viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…,  así se deduce de varios estudios realizados  y  se puede argumentar que,  las galaxias deben ser consideradas, por su dinámica muy especial, como sistemas vivos. En planteamiento más prudente se señala que el test de Lovelock constituye lo que se llama una condición “necesaria, pero no suficiente” para la existencia de vida. Si un sistema se encuentra en equilibrio termodinámico -si no supera el test de Lovelock-, podemos tener la seguridad de que está muerto. Si está vivo, debe producir una reducción de la entropía y superar dicho test.

Resultado de imagen de La materia, aunque lo parezca, nunca es inerte

Pero un sistema podría producir emtropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de estos trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

http://www.ecolo.org/lovelock/photos/Gaia.JimSandy.Lovelock1.jpg

                                               James y Sandy Lovelock  ¿Qué haríamos sin ellas?

El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento importante. Contribuye a dejar claro que en relación con la vida no hay nada insólito en el contexto del modo en que funciona el UNiverso.

Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay  “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de vista,  lo más importante que la ciencia podría lograr sería el descubrimiento de, al menos, otro planeta en el que haya surgido la vida.

http://universodoppler.files.wordpress.com/2011/05/ig272_kees_saturn_titan_02.jpg
                                            ¡La vida! podría estar presente… ¡ en tantos lugares…!

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de encontrar planetas con sistemas como el de Gaia, nuestra Tierra.

Hay dos etapas del descubrimiento de estas otras Gaias. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para buscar pruebas de que los procesos de reducción de la entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

http://farm6.static.flickr.com/5010/5348863194_0e954d8a95.jpg

Zonas habitables, los astrónomos han ignorado las enanas blancas en su búsqueda de exoplanetas. Esto puede haber sido un error, de acuerdo con un nuevo estudio de zonas habitables en enanas blancas. Aunque los agujeros negros y las estrellas de neutrones captan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos opciones.

En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.

Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que  Júpiter  ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sisterma solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del Sistema solar, esto, por el efecto Doppler, produce un pequeñísimo desplazamiento de vaiven en la posición exacta de las líneas del espectro de luz emitida por el Sol.

Resultado de imagen de La Tierra y el Sol y la Gravedad

Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los datos de algunas estrellas de nuestro entorno, y demuestra que en torno a ellas orbitan cuerpos celestes similares a Júpiter. Como ilustración diremos que la Tïerra induce en el Sol, mientras orbita alrededor de él, un cambio de velocidad de tan sólo 1 metro por segundo (la velocidad de un agradable paseo), y desplaza al Sol unicamente 450 kilómetros, con respecto al centro de masa del Sistema solar. No se dispone aún de la tecnología necesaria para medir un efecto tan pequeño a distancias tales como las de nuestras estrellas, y, pensemos que, la más cercana (Alfa Centauri), está situada a 4,3 a.l. de la Tierra, esta es la razón por la cual no se han detectado aún planetas similares a la Tierra.

                                                                                    Sistema Alfa Centauri

Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce un empalidecimiento regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

 Cuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa. No sería lógico creer que sólo en la Tierra se han dado las condiciones para la vida. En nuestra misma Galaxia, planetas como la Tierra los hay a miles o cientos de miles.


Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultyante implicaría que practicamente

toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquerdas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede aplicar de manera más general a la búsqueda de planetas similares a la Tierra. De cualquier manera, independientemente de los planetas de este tipo que se descubran, lo que está claro es que, de momento, carecemos de la tecnología necesaria para dicha búsqueda.

Resultado de imagen de el satélite de la NASA llamado SIM (Space Interferometry Mission

La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los datos de varios telescopios pequeños para imitar la capacidad de observación de un telescopio mucho mayor) ver y medir la posición de las estrellas con la exactituid necesaria para descubrir las oscilaciones que delaten la presencvia de planetas como la Tierra que describen orbitas alrededor de cualquiera de las 200 estrellas más cercanas al Sol, así como por cualquiera de los planetas similares a Júpiter hasta una distancia del Sol que podría llegar hasta los 3.000 años luz.

