ofrece tal precisión y estabilidad que podrían alumbrar descubrimientos científicos ni siquiera aún imaginados.

Algunas veces pienso y me pregunto: ¿Hasta donde llegaremos, dónde está el límite? Después de pensar detenida y profundamente, me llega la respuesta:

¡No hay límites!

emilio silvera

Planetas infernales

Autor por Emilio Silvera    ~    Archivo Clasificado en Otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTROFÍSICA

 

El planeta WASP-19b, a 1.000 años luz, alcanza temperaturas de más de 1.700ºC

Detectan por primera vez un óxido metálico fuera del Sistema Solar

Reportaje de Prensa

 

Resultado de imagen de Recreación artística del planeta WASP-19b y de su estrella madre

 

Recreación artística del planeta WASP-19b y de su estrella madre, WASP 19 ESO/M.KORNMESSER

Encuentran óxido de titanio en la atmósfera de un ‘júpiter caliente’

El hallazgo abre la puerta a estudiar con más detalle la composición de los exoplanetas

Más de 3.000 exoplanetas encontrados hasta ahora…y sumando

 

 

Resultado de imagen de Recreación artística del planeta WASP-19b y de su estrella madre

 

 

El planeta extrasolar WASP-19b fue descubierto en 2009 y, desde el principio, llamó la atención de los científicos debido a lo cerca que está de su estrella. Tan próximo está que sólo tarda 19 horas en orbitarla, lo que lo convierte en el planeta con el periodo orbital más corto observado hasta ahora fuera del Sistema Solar. La proximidad con su estrella hace que se trate de un mundo infernal, con temperaturas de unos 1.700º C.

Resultado de imagen de El Hubble

En 2013 las observaciones realizadas con el telescopio Hubble permitieron detectar moléculas de agua en este gigante gaseoso, situado a unos 1.000 años luz de la Tierra. Los científicos han seguido investigando su composición química y, ahora, este planeta vuelve a ser noticia porque en él han detectado por primera vez un óxido metálico en su atmósfera. En concreto, óxido de titanio. También han encontrado pequeñas cantidades de sodio y han confirmado la presencia de agua, además de detectar una especie de neblina que lo envuelve.

El estudio, en el que participa Antonio Claret, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC), se publica esta semana en la revista Naturey, según sus autores, abre la puerta al estudio en detalle de la química atmosférica en planetas extrasolares, es decir, aquellos que están fuera del Sistema Solar. “Este estudio abre un nuevo camino porque pensábamos que la detección de estos óxidos metálicos era prácticamente imposible, pero hemos demostrado que podemos hacerlo”, explica Claret en conversación telefónica.

Imagen relacionada

En esta ocasión han utilizado el Telescopio Muy Grande (Very Large Telescope) que el Observatorio Europeo Austral (ESO) tiene en Chile. El instrumento empleado para las observaciones realizadas entre noviembre de 2014 y febrero de 2016 se llama FORS2 y permite obtener información sobre la composición química, la temperatura y la presión atmosférica. “Es un instrumento muy versátil”, afirma Claret.

WASP-19b pertenece a una categoría de planetas denominada júpiter calienteporque sus tamaños son comparables al de Júpiter pero están mucho más cerca de su estrella que Júpiter del Sol. “La estrella madre, WASP-19, es de tipo solar. Tiene el 90% de la masa solar y la temperatura de sus capas exteriores es de 5.600º Kelvin, muy parecida a la del Sol, que es de 5.800ºK. Sin embargo, tiene una peculiaridad. Y es que la estrella madre rota tres veces más rápido que el Sol“, detalla el investigador del IAA.

“Mientras que la Tierra tarda 365 días en orbitar el sol, el planeta WASP-19b sólo tarda 19 horas. Está muy cerca de lo que llamamos el limite de Roche, que es la distancia mínima a la que un planeta puede acercarse a su estrella madre sin romperse“, explica el físico teórico. Las fuerzas de la marea también actúan sobre los gases que componen este exoplaneta: “Sabemos que está muy achapado”, señala.

Un componente de los filtros solares

 

 

Resultado de imagen de El óxido de titanio

 

El óxido de titanio es una sustancia blanca

 

El óxido de titanio es un ingrediente frecuente en los filtros solares porque bloquea la radiación ultravioleta, pero en las atmósferas de planetas tipo júpiter caliente, también absorbe el calor. Y en cantidades suficientemente grandes, estas moléculas impiden que el calor se disperse a través de la atmósfera, dando lugar a una inversión térmica. Es decir, la temperatura es más alta en la atmósfera superior, lo opuesto a la situación normal.

No sabemos qué cantidad de óxido de titanio hay en WASP-19b, sólo podemos decir que está presente“, señala Claret. “Muchas veces tienes un determinado elemento o molécula en una región pero no necesariamente la ves porque tiene que haber unas determinadas condiciones físicas para que se haga visible”. Lo explica con el siguiente ejemplo: “Si al cocinar dejas caer un poco de sal en el fogón, verás que la llama azul se vuelve un poco amarilla debido a la presencia de sodio en la sal, pero cuando la tienes en una cuchara no pasa nada”, compara.

Planetas troyanos habitables

                                 Gliese 581 d, tiene una gran posibilidad de ser un mundo habitable

Según aseguran los autores del estudio, liderados por Elyar Sedaghatiel, el hallazgo de este óxido metálico permitirá mejorar los modelos teóricos que se usan para analizar las atmósferas de los mundos potencialmente habitables.

Guillem Anglada Escudé, astrofísico de la Universidad Queen Mary de Londres, considera que “la detección de óxido de titanio es ciertamente interesante porque es un material que se sabe que existe en las atmósferas estelares(estrellas con temperaturas entre 2.500 y 4.000 K; el Sol tiene 5.800K pero se detecta en las manchas que son típicamente más frías). En este sentido, el planeta tiene que ser bastante caliente y, su superficie, más parecida a la de una estrella que a la de un planeta”, señala el científico, sin relación con este estudio.

“El hecho de que se detecte y sea estable en la superficie de un planeta como éste, un júpiter caliente, probablemente implica que hay fuertes vientos y turbulencia en la atmósfera”, añade el astrofísico.