Oct
2
La búsqueda interminable
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
La desintegración del bosón de Higgs en dos quarks botton o en dos leptones taus, la mejor medida del llamado ángulo de mezcla débil, la primera evidencia de un extraño proceso de interacción débil y datos inéditos en la búsqueda de materia oscura. Estos son los últimos resultados del LHC presentados en Venecia durante la última Conferencia Internacional de Física de Altas Energías.
Imagen del experimento CMS. / CERN
La comunidad de física de partículas mundial se ha reunido la última semana en Venecia (Italia) para la Conferencia Internacional de Física de Altas Energías de la Sociedad Europea de Física (EPS), que finaliza hoy. En estos días se presentaron muchos resultados nuevos obtenidos a partir de los datos existentes de los experimentos del gran colisionador de hadrones (LHC) del CERN.
En los dos últimos años, el LHC esta funcionando como un reloj suizo, proporcionando a los experimentos una gran cantidad de datos de las colisiones, más de la esperada. Con una mayor luminosidad (número de colisiones) y más datos, los físicos son ahora capaces de explorar las interacciones más fundamentales entre partículas con una sensibilidad y precisión sin precedentes.
Los nuevos resultados presentados en la conferencia de la EPS incluyen estudios detallados sobre el bosón de Higgs. Cinco años después de su descubrimiento, los físicos empiezan ahora a observar esta partícula especial con lupa, avanzando en el conocimiento profundo del modo en que interactúa con otras partículas y con ella misma.
La evidencia de la desintegración del bosón de Higgs a quarks bottom constituye un hito importante en la exploración de sus propiedades.
“El nivel de precisión alcanzado por los experimentos del LHC es impresionante, con solo un pequeño porcentaje de los datos que se prevén obtener en el LHC disponible”, dice la directora general del CERN Fabiola Gianotti. “Es muy satisfactorio explorar cómo el Higgs interacciona con otras partículas. Estas medidas de precisión nos guiarán para entender dónde se esconde la ‘nueva física’”.
El modelo estándar hace predicciones muy específicas de cómo se desintegra el bosón de Higgs en diferentes tipos de partículas. Cuando se observó por primera vez, se basó solo en medidas de su desintegración en otros bosones (W, Z, γ). Ahora, las colaboraciones de los experimentos ALTAS y CMS muestran cómo el Higgs se desintegra directamente a fermiones como quarks y leptones, las partículas fundamentales que constituyen la materia.
La colaboración ATLAS informó de la primera evidencia de la desintegración del bosón de Higgs en un par de quarks bottom con una significancia estadística de 3,6 sigmas. Aunque el modelo estándar predice que este tipo de desintegración ocurre más de la mitad de todas las desintegraciones del Higgs, es muy difícil distinguirla de procesos similares existentes en el ‘fondo’ de las colisiones del detector.
“Esta evidencia de la desintegración del boson de Higgs a quarks bottom constituye un hito importante en la exploración de sus propiedades”, declara Karl Jakobs, portavoz del experimento ATLAS. “Es muy importante para entender por qué se desintegra tan rápido y para buscar evidencias indirectas de otras partículas y desintegraciones inusuales.”
Desintegración de un higgs a dos leptones taus
Tras obtener recientemente evidencias de la desintegración del bosón de Higgs a dos leptones taus, la colaboración del experimento CMS presentó la primera observación de esta desintegración realizada por un solo experimento, que alcanza una impresionante significancia estadística de 5,9 sigmas.
“Este es un paso crucial para establecer el acoplamiento del Higgs a leptones, y representa un paso importante hacia la medida de sus acoplamientos en la tercera generación de fermiones, las copias más pesadas de los electrones y los quarks, cuyo papel en la naturaleza es un misterio”, asegura Joel Butler, portavoz de la colaboración CMS.
En Venecia también se han presentado muchos resultados nuevos en la búsqueda de la misteriosa materia oscura del universo
CMS también presentó el progreso hecho en la búsqueda de la producción de pares de bosones de Higgs, que podría ayudar a entender cómo el higgs interacciona con él mismo.
Observan lka desintegración del Higgs en 2 Quarks botton
Gracias a la gran cantidad de datos, los experimentos del LHC pueden también probar otras propiedades del modelo estándar con gran precisión. En este sentido, CMS presentó la mejor medida obtenido en el LHC del ángulo de mezcla débil, un parámetro clave para establecer firmemente la relación entre las masas de los bosones W y Z. La colaboración ATLAS también presentó la primera evidencia de un proceso raro de interacción débil pero importante, en el que se produce un único quark top junto a un bosón Z.