Hacia el final de la década presente (si todo va bien), la Agencia Espacial Europea lanzará un satélite cuyo nombre será GAIA y que tendrá como misión principal, no precisamente buscar otras Gaias, sino trazar un mapa con las posiciones de los mil millones de objetos celestes más brillantes. Dado que GAIA tendrá que observar tantas estrellas, no mirará cada una muchas veces ni durante mucho tiempo, por lo que no podría detectar las oscilaciones ocasionadas por planetas similares a la Tierra; pero si podría detectar planetas del tamaño de Júpiter y, si estos planetas son tan abundantes como parece indicar los datos obtenidos hasta ahora, no es descabellado pensar que, puedan estar acompañados, como en nuestro propio Sistema solar, por otros planetas más pequeños.

En las grandes alturas naturales están situados los telescopios

Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en… medio del árido desierto de Atacama, allí donde la existencia parece una quimera, se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos.

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnológía que, como he dicho, resulta indificiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.

Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.

Cambiemos de tema: ¿Qué es una partícula virtual?

Diagrama de Feynmann. No pocas veces hemos dicho que, en una partícula virtual las relaciones que normalmente existen entre las magnitudes físicas de cualquier partícula no tienen por qué cumplirse. En particular, nos interesan dos magnitudes, que seguro que conocéis de sobras: energía y momento.

Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía.  Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado.  No obstante, si los miembros de una partícula virtual se alejan demasiado como para volverse a juntar, pueden convertirse en partículas reales, según ocurre en la radiación Hawking de un agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

 Resultado de imagen de LHC

En el Gran Colisionador de Hadrones (LHC) a  las 14:22 del dia 23 de Noviembre del 2009, el detector ATLAS registro la primera colision de protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronizacion de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó  con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa (pasada en parte)  de toma de datos donde se pueda buscar la partícula dadora de masas a las demás partículas,  Super Simetria, Dimensiones Extras, y tantas otras cosas mas que surgen de la inmensa imaginación del  intelecto humano.

Es sin duda un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e importante como este con la esperanza de alcanzar el conocimiento sobre la materia, la Naturaleza y el Universo mismo que, nunca pudimos soñar.

Muchas han sido, aparte del coste económico, las ilusiones y noches sin dormir, de muchos científicos empeñados en este magno proyecto que, como todos esperamos, nos podría llevar hasta otra “dimensión” de la física del mundo. Ahí podrían residir muchas de las respuestas no contestadas hasta el momento. Veremos a ver que nos trae el LHC en su nueva etapa cuando de nuevo se ponga en marcha y utilice algo más que los 14 TeV que hicieron falta para busgar el Bosón de Higgs.

Pero, continuémos con la virtualidad de las partículas. La vida media de una partícula virtual aumenta a medida que disminuye la masa o energía involucrada.   Así pues, un electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.

En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo.  ¡los misterios del Universo!

                                                 Era de Planck


En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 k.

Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes.  La comprensión teórica de esta fase es virtualmente inexistente.

Plasma.

El plasma forma las estrellas y otros objetos estelares que podemos ver, es la mayor concentraci´çon de materia del univeros visible. Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden superior a la de los núcleos atómicos.

Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos.  Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de descarga y en reactores nucleares experimentales.

             El plasma está bien presente en todos los remanentes de supernovas

Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas.  Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas.  A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este.  Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasmacontinuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación.  En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.

En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando campos electromagnéticos.

El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.

Pluralidad de mundos.

Muchos mundos, como la Tierra, estarán situados en la zona habitable de sus estrellas y, el agua líquida, correra por los riachuelos y océanos.  Si eso es así (que lo será), muchos mundos estarán habitados y, algún día lejano en el futuro, podremos saber de ellos con precisión antes de que se produzca el contacto.

Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra.  Tales ideas, han acompañado al hombre que, no en pocas oportunidades, fueron tachados de locos.

Resultado de imagen de No estamos sólos en el Universo

Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario.  ¡que estamos solos!

La Vía Lactea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas.  Miles de millones de Sistemas Solares.  Cientos de miles de millones de planetas.  Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.

¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

Resultado de imagen de Protogalaxia

Las protogalaxias (también conocidas como galaxias primitivas) son sencillamente galaxias que no están formadas. No son mas que el inicio del nacimiento de estas enormes estructuras.

Galaxia en proceso de formación.  A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna protogalaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo. Por otra parte, los cientificos pensaban que no existía nada mas pequeño que un protón. En 1968 se escubrieron nuevas particulas dentro del protón, las cuales fueron llamadas quarks. Existen tres quarks dentro de cada protón, estos quarks se mantienen unidos entre sí mediante otras partículas llamadas gluones.

 

                                   Protón.

Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión.  Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutron.  Su carga es positiva y su lugar está en el núcleo de los átomos, por lo que se les llama de manera genérica con los neutrones con la denominación de nucleones.

Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul. Un Pulsar es…  Una fuente de radio desde la que se recibe un tren de pulsos altamente regular.  Ha sido catalogado más de 600 púlsaresdesde que se descubriera el primero en 1.976.  Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km.  Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación.  La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.

Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

PSR B1257+12

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria.  Han sido detectado objetos ópticos (destellos) procedentes de unos pocos púlsares, notablemente los púlsares del Cangrejo y Vela.

Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Láctea.

File:Artist's rendering ULAS J1120+0641.jpg

  

                                                                                   Quasars

Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante. El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio. Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia normal.  Además algunos quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud.  La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.

File:Quasar 3C 273.jpg

                      Imagen de 3C273 recogida por el telescopio Hubble

El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13.  Miles de quasar han sido descubiertos desde entonces.  Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad actual.

En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quasars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares. Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quasar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quasars. Existen algunas evidencias de que los quasars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quasar.  Salvo mejor parecer.

                                  ¿Qué es la radiación cósmica de fondo?
                                                        Radiación cósmica de fondo.

Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro. Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotonesliberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.

La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas.  Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.

Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la clase de materia que produjo tal radiación, su densidad.  ¡Ya veremos!

De todas lasm maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.

emilio silvera.

Desde los átomos hasta las estrellas: Un largo viaje

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

 

 

 

Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas  pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.

Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

     Conseguimos tener los átomos en nuestras manos

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entrelos astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos necleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción inifintesimal del total atómico.

Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del nucleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el atomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

Resultado de imagen de el modelo de bohr

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electróncae  de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obtinadamente todos los intentos de conocerlo”.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

 

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble  (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

                                                                                     Las Híades

Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.

El progreso en física, mientras tanto, estaba bloquedado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.

Resultado de imagen de Los espectros de las estrellas

                             El espectro de las estrellas nos dicen de que están hechas

La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

                                               Plasma en ebullición en la superficie del Sol

Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículasd de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protonesse agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

Resultado de imagen de Las reglas de la mecánica cuánticaResultado de imagen de Las reglas de la mecánica cuántica

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica.  La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

Diagrama del proceso triple-α

El proceso del llamado Efecto Triple Alfa, es el camino que recorre la Naturaleza para llegar al Carbono

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.

emilio silvera

¡Qué cosas! ¿Sabremos alguna vez?

Autor por Emilio Silvera    ~    Archivo Clasificado en El pasado    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sí, el rastro, las huellas del pasado están presentes en todo lo que podamos observar en el Universo. La chica examina esa gran Nebulosa que llamamos Orión, y, ella sabe de su procedencia y origen, dado que se formó en una gran explosión Supernova que regó el Espacio Interestelar de materia para que, a partir de ella, surgieran nuevas estrellas y nuevos mundos, y, con una alta probabilidad, nuevas formas de vida.

Resultado de imagen de El pasado que va dejando historias

Dicen que el Pasado es Historia, el Futuro un misterio, pero el hoy es un regalo, por eso le llamamos PRESENTE.  Lo que pasó siempre deja rastros que nos cuentan la historia, lo que hacemos hoy son los cimientos del futuro que vendrá.