Con el modelo estándar como base de nuestro entendimiento de las partículas elementales y sus fuerzas, es también muy importante buscar nuevas partículas más allá de esta teoría. Así, en Venecia se han presentado muchos resultados nuevos en la búsqueda de materia oscura.
La comunidad de física de partículas mundial se ha reunido la última semana en Venecia (Italia) para la Conferencia Internacional de Física de Altas Energías.
“Hasta ahora hemos probado los modelos teóricos de materia oscura más simples”, explica el director de Investigación y Computación del CERN, Eckhard Elsen. “Ahora investigamos escenarios mas complicados con la mayor precisión posible”.
La precisión de alto nivel alcanzada por el LHC se muestra también, para la interacción fuerte, con la observación de nuevas partículas con dos quarks charms obtenida recientemente por la colaboración del experimento LHCb, así como por el incremento de precisión en las medidas de la asimetría entre materia y antimateria. También se comprueba en el amplio rango de resultados obtenidos en las colisiones entre iones pesados obtenidos por todos los experimentos. La colaboración del experimento ALICE presentó una de las medidas más precisas de la vida media del ‘hypertriton’, un núcleo exótico que contiene quarks strange y abunda en las colisiones del LHC.
Reportaje
Oct
2
¿Viajes en el Tiempo? ¡Otro sueño de la Humanidad!
por Emilio Silvera ~ Clasificado en Viajar al pasado ~ Comments (1)
En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de los quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia y hace posible la conformación de hadrones como los protones y los neutrones. Los quarks y los gluones están confinados en una región cuyo valor se define por:
R » ћc /L » 10-13 cm
Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrónes. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.
Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moveran en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.
En la parte anterior de este mismo trabajo, estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante. universo que se va y universo que viene.
Pero, ¿y nosotros?, ¿qué pintamos aquí?
¡Mirado así no parece que seamos gran cosa!
Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.
Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.
Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando se sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.
Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.
Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.
Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación
Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.
En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.
Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.
Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo? En el laboratorio no se ha podido encontrar, y, desde luego, de hallarla, habríamos encontrado una fuente para solucionar grandes problemas.
Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.
Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.
En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.
Esta diminuta bola prueba que el universo se expandirá eternamente. De apenas una décima de milímetro, la bola se mueve hacia una tersa placa en respuesta a las fluctuaciones de energía en la vacuidad del espacio vacío (Efecto Casimir).
Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.
Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.
Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.
Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.
En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.
Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas
Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.
Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane,
“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.
La NASA hace ya muchos años que abandonó el Proyecto SETI por la falta de resultados y la ingente cantidad de dinero que costaba continuarlo. Y, desde entonces, pasó a financiación privada que siguen costeando el sueño de encontrar vida inteligente en otros mundos.
No son pocos los que se preguntan: ¿Para qué sirve ese sin sentido? ¿No se podría emplear ese dinero en otros proyectos más lucrativos y de rendimiento visible a corto plazo?
Lo cierto es que, nosotros los Humanos, desde que tuvimos consciencia del Universo, siempre hemos soñado con poder realizar ese contacto “imposible”. Los científicos saben de la Gravedad de los problemas irresolubles que se nos vienen encima en el futuro (Sí, falta mucho para que Andrómeda se fusione con la Vía Láctea o el Sol, agotado su combustible nuclear de fusión, se convierta en gigante roja primero y en enana blanca despues. Sin embargo, si para entonces seguimos aquí… ¡La única posibilidad de salvar a nuestra especie será poder viajar a otros mundos lejanos!
Los mundos habitables, sólo en nuestra Galaxia pueden ser miles de millones y, hasta el momento, apenas hemos podido localizar unos 4.000 y no todos ellos con posibilidad de albergar la vida. Sin embargo, el sueño de contactar con otros seres inteligentes no nos deja a pesar de las terribles consecuencias que tal encuentro podría traer para la Humanidad.
Modernas naves y nuevas formas de acceder a viajes que ahora, nos están vedados por no tener el conocimiento y las técnicas necesarias, ni los conocimientos de física que los hagan posible. Si una Inteligencia superior viniera y nos diera esa posibilidad…
¡Sólo pensarlo me da escalofríos ¿qué consecuencias podrían traernos tal evento?
A pesar de los riesgos, no dejaremos de intentarlo. Dentro de nosotros parece que tenemos una voz que nos empuja a continuar con el proyecto de buscar esa comunicación extraterrestre que, no necesariamente, tiene que ser buena para nosotros.
Pienso que, si la Naturaleza lo dispuso así, si nos mantiene tan alejados los unos de los otros… ¡Por algo será! Yo dejaría las cosas como están, ya que, nos cuesta trabajo entendernos a nosotros mismos… ¿Cómo hacerlo con extraños en todo el sentido de la palabra?
emilio silvera