Bueno, en cierta manera sí. El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella.

 Dentro del remanente del Canfrejo, cuando profundizamos un poco, podemos descubrir con asombro, como un objeto de inmensa energía magnética, gira y gira de manera frenética. De hecho, en la Nebulosa del Cangrejo (también conocida como M1, NGC 1952, Taurus A … En su centro vive un púlsar, denominado PSR0531+121, que gira sobre sí …. entre 28 y 30 kilómetros; emite pulsos de radiación cada 33 milisegundos. … Se trata de uno de los escasos remanentes de supernova que pueden …

Los restos de una estrella que explotó hace casi mil años forman la nebulosa del Cangrejo, una de los objetos más bellos del cielo y cuyos filamentos de plasma son estudiados por los Astronómos que, de esta manera, llegan a comprender la evolución de la marteria a partir de los sucesos más energéticos del Universo.

Resultado de imagen de Una perspectiva del Universo en su conjunto

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.

Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra. Al parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

 

La mayor parte de las neuronas posee una estructura arbórea formada en su mayor parte por dendritas que, conectadas a otras neuronas, se encargan de recibir y enviar información mediante conexiones sin fin. Esta obra de la Naturaleza, no siempre tiene explicación para nosotros, los humanos, tan ignorantes aún. Muchas veces hemos dicho aquí que a partir de la “materia inerte” llegamos a los pensamientos.

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver a las estrellas.

Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permaneza y todo se transforme.

 

La Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.

Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

 

Sus genios quedaron atrás, ahora el mundo necesita nuevos caminos, nuevos conceptos, nuevas energías. ¿Podrán, algún día, las energías llamadas de Punto Cero,  suplir a estas otras de origen  fósil que se agotaran en unas pocas décadas? Claro que las cosas no siempre son lo que parecen y, lo único que necesitamos es la capacidad intelectual para saber “ver” lo que hay. Siempre ha pasado igual, hemos creado teorías que más tarde, cuando se adquirieron nuevos conocimientos, tuvieron que ser desechadas y tomar las nuevas que nos decían otra realidad de cómo funcionaba la Naturaleza.

                        El vacío perfecto no existe… ¡Siempre hay!

Hace tiempo que se llegó a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todaqs las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.

Imagen relacionada

Allá por los años sesenta, Paul Dirac demostró que las fluctuiaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuandoPaul Davis y William Unruth propusieron la hiótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetria en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

De las Placas Casimir ¿que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.

También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.

Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observfatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.

Los siete colores del Arco Iris: Rojo, Naranja, Amarillo, Verde, Azul, Añil y Violeta. El arco iris es un fenómeno óptico y meteorológico que produce la aparición de un espectro de frecuencias de luz continuo en el cielo cuando los rayos del sol atraviesan pequeñas gotas de agua contenidas en la atmósfera terrestre.

 

Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana. En los colegios de entonces, nos predicaban estas cosas que, como suele ocurrir, cuando de niño te machacan una y otra vez con estos cánticos… ¡Set te quedan grabados!

Las siete notas musicales

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare…

Dios creó el mundo en siete días

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor… Como pòdéis ver, el pasado siempre estará con nosotros. Incluso el nombre de algunas constelaciones provienen del pasado, de otras civilizaciones que dejaron señalado el camino. Siempre ha sido así y lo seguirá siendo.

La suma de las caras opuestas de un dado siempre es igual a siete

                               Las sumas de las caras opuestas de un Dado, siempre es igual a Siete: 1+6; 2+5; 3+4

 Los gatos tienen siete vidas

También decimos que un gato tiene Siete vidas: En el mundo hispano hablante se dice que los gatos tienen siete vidas. La creencia en las siete vidas del gato tiene un origen tanto supersticioso como esotérico. No cabe duda de que la excepcional resistencia del gato, su capacidad de salir indemne ante las situaciones más complicadas.

Muchas más serían las cosas relacionadas con el Número Siete. De todas las maneras, ¡cómo somos los humanos! a todo le tenemos que sacar punta… Lo dicho, nuestra curiosidad que nos lleva en volandas hacia la Casa de la Sabiduría que, ¡está en tántos lugares! ¡Ah! Sin olvidar la gran imaginación que nos adorna.

emilio silvera

No es Oro, todo lo que reluce

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El Bosón de Higgs
          El Bosón de Higgs, la partícula que ¿dá masa al resto de las partículas…

Reportaje de Prensa

 

 

La partícula del siglo se desvanece

 

Los indicios de algo más importante que el bosón de Higgs resultan ser un espejismo estadístico

Interior del detector ATLAS. CERN / QUALITY

Después de ocho meses de experimentos, publicaciones, teorías y rumores, la misteriosa partícula entrevista el invierno pasado se ha esfumado. Los responsables de los principales experimentos del acelerador de partículas más grande del mundo, el LHC, confirmaron ayer que no se ha podido confirmar la existencia de ese “higgs pesado” que se asomó a sus detectores en diciembre de 2015.

Detector CMS del LHC, en Ginebra

 

 

Habría sido un descubrimiento histórico, mucho más importante que el del bosón de Higgs

El anuncio se hizo durante la ICHEP 2016, la mayor conferencia anual de física de partículas, que se celebra estos días en Chicago (EE UU). Los resultados de los dos grandes detectores, ATLAS y CMS, incluyen un año completo de datos en los que el LHC ha funcionado al doble de potencia. Muchos físicos esperaban que esta nueva remesa de experimentos permitiría descubrir nueva física, fenómenos que se salen del modelo estándar que describe, por ahora a la perfección, los quarks, bosones y el resto de partículas fundamentales que componen la materia.

La partícula del siglo se desvanece. Los indicios de algo más importante que el bosón de Higgs resultan ser un espejismo estadístico

La partícula que apareció en diciembre era un bosón de unos 750 gigaelectronvoltios, seis veces más masa que el bosón de Higgs. Lo más interesante es que se salía del modelo estándar y por lo tanto podía ser la primera señal de todo un nuevo territorio de la física descrito por teorías aún por confirmar, como la supersimetría. Sería un descubrimiento histórico, mucho más importante que el del bosón de Higgs, por todos los enigmas sobre el universo que permitiría investigar.

Los resultados acumulados por el detector CMS, filtrados en la noche del jueves, han apagado la hoguera: ya no hay ni rastro de los indicios observados en diciembre. La partícula soñada no era más que una fluctuación estadística.

¿Por qué los dos experimentos vieron exactamente los mismos indicios de una nueva partícula y justo con la misma masa? La respuesta de los científicos ayer fue que en estadística, como en el resto del universo, también hay extrañas coincidencias que no significan nada.

Noticias

¡La Física! Nunca duerme

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Reporje de EL PAÍs
Física de Partículas

El LHC descubre el pentaquark

 

 

Resultado de imagen de El Pentaquarks

 

Aquí tenemos que el protón y el neutrón están formados por tres Quarks, y, el mesón por un par de Quark y antiquark. Sin embargo, han descubierto otra forma de construcción de la materia formada por cinco Quarks.

 

 

Imagen relacionada

 

Una posible estructura del pentaquark CERN

 

Científicos en el mayor acelerador de partículas del mundo anuncian el hallazgo de una exótica partícula compuesta de cinco quarks cuya existencia fue predicha hace medio siglo

 

 

Un operario examina el experimento LHCb

                                           Un operario examina el experimento LHCb NSF

Los científicos del mayor acelerador de partículas del mundo, el LHC de Ginebra, han descubierto una nueva partícula: el pentaquark.

El hallazgo, anunciado hoy por el laboratorio europeo de física de partículas CERN, lo ha hecho el equipo del experimento LHCb y confirma la existencia de una nueva forma de organizar la materia a nivel subatómico. El pentaquark recibe su nombre porque está compuesto de cinco partículas fundamentales.

Toda la materia que conocemos se organiza a nivel subatómico de diferentes maneras. Los protones y los neutrones, por ejemplo, están formados por tres quarks. Otro tipo de ensamblaje lo componen los mesones, formados por pares de quarks hechos de materia y antimateria. Más allá de estas dos categorías, se sabía que la materia podía componer otras variantes más exóticas que, sin embargo, nunca habían sido observadas.

 

 

 

http://www.abc.com.py/archivos/2015/07/14/el-pentaquark-192530.jpg

El experimento LHCb ha permitido ahora encontrar una nueva variante formada de cuatro quarks de materia convencional y un antiquark, hecho de antimateria.

“Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto”, explica a Materia Guy Wilkinson, portavoz del experimento, uno de los cuatro grandes del CERN.

Curiosamente los datos aparecieron en la primera ronda de experimentos en el CERN, que terminó hace dos años. No fue hasta hace tres o cuatro meses que los científicos se toparon con esos datos. Hasta hace muy poco se estuvo comprobando que lo que veían no podía deberse a otra cosa sino a la existencia de una nueva partícula, explica Wilkinson. Ahora, el nivel de confianza está alrededor de nueve sigma, muy por encima de los cinco que se necesitan en física para reclamar un descubrimiento, resalta. Los detalles del hallazgo, anunciado hoy, están disponibles en arxiv.org y se han enviado a la revista Physical Review Letters.

Dentro del estándar

 

Resultado de imagen de El Pentaquarks

 

Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto

 

El primero en proponer la existencia de mesones y bariones hacia más de medio siglo fue Murray Gell-Mann en 1964, lo que le valió el Nobel de Física en 1969. Su modelo también predecía la existencia de partículas compuestas más exóticas como la recién descubierta. Esta nueva partícula “nos puede permitir entender de qué está compuesta la materia ordinaria, los protones y neutrones de los que estamos hechos”, dice Wilkinson.Probablemente, añade, no haya solo un tipo de pentaquark sino varios, y ahora toca buscarlos durante la presente ronda de experimentos en el LHC.

Resultado de imagen de El Pentaquarks

El LCH pretende llegar más allá del Modelo Estándar. Sin embargo, otra cosa es que lo consigan

El objetivo más preciado del LHC, que ha empezado a funcionar al doble de potencia, es encontrar física más allá del llamado modelo estándar, que describe las leyes físicas que gobiernan la materia conocida. El nuevo hallazgo no llega a tanto, aunque es de gran importancia. “El modelo de quarks, propuesto hace más de 50 años no excluye la posibilidad de que existan partículas formadas por más de tres quarks, pero estos llamados hadrones exóticos solo empezaron a dar muestras de su existencia hace pocos años”, ha explicado Juan Saborido, responsable del grupo de la Universidad de Santiago de Compostela participante en LHCb, en una nota de prensa del CPAN. Para el investigador español, el descubrimiento de estas nuevas partículas formadas por cinco quarks, “no implica física más allá del Modelo Estándar, pero es un hallazgo muy importante para el entendimiento de la estructura de los hadrones”.

Resultado de imagen de El Pentaquarks

El pentaquark ha sido descubierto observando los productos de colisiones entre bariones y estudiando las partículas resultantes. Así han desvelado la existencia de dos estados intermedios de la materia cantidad de datos acumulada por el LHV indican la existencia de la nueva partícula.

“Hemos aprovechado la gran cantidad de datos acumulada por el LHC y la excelente precisión de nuestro detector para comprobar a qué se deben esas señales”, ha explicado Tomasz Skwarnicki , científico del LHCb, en una nota de prensa del CERN. “Nuestra conclusión es que solo pueden explicarse por la existencia de pentaquarks”, añade.

Ahora el gran misterio es cómo se sostienen los pentaquarks. Una posibilidad es que sus cinco componentes estén bien unidos. La otra es que sean el producto de la unión entre una barión y un mesón.